1 3 радиан. Перевод градусов в радианы и обратно: формулы, примеры. можно познакомиться с функциями и производными

ЕГЭ по математике профильный уровень

Работа состоит из 19 заданий.
Часть 1:
8 заданий с кратким ответом базового уровня сложности.
Часть 2:
4 задания с кратким ответом
7 заданий с развернутым ответом высокого уровня сложности.

Время выполнения - 3 часа 55 минут.

Примеры заданий ЕГЭ

Решение задания ЕГЭ по математике.

Задача с решением:

В правильной треугольной пирамиде АВСS с основанием АВС известны ребра: АВ = 5 корней из 3, SC = 13.
Найти угол, образованный плоскостью основания и прямой, проходящей через середину ребер АS и ВС.

Решение:

1. Поскольку SABC - правильная пирамида, то ABC - равносторонний треугольник, а остальные грани - равные между собой равнобедренные треугольники.
То есть все стороны основания равны 5 sqrt(3), а все боковые ребра равны 13.

2. Пусть D - середина BC, E - середина AS, SH - высота, опущенная из точки S к основанию пирамиды, EP - высота, опущенная из точки E к основанию пирамиды.

3. Найдем AD из прямоугольного треугольника CAD по теореме Пифагора. Получится 15/2 = 7.5.

4. Поскольку пирамида правильная, точка H - это точка пересечения высот/медиан/биссектрис треугольника ABC, а значит, делит AD в отношении 2:1 (AH = 2 AD).

5. Найдем SH из прямоугольного треугольника ASH. AH = AD 2/3 = 5, AS = 13, по теореме Пифагора SH = sqrt(13 2 -5 2) = 12.

6. Треугольники AEP и ASH оба прямоугольные и имеют общий угол A, следовательно, подобные. По условию, AE = AS/2, значит, и AP = AH/2, и EP = SH/2.

7. Осталось рассмотреть прямоугольный треугольник EDP (нас как раз интересует угол EDP).
EP = SH/2 = 6;
DP = AD 2/3 = 5;

Тангенс угла EDP = EP/DP = 6/5,
Угол EDP = arctg(6/5)

Ответ:

А знаете ли вы, что?

Среди всех фигур, с одинаковым периметром, у круга будет самая большая площадь. И наоборот, среди всех фигур с одинаковой площадью, у круга будет самый маленький периметр.

Леонардо да Винчи вывел правило, согласно которому квадрат диаметра ствола дерева равен сумме квадратов диаметров ветвей, взятых на общей фиксированной высоте. Более поздние исследования подтвердили его с одним лишь отличием - степень в формуле необязательно равняется 2, а лежит в пределах от 1,8 до 2,3. Традиционно считалось, что эта закономерность объясняется тем, что у дерева с такой структурой оптимальный механизм снабжения веток питательными веществами. Однако в 2010 году американский физик Кристоф Эллой нашёл более простое механическое объяснение феномену: если рассматривать дерево как фрактал, то закон Леонардо минимизирует вероятность слома веток под воздействием ветра.

Лабораторные исследования показали, что пчёлы умеют выбирать оптимальный маршрут. После локализации расставленных в разных местах цветков пчела совершает облёт и возвращается обратно таким образом, что итоговый путь оказывается наикратчайшим. Таким образом, эти насекомые эффективно справляются с классической «задачей коммивояжёра» из информатики, на решение которой современные компьютеры, в зависимости от количества точек, могут тратить не один день.

Если умножить ваш возраст на 7, затем умножить на 1443, то результатом будет ваш возраст написанный три раза подряд.

Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда. Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, но западнее они не прижились – знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 – абсурдно.

Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.

Используемая нами десятичная система счисления возникла по причине того, что у человека на руках 10 пальцев. Способность к абстрактному счёту появилась у людей не сразу, а использовать для счёта именно пальцы оказалось удобнее всего. Цивилизация майя и независимо от них чукчи исторически использовали двадцатичную систему счисления, применяя пальцы не только рук, но и ног. В основе распространённых в древних Шумере и Вавилоне двенадцатеричной и шестидесятиричной систем тоже было использование рук: большим пальцем отсчитывались фаланги других пальцев ладони, число которых равно 12.

