3 тела вращения. Поверхности и тела вращения. Соблюдение вашей конфиденциальности на уровне компании

Тела вращения

Работу выполнили студентки 1ДО группы: Вилачева Мария

Коркина Елена


Тела вращения

  • Телами вращения называются объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченная кривой, вокруг оси, лежащий в той же плоскости.

Цилиндр.

Эллиптический цилиндр

Правильный круглый цилиндр

Цили́ндр (греч. kýlindros, валик, каток) - геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра , а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра .


Примеры тел, имеющих форму цилиндра:

  • Сквозное отверстие в стене, сделанное дрелью, является цилиндром: его основание – круг с диаметром, равным диаметру сверла, высота – толщина стены.

Связанные определения.

  • Цилиндр называется прямым , если его образующие перпендикулярны плоскостям оснований.
  • Радиусом цилиндра называется радиус его основания.
  • Высотой цилиндра называется расстояние между его плоскостями.
  • Осью цилиндра называется прямая, проходящая через центр оснований. Она параллельна образующим.
  • Осевое сечение сечение цилиндра плоскостью, проходящей через его ось.

Свойства

  • Основания цилиндра равны.
  • У цилиндра основания лежат в параллельных плоскостях.
  • У цилиндра образующие параллельны и равны.
  • Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Основные формулы

  • V = π r 2 h - объём прямого кругового цилиндра
  • S = 2π rh - Площадь боковой поверхности цилиндра
  • (где r - радиус основания, h - высота).

Площадь полной поверхности цилиндра

складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:

S = 2π rh + 2π r 2 .


Конус

Ко́нус - тело , которое состоит из круга – основания конуса , точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Прямой круговой конус


  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой) поверхностью конуса .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

  • Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением .

  • Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.
  • Сечение конуса плоскостью, параллельной основанию, отсекает от него конус, подобный данному.
  • Площадь полной поверхности конуса равна

S ппк = S бп + S осн


  • Площадь боковой поверхности конуса равна

S = πRl

где R - радиус основания, l - длина образующей.

  • Объем кругового конуса равен

V=⅓πR 2 H


Шар и сфера

Шар - геометрическое тело, ограниченное поверхностью, все точки которой отстоят на равном расстоянии от центра. Это расстояние называется радиусом шара . Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара , а его оба конца - полюсами шара . Поверхность шара называется сферой .


Примеры тел, имеющих форму шара или сферы:

  • Купол здания может иметь форму части сферы, отсеченной плоскостью.
  • Земля имеет форму, близкую к шару.
  • Мячи для игры в футбол, теннис имеют форму шара.

Связанные определения

  • Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом . Другие плоские сечения шара называются малыми кругами
  • Любой отрезок, соединяющий центр шара с точкой шаровой поверхности (сферы), называется радиусом .
  • Отрезок, соединяющий две точки шаровой поверхности и проходящей через центр шара, называется диаметром .

  • Концы любого диаметра называются диаметрально противоположными точками шара.
  • Плоскость, проходящая через центр шара, называется диаметральной плоскостью .

Свойства

  • Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии .

Основные формулы

Площадь сферы радиуса R вычисляется по формуле

Цилиндр

Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.

Круги называются основаниями цилиндра, а отрезки, соединяющими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Конус

Конусом называется тело, которое состоит из круга – основания конуса, точки, не лежащей в плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Отрезки, соединяющие вершину конуса с точьками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой.

Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называется радиусом.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Призма называется вписанной в цилиндр, если основание её равные многоугольники, вписанные в основание цилиндра, а боковые рёбра являются образующими цилиндра.


Призма называется описанной около цилиндра, если осно­вание её – это многоугольники описанные около основания цилиндра, а боковые грани касаются цилиндра.

Шаровой или сферической поверхностью называется геометрическое место точек пространст­ва, удаленных от данной точки О (центра) на заданное расстоя­ние R (радиус). Все пространство по отношению к данной ша­ровой поверхности разбивается на внут­реннюю область (куда можно присоеди­нить и точки самой поверхности) и внешнюю. Первая из этих областей назы­вается шаром. Итак, шар - геометрическое место всех точек, удаленных от заданной точки О (центра) на расстоя­ние, не превышающее данной величины R (радиуса). Шаровая поверхность яв­ляется границей, отделяющей шар от ок­ружающего пространства.