Одна знакомая дама просила Эйнштейна позвонить ей, но предупредила, что номер ее телефона очень сложно запомнить: - 24-361. Запомнили? Повторите! Удивленный Эйнштейн ответил: - Конечно, запомнил! Две дюжины и 19 в квадрате.

Стивен Хокинг - один из крупнейших физиков-теоретиков и популяризатор науки. В рассказе о себе Хокинг упомянул, что стал профессором математики, не получая никакого математического образования со времён средней школы. Когда Хокинг начал преподавать математику в Оксфорде, он читал учебник, опережая собственных студентов на две недели.

Максимальное число, которое можно записать римскими цифрами, не нарушая правил Шварцмана (правил записи римских цифр) - 3999 (MMMCMXCIX) - больше трех цифр подряд писать нельзя.

Известно много притч о том, как один человек предлагает другому расплатиться с ним за некоторую услугу следующим образом: на первую клетку шахматной доски тот положит одно рисовое зёрнышко, на вторую - два и так далее: на каждую следующую клетку вдвое больше, чем на предыдущую. В результате тот, кто расплачивается таким образом, непременно разоряется. Это неудивительно: подсчитано, что общий вес риса составит более 460 миллиардов тонн.

Во многих источниках, зачастую с целью ободрения плохо успевающих учеников, встречается утверждение, что Эйнштейн завалил в школе математику или, более того, вообще учился из рук вон плохо по всем предметам. На самом деле всё обстояло не так: Альберт ещё в раннем возрасте начал проявлять талант в математике и знал её далеко за пределами школьной программы.

На уроке рассматривается решение 13 задания ЕГЭ по информатике


13 тема — «Количество информации» — характеризуется, как задания повышенного уровня сложности, время выполнения – примерно 3 минуты, максимальный балл — 1


при работе с текстом

  • С помощью K бит можно закодировать Q = 2 K различных символов:
  • Q — мощность алфавита
  • K Q вариантов символов
  • 2 — двоичная система счисления (данные хранятся в двоичном виде)
  • N = 2 i

  • I , нужно умножить количество символов N на число бит для хранения одного символа K :
  • I
  • N — длина сообщения (количество символов),
  • K — количество бит для хранения одного символа.
  • В этих двух формулах используется одна и та же переменная :
  • Q = 2 K I = N * K

    Рассмотрим пример с использованием одновременно двух формул:

Пример:
Объем сообщения – 7,5 Кбайт 7680 символов . Какова мощность алфавита?


✍ Решение:
  • Воспользуемся формулой:
  • I = N*K;
    I — объем сообщения = 7,5 Кбайт;
    N — количество символов = 7680;
    K — количество бит на 1 символ

  • Найдем количество бит, необходимое для хранения 1 символа (сначала переведем значение в биты):
  • \[ K= \frac {7,5 * 2^{13}}{7680} = \frac {7,5 * 2^{13}}{15 * 2^9} = \frac {7,5 * 16}{15} = 8 \]

    т.е. K = 8 бит на 1 символ

  • Далее воспользуемся формулой:
  • Q = 2 K
    K — количество бит для хранения одного символа из Q вариантов символов (= 8)
    Q — мощность алфавита, т.е. количество вариантов символов

  • 8 бит на символ позволяют закодировать:
  • 2 8 = 256 различных символов
    256 символов — это и есть мощность

    Ответ: 256

Измерение количества информации
при работе с различными системами

  • С помощью K бит можно закодировать Q = 2 K различных (номеров) объектов некоторой системы:
  • Q — общее количество объектов в некоторой системе, данные о которых хранятся в компьютере или передаются в сообщении,
  • K — количество бит для хранения одного объекта из общего количества Q ,
  • 2 — двоичная система счисления (данные хранятся в двоичном виде).
  • * также приняты другие обозначения: N = 2 i

  • Чтобы найти информационный объем сообщения I , нужно умножить количество объектов в сообщении — N — на число бит K для хранения одного объекта:
  • I — информационный объем сообщения,
  • N — количество объектов в сообщении
  • K — количество бит для хранения одного объекта системы.

Пример:
На производстве работает автоматическая система информирования склада о необходимости доставки в цех определенных групп расходных материалов. Система устроена так, что по каналу связи на склад передается условный номер расходных материалов (при этом используется одинаковое, но минимально возможное количество бит в двоичном представлении этого числа). Известно, что был послан запрос на доставку 9 групп материалов из 19 используемых на производстве. Определите объем посланного сообщения (Ответ дайте в битах)


✍ Решение:
  • Воспользуемся формулой:
  • K — количество бит для хранения одного номера группы материалов
    Q — общее количество номеров для различных групп расходных материалов = 19

  • для хранения номера одной группы потребуется бит:
2 5 < 19 => 5 бит
  • Степень 4 нас не устраивает, т.к. 2 4 = 16 , а групп 19 .
  • Далее воспользуемся формулой:
  • I = N*K;
    I — объем сообщения = ? бит;
    N — количество передаваемых номеров групп (= 9);
    K — количество бит на 1 номер (= 5)

  • Найдем информационных объем сообщения:
  • I = 9 * 5 = 45 бит

    Ответ: 45

    Решение заданий 13 ЕГЭ по информатике

    ЕГЭ по информатике 2017 задание 13 ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.):

    7 33 -символьного алфавита. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт бит . Кроме собственного пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей.

    Для хранения сведений о 60 пользователях потребовалось 900 байт.

    Сколько байт выделено для хранения дополнительных сведений об одном пользователе?
    В ответ запишите только целое число — количество байт.


    ✍ Решение:
    • Сначала определимся с паролем. По формуле Q = M N получаем:
    33 = 2 N -> N = 6 бит на 1 символ
  • Пароль состоит из 7 символов:
  • -> 7*6 = 42 бит всего на пароль
  • Так как все данные о пользователях хранятся в байтах, то возьмем ближайшее число большее 42 и кратное 8 :
  • 48/8 = 6 42 бит ~ 6 байт
  • Теперь найдем сколько байт отводится для хранения информации об одном пользователе:
  • 900 байт / 60 (пользователей) = 15 байт на каждого пользователя
  • Получим объем памяти для хранения дополнительных сведений:
  • 15 байт (на хранение всей информации) - 6 байт (на хранение пароля) = 9 байт на дополнительные сведения

    Результат: 9

    Пошаговое решение данного 13 задания ЕГЭ по информатике также доступно в видеоуроке:

    ЕГЭ 2017 сборник Д.М. Ушакова «10 тренировочных вариантов…» вариант 1:

    Кабельная сеть проводит голосование среди зрителей о том, какой из четырех фильмов они хотели бы посмотреть вечером. Кабельной сетью пользуются 2000 человек. В голосовании участвовало 1200 человек.
    Каков объем информации (в байтах ), записанный автоматизированной системой голосования?


    ✍ Решение:
    • Так как номера четырех фильмов хранятся в компьютерной системе, то можно найти количество бит, необходимое для хранения номера фильма:
    Q = 2 k -> 4 = 2 k -> k = 2 бита
  • Так как все 1200 человек будут голосовать за один из фильмов, соответственно, на каждый голос нужно выделить такой же объем памяти (т.е. 2 бита).
  • Найдем количество бит, необходимое для хранения всех 1200 голосов:
  • 1200 * 2 = 2400 бит = 2400/8 байт = 300 байт

    Результат: 300

    ЕГЭ 2017 сборник Д.М. Ушакова «10 тренировочных вариантов…» вариант 6:

    При регистрации в компьютерной системе каждому пользователю выдается пароль, состоящий из 15 символов и содержащий только символы из 12 -символьного набора A, B, C, D, E, F, G, H, I, K, L, M, N . В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт . При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит . Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 12 байт на одного пользователя.