Шаровую поверхность и шар можно получить также, вращая окружность (круг) вокруг одного из диаметров.

Рассмотрим окружность с центром О и радиусом R (рис. 1), лежащую в плоско­сти Я. Будем вращать ее вокруг диаметра АВ. Тогда каждая из точек окружности, например М, в свою оче­редь опишет при вращении окружность, имеющую своим центром точку М 0 -проекцию вращающейся точки М на ось враще­ния АВ. Плоскость этой окружности перпендикулярна к оси вращения. Радиус ОМ, ведущий из центра исходной окружности в точку М, будет сохранять свою величину во все время вра­щения, и потому точка М все время будет находиться на сфе­рической поверхности с центром О и радиусом R. Шаровая поверхность может быть получена вращением окружности вокруг любого из ее диаметров.

Сам шар как тело получается вращением круга; ясно, что для получения всего шара достаточно вращать полукруг около ограничивающего его диаметра.

Поверхности вращения и ограничиваемые ими тела имеют широкое применение во многих областях техники: баллон электронно-лучевой трубки (рис. 8.11, а), центр токарного станка (рис. 8.11, б), объемный сверхвысокочастотный резонатор электромагнитных колебаний (рис. 8.11, в), сосуд Дьюара для хранения жидкого воздуха (рис. 8.11, г), коллектор электронов мощного электронно-лучевого прибора (рис. 8.11, д) и т.д.

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой- оси поверхности.


На чертежах ось изображают штрихпунктирной линией. Образующая линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рисунке 8.12 изображена поверхность вращения, которая образована вращением образующей AьCD (ее фронтальная проекция a"b"c"d") вокруг оси OO 1 (фронтальная проекция о"o 1 " , перпендикулярной плоскости Н. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С и D, проходящие через проекции а, b, с, d. Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую - горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости V, то главный меридиан проецируется на плоскость V без искажений, например проекция a"f"b"c"d". Если ось поверхности вращения перпендикулярна к плоскости Н, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобными для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны к плоскости Н, к плоскости V или к плоскости W.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в 8.1, например цилиндр вращения, конус вращения. Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения - поверхности, бесконечные в направлении их образующих; поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными к оси поверхности. Меридиан такого цилиндра - прямоугольник, конуса - треугольник.

Такая поверхность вращения, как сфера, является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы - равные между собой окружности. При ортогональном проецировании на все три плоскости проекций очертания сферы проецируются в окружность.

Тор. При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор. На рисунке 8.13 приведены: открытый тор, или круговое кольцо, - рисунок 8.13, а, закрытый тор - рисунок 8.13, б, самопересекающийся тор - рисунок 8.13, в, г. Тор (рис. 8.13, г) называют также лимоновидным. На рисунке 8.13 они изображены в положении, когда ось тора перпендикулярна к плоскости проекций Н. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора. При этом в плоско-

стях, перпендикулярных к оси тора, в свою очередь имеются два семейства окружностей - линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Кроме того, тор имеет еще и третью систему круговых сечений, которые лежат в плоскостях, проходящих через центр тора и касательных к его внутренней поверхности. На рисунке 8.14 показаны круговые сечения с центрами о 1р и о 2р на дополнительной плоскости проекций Р, образованные фронтально-проецирующей плоскостью Q (Q v), проходящей через центр тора с проекциями о" о и касательной к внутренней поверхности тора в точках с проекциями 1" , 1, 2" 2. Проекции точек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 облегчают чтение чертежа. Диаметр d этих круговых сечений равен длине больших осей эллипсов, в которые проецируются круговые сечения на горизонтальной плоскости проекций: d = 2R.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют по принадлежности точки линии каркаса поверхности, т. е. с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рисунке 8.12. Если

дана проекция т", то проводят фронтальную проекцию f"f1" параллели, а затем радиусом R проводят окружность - горизонтальную проекцию параллели - и на ней находят проекцию т. Если бы была задана горизонтальная проекция т, то следовало бы провести радиусом R=om окружность, по точке f построить f" и провести f"f1" - фронтальную проекцию параллели - и на ней в проекционной связи отметить точку т". Если дана проекция п" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию d"s" очерковой образующей и через проекцию n" - фронтальную проекцию s"к" образующей на поверхности конуса. Затем на горизонтальной проекции sk этой образующей строят проекцию n. Если бы была задана горизонтальная проекция n, то следовало бы провести через нее горизонтальную проекцию sk образующей, по проекции к" и s" (построение ее было рассмотрено выше) построить фронтальную проекцию s "к" и на ней в проекционной связи отметить проекцию n"

На рисунке 8.15 показано построение проекций точки К, принадлежащей поверхности тора. Следует отметить, что построение выполнено для видимых горизонтальной проекции к и фронтальной проекции к".

На рисунке 8.16 показано построение по заданной фронтальной проекции т" точки на поверхности сферы ее горизонтальной т и профильной т" проекций. Проекция т построена с помощью окружности - параллели, проходящей через проекцию т". Ее радиус - о-1. Проекция т "" построена с помощью окружности, плоскость которой параллельна профильной плоскости проекций, проходящей через проекцию т". Ее радиус о "2".

Построение проекций линий на поверхности вращения может быть выполнено также при помощи окружностей - параллелей, проходящих через точки, принадлежащие этой линии.

На рисунке 8.17 показано построение горизонтальной проекции aь линии, заданной фронтальной проекцией a"b" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5" крайних точек. Горизонтальные проекции 6, 1, 3, 4, 5 построены с помощью линий связи. Проекции b , 2, 7, 8, а построены с помощью параллелей, фронтальные проекции которых проходят через проекции b " 2", 7", 8", а" этих точек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: b -1 - части эллипса,

Телами вращения называют тела, ограниченные либо поверхностью вращения, либо поверхностью вращения и плоскостью (рисунок 134). Под поверхностью вращения понимают поверхность, полученную от вращения какой-либо линии (ABCDE ), плоской или пространственной, называемой образующей, вокруг неподвижной прямой (i ) - оси вращения .

Рисунок 134

Любая точка образующей поверхности вращения описывает окружность, расположенную в плоскости, перпендикулярной к оси вращения – параллель , следовательно, плоскость, перпендикулярная к оси вращения, всегда пересекается с поверхностью вращения по окружности. Наибольшая параллель - экватор . Наименьшая параллель - горло (горловина).

Плоскости, проходящие через ось вращения, называют меридиональными плоскостями .

На комплексном чертеже изображение тел вращения выполняется посредством изображения ребер оснований и линий очерков поверхности.

Линии пересечения меридиональных плоскостей с поверхностью называют меридианами .

Меридиональная плоскость, параллельная плоскости проекций, называется главной меридиональной плоскостью . Линия ее пересечения с поверхностью - главный меридиан .

Прямой круговой цилиндр. Прямым круговым цилиндром (рисунок 135) называют тело, ограниченное цилиндрической поверхностью вращения и двумя кругами - основаниями цилиндра, расположенными в плоскостях, перпендикулярных к оси цилиндра.Цилиндрической поверхностью вращения называется поверхность, полученная при вращении прямолинейной образующейAA 1 вокруг параллельной ей неподвижной прямой -i (ось вращения). Размерами, характеризующими прямой круговой цилиндр, являются его диаметр и высотаl (расстояние между основаниями цилиндра).

Рисунок 135

Прямой круговой цилиндр можно также рассматривать как тело, полученное при вращении какого-либо прямоугольника ABCD вокруг одной из его сторон, например, ВС (рисунок 136). Сторона ВС является осью вращения, а сторона AD - образующей цилиндра. Две другие стороны обозначат основания цилиндра.

Рисунок 136

Прямоугольника АВ и CD при вращении образуют круги - основания цилиндра.

Построение проекций цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра начинают с изображения основания цилиндра, т. е. двух проекций окружности (см. рисунок 135, б). Так как окружность расположена на плоскости Н , то она проецируется на эту плоскость без искажения. Фронтальная проекция окружности представляет собой отрезок горизонтальной прямой линии, равный диаметру окружности основания.

После построения основания на фронтальной проекции проводят две очерковые образующие (крайние образующие) и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, который является фронтальной проекцией верхнего основания цилиндра (рисунок 135, в).

Определение недостающих проекций точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном случае затруднений не вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рисунок 137, а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек A"" и B"" вертикальные линии связи до их пересечения с окружностью в искомых точках A" и B".