    Определите объем памяти (в байтах ), необходимый для хранения сведений о 30 пользователях.
    В ответе запишите только целое число — количество байт.

    ✍ Решение:

    Результат: 600

    Пример решения данного задания ЕГЭ доступно в видеоуроке:

    ЕГЭ 2017 сборник Д.М. Ушакова «10 тренировочных вариантов…» вариант 10:

    Репетиционный экзамен в школе сдают 105 человек. Каждому из них выделяют специальный номер, идентифицирующий его в автоматической системе проверки ответов. При регистрации участника для записи его номера система использует минимально возможное количество бит , одинаковое для каждого участника.

    Каков объем информации в битах , записанный устройством после регистрации 60 участников?

    ✍ Решение:

    Результат: 420

    Пример решения данного задания ЕГЭ доступно в видеоуроке:

    13 задание. Демоверсия ЕГЭ 2018 информатика:

    10 символов. В качестве символов используют прописные буквы латинского алфавита, т.е. 26 различных символов. В базе данных для хранения каждого пароля отведено одинаковое и минимально возможное целое число байт . При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит .

    Определите объём памяти (в байтах ), необходимый для хранения данных о 50 пользователях.
    В ответе запишите только целое число – количество байт.


    ✍ Решение:
    • Основной формулой для решения данной задачи является:
    • где Q — количество вариантов символов, которые можно закодировать с помощью N бит.

    • Чтобы найти количество бит, необходимое для хранения одного пароля, для начала нужно найти количество бит, необходимых для хранения 1 символа в пароле. По формуле получаем:
    26 = 2 N -> N ~ 5 бит
  • Пароль состоит из 10 символов. Значит на пароль необходимо выделить бит:
  • 10 * 5 = 50 бит всего на пароль
  • Поскольку сведения о пароле сохраняются в байтах, то переведем:
  • 50 бит / 8 ~ 7 байт (берем ближайшее число большее 50 и кратное 8: 57/8 = 7)
  • Теперь найдем сколько байт отводится для хранения информации о 50 пользователях:
  • 7 байт * 50 (пользователей) = 350 байт

    Результат: 350

    Подробное решение 13 задания демоверсии ЕГЭ 2018 года смотрите на видео:

    Решение 13 задания ЕГЭ по информатике (диагностический вариант экзаменационной работы, Тренажер ЕГЭ 2018 года, С.С. Крылов, Д.М. Ушаков):

    В некоторой стране автомобильный номер состоит из 7 символов . Каждый символ может быть одной из 18 различных букв или десятичной цифрой .

    Каждый такой номер в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт , при этом используют посимвольное кодирование и каждый символ кодируется одинаковым и минимально возможным количеством бит .

    Определите объем памяти в байтах , отводимый этой программой для записи 50 номеров.


    ✍ Решение:
    • Так как в номере может быть использована либо одна буква из 18 , либо одна цифра из 10 , то всего в качестве одного символа в номере может быть использован один из 28 символов:
    18 + 10 = 28
  • Определим, сколько понадобится бит для хранения одного символа в номере, для этого используем формулу N = 2 i :
  • 28 = 2 i => i = 5
  • Поскольку общее количество символов в номере равно 7 , то получим необходимое количество бит на хранение одного номера:
  • I = 7 * 5 = 35 бит
  • Поскольку на хранение номера выделяется одинаковое количество байт , то переведем в байты:
  • 35 / 8 ~ 5 байт
  • В задаче спрашивается, сколько потребуется памяти для хранения 50 номеров. Находим:
  • I = 50 * 5 = 250 байт на хранение 50 номеров

    Результат: 250

    Видеоразбор:

    Решение 13 задания ЕГЭ по информатике (контрольный вариант №1 экзаменационной работы, Тренажер 2018 года, С.С. Крылов, Д.М. Ушаков):

    Репетиционный экзамен сдают 9 потоков по 100 человек в каждом. Каждому из них выделяют специальный код, состоящий из номера потока и номера в потоке. При кодировании этих номеров участников проверяющая система использует минимально возможное количество бит , одинаковое для каждого участника, отдельно для номера потока и номера в потоке. При этом для записи кода используется минимально возможное и одинаково целое количество байтов .
    Каков объем информации в байтах, записанный устройством после регистрации 80 участников?
    В ответе укажите только число.