Профильные проекции точек А и В строят также при помощи вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчивают, как показано на рисунок 137, б.

В изометрии точки А и В строят по их координатам. Например, для построения точки В от начала координат О по оси x откладывают координату ∆x , а затем через ее конец проводят прямую, параллельную оси у , до пересечения с контуром основания в точке 2 . Из этой точки параллельно оси z проводят прямую, на которой откладывают координату Z B , точки В .

Рисунок 137

Прямой круговой конус . Прямым круговым конусом (рисунок 138) называют тело, ограниченное конической поверхностью вращения и кругом, расположенным в плоскости, перпендикулярной к оси конуса.Коническая поверхность получается при вращении прямолинейной образующейSA (рисунок 138, а), проходящей через неподвижную точкуS на оси вращенияi и составляющей с этой осью некоторый постоянный угол. ТочкаS называетсявершиной конуса , а коническая поверхность - боковой поверхностью конуса. Размер прямого кругового конуса характеризуют диаметр его основанияD K и высотаН .

Рисунок 138

Прямой круговой конус можно также рассматривать как тело, полученное при вращении прямоугольного треугольника SAB вокруг его катета SB (рисунок 139). При таком вращении гипотенуза описывает коническую поверхность, а катет АВ - круг, т. е. основание конуса.

Рисунок 139

Построение проекций конуса.

Последовательность построения двух проекций конуса показана на рисунке 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основания - окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рисунок 138, б). На фронтальной проекции из середины основания восставляют перпендикуляр, и на нем откладывают высоту конуса (рисунок 138, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и получают фронтальную проекцию конуса.

Построение точек на поверхности конуса

Если на поверхности конуса задана одна проекция точки А (например, фронтальная проекция на рисунке 140), то две другие проекции этой точки определяют с помощью вспомогательных линий - образующей, расположенной на поверхности конуса и проведенной через точку А , или окружности, расположенной в плоскости, параллельной основанию конуса.

Рисунок 140

В первом случае (рисунок 140, а) через точку A проводят фронтальную проекцию 1""S"" вспомогательной образующей. Пользуясь вертикальной линией связи, проведенной из точки 1 , расположенной на фронтальной проекции окружности основания, находят горизонтальную проекцию 1" этой образующей, на которой при помощи линии связи, проходящей через A" , находят искомую точку A .

Во втором случае (рисунок 140, б) вспомогательной линией, проходящей через точку А , будет окружность, расположенная на конической поверхности и параллельная плоскости Н - параллель. Фронтальная проекция этой окружности изображается в виде отрезка 1""1"" горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция A" точки А находится на пересечении линии связи, опущенной из точки A" , с горизонтальной проекцией вспомогательной окружности.

Если заданная фронтальная проекция 1"" точки 1 расположена на контурной (очерковой) образующей, то горизонтальная проекция точки находится без вспомогательных линий.

В изометрической проекции точку А , находящуюся на поверхности конуса, строят по трем координатам (см. рисунок 140, в): X , Y и Z А О по оси х отложена координата X Y z Z А А .

Шар. Шаром (рисунок 141) называют тело, полученное при вращении полукругаABC (образующая) вокруг его диаметраАС (ось вращения), а поверхность, которую при этом описывает дугаABC , называется шаровой или сферической. Шар относится к телам, ограниченным только поверхностью вращения.

Рисунок 141

Шаровая (сферическая) поверхность является геометрическим местом точек, равноудаленных от одной точки О , называемой центром шара . Если шар рассечь горизонтальными плоскостями, то в сечении получатся окружности – параллели . Наибольшая из параллелей имеет диаметр равный диаметру шара. Такая окружность называется экватором . Окружности же, получаемые в результате сечений шара плоскостями, проходящими через его ось вращения, называются меридианами .

Построение проекций шара и точек на его поверхности

Проекции шара приведены на рисунке 142, а. Горизонтальная и фронтальная проекции - окружности радиуса, равного радиусу сферы.

Рисунок 142

Если точка А расположена на сферической поверхности, то вспомогательная линия 1"" 2"" , проведенная через эту точку параллельно оси Ох (параллель), проецируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспомогательной окружности находят с помощью линии связи искомую горизонтальную проекцию A" точки А .

Величина диаметра вспомогательной окружности равна фронтальной проекции 1""2"" .

Аксонометрическое изображение сферы (шара) выполняется в виде окружности (рисунок 142 б), радиус которой геометрически определяется как расстояние от центра сферы до проекции экватора (эллипса) вдоль большей ее оси (перпендикулярной Oz ).

В аксонометрической проекции точку А , находящуюся на поверхности шара, строят по трем координатам: X А , Y А и Z А . Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата X А ; из конца ее параллельно оси у проведена прямая, на которой отложена координата Y А ; из конца отрезка, параллельно оси z проведена прямая, на которой отложена координата Z А . В результате построений получим искомую точку А .

Тор – тело (рисунок 143), образованное вращением окружности или ее дуги вокруг оси, расположенной в одной с ней плоскости но не проходящей через центр окружности или ее дуги.

Рисунок 143

Если ось вращения не пересекает образующую окружность, то тор называют кольцом (открытый тор) (рисунок 143, а). Если же ось вращения пересекает образующую окружность, то получается торовая поверхность бочкообразном формы (закрытый тор или пересекающийся тор) (рисунок 143, б). В последнем случае образующей торовой поверхности является дуга ABC окружности.

Наибольшую из окружностей, которые описывают точки образующей торовой поверхности, называют экватором , а наименьшую - горлом , или горловиной.

Построение проекций тора

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентрических окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рисунок 145). Фронтальная проекция ограничивается справа и слева дугами полуокружностей диаметра образующей окружности.

На рисунке 144, а и б приведены два вида закрытого тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R , а во втором случае - больше. В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R , расположенных симметрично по отношению к фронтальной проекции оси вращения. Профильными проекциями тора будут окружности.

Рисунок 144

Построение точек на поверхности тора

В случае, когда точка А лежит на поверхности кругового кольца и дана одна ее проекция, для нахождения второй проекции этой точки применяется вспомогательная окружность, проходящая через данную точку А и расположенная на поверхности кольца в плоскости, перпендикулярной оси кольца (рисунок 145).

Если задана фронтальная проекция A"" точки А , лежащей на поверхности кольца, то для нахождения ее второй проекции (в данном случае - горизонтальной) через A" проводят фронтальную проекцию вспомогательной окружности - отрезок горизонтальной прямой линии 2""2"" . Затем строят горизонтальную проекцию 2"2" этой окружности и на ней, применяя линию связи, находят точку A" .

Если задана горизонтальная проекция B" точки B , расположенной на поверхности этого кольца, то для нахождения фронтальной проекции этой точки через 1" проводят горизонтальную проекцию вспомогательной окружности радиуса R 1 . Затем через левую и правую точки 1" и 1" этой окружности проводят вертикальные линии связи до пересечения с фронтальными проекциями очерковой образующей окружности радиуса R и получают точки 1"" и 1"" . Эти точки соединяют горизонтальной прямой, которая представляет собой фронтальную проекцию вспомогательной окружности (она будет видима). Проводя вертикальную линию связи из точки B" до пересечения с прямой 1""1"" получаем искомую точку B"" .

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Рисунок 145

Построение аксонометрического изображения тора можно разделит на три этапа (рисунок 146). Сначала строится в виде эллипса проекция радиальной осевой линии (траектория движения центра образующей окружности). Затем определяем радиус сферы, касающейся тора по образующей (окружности). Для этого строим в виде меньшего эллипса проекцию фронтальной очерковой образующей тора. Радиус сферы определим как длину отрезка О 1 F от центра эллипса до точки на этом эллипсе, лежащей на большой оси эллипса (перпендикулярной Oy ). Далее строим большое количество окружностей радиусом R сферы с центрами на проекции радиальной осевой тора О 1 … О n (чем больше, тем точнее контур будущего тора). В завершение проводим линию контура тора как линию, касающуюся каждой окружности сферы.

Рисунок 146

В аксонометрической проекции точку А , находящуюся на поверхности тора, строят по трем координатам: X А , Y А и Z А . Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям.

Задание 16 ЕГЭ 2015.Тела вращения.

Иванова Е.Н.

МБОУ СОШ №8 г. Каменск-Шахтинский


Отрезок AB c , параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью вращения является боковая поверхность цилиндра, радиус основания которого равен 2, образующая равна 1. Площадь этой поверхности равна 4 .