    ✍ Решение:
    • Код состоит из двух составляющих: 1. номер потока (в битах) и 2. номер по порядку (в битах). Найдем количество бит, необходимое для их хранения:
    1. N = 2 i -> 9 = 2 i -> i = 4 бит (2 3 100 = 2 i -> i = 7 бит (2 6
  • Итого получаем 4 + 7 = 11 бит на один код. Но на хранение кода по условию выделяется целое число байт. Значит переведем получившийся результат в байты:
  • 11/ 8 ~ 2 байта (одного байта недостаточно, 8
  • Так как нам необходимо получить объем информации после регистрации 80 участников, то вычисляем:
  • 2 * 80 = 160 байт

    Результат: 160

    Видеоразбор задания:



    Решение 13 задания ЕГЭ по информатике (К. Поляков, в. 4):

    Объем сообщения – 7,5 Кбайт . Известно, что данное сообщение содержит 7680 символов . Какова мощность алфавита?


    ✍ Решение:
    • Воспользуемся формулой:
    I - объем сообщения N - количество символов K - количество бит на 1 символ
  • В нашем случае N = 7680 символов, на которые выделено I = 7,5 Кбайт памяти. Найдем количество бит, необходимое для хранения одного символа (сначала переведя Кбайты в биты):
  • I = 7,5 Кбайт = 7,5 * 2 13 бит

    \[ K = \frac {7,5 * 2^{13}}{7680} = \frac {7,5 * 2^{13}}{15 * 2^9} = \frac {7,5 * 16}{15} = 8 \]

  • 8 бит на символ позволяют закодировать:
  • 2 8 = 256 различных символов
    (по формуле Q = 2 N)

  • 256 символов - это и есть мощность
  • Результат: 256

    Видеоразбор задания представлен после очередной задачи.

    Кодирование сообщений (текста):

    Решение 13 задания ЕГЭ по информатике (К. Поляков, в. 6):

    Мощность алфавита равна 256 . Сколько Кбайт памяти потребуется для сохранения 160 страниц текста , содержащего в среднем 192 символа на каждой странице?


    ✍ Решение:
    • Найдем общее количество символов на всех страницах (для удобства будем использовать степени двойки):
    160 * 192 = 15 * 2 11
  • По формуле Q = 2 n найдем количество бит, требуемое на хранение одного символа (в нашем случаем Q = 256 ):
  • 256 = 2 n -> n = 8 бит на 1 символ
  • Воспользуемся формулой I = N * K и найдем требуемый объем:
  • \[ I = {15 * 2^{11}} * 2^3 бит = \frac {15 * 2^{14}}{2^{13}} Кбайт = 30 Кбайт \]

    I = 30 Кбайт

    Результат: 30

    Смотрите подробный разбор заданий на кодирование текста:от 1 до 2100 ), номер месяца (число от 1 до 12 ) и номер дня в месяце (число от 1 до 31 ). Каждое поле записывается отдельно от других полей с помощью минимально возможного числа бит.
    Определите минимальное количество бит, необходимых для кодирования одной записи.


    ✍ Решение:
    • Необходима формула Q = 2 n .
    • Вычислим требуемое количество бит на хранение каждого пункта всей записи:
    1. 2100 вариантов: 2100 ~ 2 12 -> n = 12 бит 2. 12 вариантов: 12 ~ 2 4 -> n = 4 бит 3. 31 вариант: 31 ~ 2 5 -> n = 5 бит
  • Найдем общее количество бит для всей записи:
  • 12 + 4 + 5 = 21

    Решение 13 задания ЕГЭ по информатике (К. Поляков, в. 33):

    Автомобильный номер состоит из нескольких букв (количество букв одинаковое во всех номерах), за которыми следуют три цифры. При этом используются 10 цифр и только 5 букв : Н, О, М, Е и Р . Нужно иметь не менее 100 тысяч различных номеров.
    Какое наименьшее количество букв должно быть в автомобильном номере?


    ✍ Решение:
    • Необходима формула Q = m n .
    Q - количество вариантов m - мощность алфавита n - длина
  • Составим правую часть формулы, исходя из данных условия задания (неизвестное количество букв (из пяти вариантов) и три цифры (из 10 вариантов)):
  • 5 ... 5 10 10 10 = 5 x * 10 3
  • Весь этот результат по условию должен быть не менее 100000 . Подставим остальные данные в формулу:
  • 100000
  • Отсюда найдем наименьший подходящий x:
  • x = 3 : 5 3 * 1000 = 125000 (125000 > 100000)

    Результат: 3

    Предлагаем посмотреть видеоразбор задания:

    Решение 13 задания ЕГЭ по информатике (К. Поляков, в. 58):

    При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов . В качестве символов используют прописные и строчные буквы латинского алфавита (в нём 26 символов ), а также десятичные цифры . В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 18 байт на одного пользователя. В компьютерной системе выделено 1 Кб для хранения сведений о пользователях.

    О каком наибольшем количестве пользователей может быть сохранена информация в системе? В ответе запишите только целое число – количество пользователей.


    ✍ Решение:
    • Так как используются как прописные, так и строчные буквы, то получим всего вариантов символов для кодирования:
    26 + 26 + 10 = 62
  • Из формулы Q = 2 n получим количество бит, требуемое для кодирования 1 символа пароля:
  • Q = 2 n -> 62 = 2 n -> n = 6
  • Поскольку в пароле 9 символов, то получим количество бит для хранения 1 пароля:
  • 6 * 9 = 54
  • Переведем в байты (т.к. по условию пароли хранятся в байтах):
  • 54 / 8 = 7 байт
  • На хранение дополнительных сведений выделено 18 байт. Получим количество байт для хранения всех сведений для одного пользователя:
  • 18 + 7 = 25 байт
  • По условию всего выделено 1 Кб для хранения сведений о всех пользователях. Переведем это значение в байты:
  • 1 Кб = 1024 байт
  • Получим возможное количество пользователей:
  • 1024 / 25 = 40,96
  • Отбросим дробную часть: 40
  • Результат: 40

    Смотрите видео с решением задания:

    Углы измеряются в градусах или в радианах. Важно понимать связь между этими единицами измерения. Понимание этой связи позволяет оперировать углами и осуществлять переход от градусов к радианам и обратно. В данной статье выведем формулу для перевода градусов в радианы и радианов в градусы, а также разберем несколько примеров из практики.

    Yandex.RTB R-A-339285-1

    Связь между градусами и радианами

    Чтобы установить связь между градусами и радианами, необходимо узнать градусную и радианную меру какого-либо угла. Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла необходимо длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π · r . Разделим длину дуги на радиус и получим радианную меру угла: π · r r = π рад.

    Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180 ° . Следовательно 180 ° = π рад.

    Связь градусов с радианами

    Связь между радианами и градусами выражается формулой

    π радиан = 180 °

    Формулы перевода радианов в градусы и наоборот

    Из формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и из градуов в радианы.

    Выразим один радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

    1 р а д = 180 π ° - градусная мера угла в 1 радиан равна 180 π .

    Также можно выразить один градус в радианах.

    1 ° = π 180 р а д

    Можно произвести приблизтельные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.

    1 р а д = 180 π ° = 180 3 , 1416 ° = 57 , 2956 °

    Значит, в одном радиане примерно 57 градусов

    1 ° = π 180 р а д = 3 , 1416 180 р а д = 0 , 0175 р а д

    Один градус содержит 0,0175 радиана.

    Формула перевода радианов в градусы

    x р а д = х · 180 π °

    Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

    Примеры перевода градусов в радианы и радианов в градусы

    Рассмотрим пример.

    Пример 1. Перевод из радианов в градусы

    Пусть α = 3 , 2 рад. Нужно узнать градусную меру этого угла.

    Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом "Пи", которое так и норовит запутать нас в хитрых заданиях, да...

    Стандартные задания по тригонометрии с числом "Пи" решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона - валит наповал! Чтобы не свалиться - понимать надо. Что мы с успехом сейчас и сделаем. В смысле - всё поймём!

    Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии - никуда.

    Градусная мера угла.

    К градусам мы как-то привыкли. Геометрию худо-бедно проходили... Да и в жизни частенько встречаемся с фразой "повернул на 180 градусов", например. Градус, короче, штука простая...

    Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то...

    Градусы придумали в Древнем Вавилоне. Давненько это было... Веков 40 назад... И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус - это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее... Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

    Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак... Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно... Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя... В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926... раз.

    Это и есть число "Пи". Вот уж лохматое, так лохматое. После запятой - бесконечное число цифр без всякого порядка... Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

    Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

    Раз уж мы поняли, что длина окружности больше диаметра в "Пи" раз, имеет смысл запомнить формулу длины окружности:

    Где L - длина окружности, а d - её диаметр.

    В геометрии пригодится.

    Для общего образования добавлю, что число "Пи" сидит не только в геометрии... В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

    Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь... Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие - 360? И в каком варианте этих делителей нацело - больше? Людям такое деление очень удобно. Но...

    Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся... Высшая математика - дама серьёзная, по законам природы устроена. И эта дама заявляет: "Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245... И что мне делать? Нет уж..." Пришлось послушаться. Природу не обманешь...

    Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь - радиан!

    Радианная мера угла.

    Что такое радиан? В основе определения радиана - всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

    Маленький такой угол, почти и нет его... Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

    Чувствуете разницу?

    Один радиан много больше одного градуса. А во сколько раз?

    Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

    А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

    Кто угадает, чему равен этот хвостик!?

    Да! Этот хвостик - 0,1415926.... Здравствуй, число "Пи", мы тебя ещё не забыли!

    Действительно, в 180° градусах укладывается 3,1415926... радиан. Как вы сами понимаете, всё время писать 3,1415926... неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

    А вот в Интернете число

    писать неудобно... Поэтому я в тексте пишу его по имени - "Пи". Не запутаетесь, поди?...

    Вот теперь совершенно осмысленно можно записать приближённое равенство:

    Или точное равенство:

    Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула - это тоже уравнение!) на 3,14:

    Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

    Но главное умение этой темы - перевод градусов в радианы и обратно.

    Если угол задан в радианах с числом "Пи", всё очень просто. Мы знаем, что "Пи" радиан = 180°. Вот и подставляем вместо "Пи" радиан - 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле "Пи"/2 радиан ? Вот и пишем:

    Или, более экзотическое выражение:

    Легко, верно?

    Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

    Смотрим на формулу и соображаем, что если 180° = "Пи" радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула - это тоже уравнение!) на 180. Представлять "Пи" как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

    Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

    Или, аналогично:

    Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы - это очень просто. Да и перевод без проблем... И "Пи" - вполне терпимая штука... Так откуда путаница!?

    Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов - пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) - не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что... Но решили не писать. Если внутри синуса - котангенса нет никаких значков, то угол - в радианах ! Например, cos3 - это косинус трёх радианов .

    Это и приводит к непоняткам... Человек видит "Пи" и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры - стандартные. Но "Пи" - это число! Число 3,14, а никакие не градусы! Это "Пи" радиан = 180°!

    Ещё раз: "Пи" - это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно "Пи" шагов. Три шага и ещё маленько. Или купить "Пи" килограммов конфет. Если продавец образованный попадётся...

    "Пи" - это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

    Или, что меньше?

    Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать...

    Если вы тоже в ступор впали, вспоминаем заклинание: "Пи" - это число! 3,14. В самом первом синусе четко указано, что угол - в градусах ! Стало быть, заменять "Пи" на 180° - нельзя! "Пи" градусов - это примерно 3,14°. Следовательно, можно записать:

    Во втором синусе обозначений никаких нет. Значит, там - радианы ! Вот здесь замена "Пи" на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

    Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

    Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

    Потренируемся в обращении с мерами угла.

    Переведите эти углы из градусной меры в радианную:

    360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

    У вас должны получиться такие значения в радианах (в другом порядке!)

    0

    Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

    Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут... И, соответственно, в тригонометрических функциях нуля путаются... Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге - сплошь и рядом.

    Во второй строчке - тоже углы специальные... Это 30°, 45° и 60°. И что в них такого специального? Особо - ничего. Единственное отличие этих углов от всех остальных - именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° - уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего... Но об этом подробнее - в следующем уроке.

    А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

    У вас должны получиться такие результаты (в беспорядке):

    210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

    Получилось? Тогда можно считать, что перевод градусов в радианы и обратно - уже не ваша проблема.) Но перевод углов - это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже...

    Второй мощный шаг - это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да...) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

    1. В какую четверть попадают углы:

    45°, 175°, 355°, 91°, 355° ?

    Легко? Продолжаем:

    2. В какую четверть попадают углы:

    402°, 535°, 3000°, -45°, -325°, -3000°?

    Тоже без проблем? Ну, смотрите...)

    3. Сможете разместить по четвертям углы:

    Смогли? Ну вы даёте..)

    4. На какие оси попадёт уголок:

    и уголок:

    Тоже легко? Хм...)

    5. В какую четверть попадают углы:

    И это получилось!? Ну, тогда я прям не знаю...)

    6. Определить, в какую четверть попадают углы:

    1, 2, 3 и 20 радианов.

    Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

    Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

    Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

    Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами - можете не посещать 555. Не настаиваю.)

    Хорошее понимание - достаточно веская причина, чтобы двигаться дальше!)

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    Таблица значений тригонометрических функций

    Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

    См. также полезные материалы:

    Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

    Синус пи, косинус пи, тангенс пи и других углов в радианах

    Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

    Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

    Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

    Примеры :
    1. Синус пи .
    sin π = sin 180 = 0
    таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

    2. Косинус пи .
    cos π = cos 180 = -1
    таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

    3. Тангенс пи
    tg π = tg 180 = 0
    таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

    Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

    значение угла α
    (градусов)

    значение угла α
    в радианах

    (через число пи)

    sin
    (синус)
    cos
    (косинус)
    tg
    (тангенс)
    ctg
    (котангенс)
    sec
    (секанс)
    cosec
    (косеканс)
    0 0 0 1 0 - 1 -
    15 π/12 2 - √3 2 + √3
    30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
    45 π/4 √2/2 √2/2 1 1 √2 √2
    60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
    75 5π/12 2 + √3 2 - √3
    90 π/2 1 0 - 0 - 1
    105 7π/12 -
    - 2 - √3 √3 - 2
    120 2π/3 √3/2 -1/2 -√3 -√3/3
    135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
    150 5π/6 1/2 -√3/2 -√3/3 -√3
    180 π 0 -1 0 - -1 -
    210 7π/6 -1/2 -√3/2 √3/3 √3
    240 4π/3 -√3/2 -1/2 √3 √3/3
    270 3π/2 -1 0 - 0 - -1
    360 0 1 0 - 1 -

    Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

    Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
    0, 15, 30, 45, 60, 90 ... 360 градусов
    (цифровые значения "как по таблицам Брадиса")

    значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
    0 0
    15

    0,2588

    0,9659

    0,2679

    30

    0,5000

    0,5774

    45

    0,7071

    0,7660

    60

    0,8660

    0,5000

    1,7321

    7π/18