Отрезок AB длины 1 вращается вокруг прямой c , перпендикулярной этому отрезку и отстоящей от ближайшего его конца A на расстояние, равное 2 (прямые AB и с лежат в одной плоскости). Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является кольцо, внутренний радиус которого равен 2, а внешний – 3. Площадь этого кольца равна 5 .


Отрезок AB c , перпендикулярной этому отрезку и проходящей через его середину. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 1. Его площадь равна.


Отрезок AB длины 2 вращается вокруг прямой c A . Найдите площадь поверхности вращения.


Отрезок AB c , перпендикулярной этому отрезку и проходящей через точку C , делящей этот отрезок в отношении 1:2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 2. Его площадь равна 4 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через точку A и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 2, радиус основания равен 1. Ее площадь равна 2 .


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку A и отстоящей от точки B на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 3, радиус основания равен 2. Ее площадь равна 6 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через середину этого отрезка и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 1, а радиусы оснований – 0,5. Ее площадь равна.


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку C , делящей этот отрезок в отношении 1:2 и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 2 и 1, а радиусы оснований равны соответственно 1 и 0,5. Ее площадь равна 2,5 .


Отрезок AB длины 3 вращается вокруг прямой c , лежащей с ним в одной плоскости и отстоящей от концов A и B соответственно на расстояния 1 и 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 3, радиусы оснований равны 1 и 2. Ее площадь равна 9 .


Отрезок AB длины 2 вращается вокруг прямой c , лежащей с ним в одной плоскости, отстоящей от ближайшего конца A на расстояние, равное 1, и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 2, радиусы оснований равны 1 и 2. Ее площадь равна 6 .


Найдите площадь боковой поверхности цилиндра, полученного вращением единичного квадрата ABCD вокруг прямой AD .

Ответ. Искомый цилиндр изображен на рисунке. Радиус его основания и образующая равны 1. Площадь боковой поверхности этого цилиндра равна 2 .


Найдите площадь поверхности вращения прямоугольника ABCD со сторонами AB = 4, BC = 3 вокруг прямой AB и CD .

Ответ. Искомым телом является цилиндр, радиус основания которого равен 2, а образующая равна 3. Его площадь поверхности равна 20 .


Найдите площадь поверхности тела, полученного вращением единичного квадрата ABCD вокруг прямой AC .

Ответ. Искомым телом вращения является объединение двух конусов, радиусы оснований которого и высоты равны. Его площадь поверхности равна.


Найдите площадь поверхности тела, полученного вращением прямоугольного треугольника ABC с катетами AC = BC = 1 вокруг прямой AC .

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна. Площадь поверхности этого конуса равна.


Найдите площадь полной поверхности тела, полученного вращением равностороннего треугольника ABC со стороной 1 вокруг прямой, содержащей биссектрису CD этого треугольника.

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 0,5, а образующая равна 1. Площадь полной поверхности этого конуса равна 3 /4.


Найдите площадь поверхности вращения равностороннего треугольника ABC со стороной 1 вокруг прямой AB .

Ответ. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен, а высоты – 0,5. Его площадь поверхности равна.


Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC , равными 1, и основаниями AB и CD , равными соответственно 2 и 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой 1, на основаниях которого достроены конусы, высотой 0,5. Его объем равен.


Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD , равными соответственно 2 и 1, меньшей боковой стороной, равной 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой, равными 1, на основании которого достроен конус, высотой 1. Его объем равен.


Найдите объем тела вращения правильного шестиугольника ABCDEF со стороной 1 вокруг прямой AD .

Ответ. Искомое тело вращения состоит из цилиндра, радиус основания которого равен, а высота равна 1 и двух конусов с основаниями радиуса и высотой 0,5. Его объем равен.


ABCDEF , изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой AF .

Ответ. Искомое тело вращения состоит из двух цилиндров с основаниями радиусов 2 и 1, высотой 1. Его объем равен 5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. Искомое тело вращения составлено из двух цилиндров высотой 1 и радиусами оснований 1,5 и 0,5. Его объем равен 2,5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. 1. Искомое тело вращения является цилиндром с радиусом основания 1,5 и высотой 2, из которого вырезан цилиндр с радиусом основания 0,5 и высотой 1. Его объем равен 4,25 .


Найдите объем тела вращения единичного куба ABCDA 1 B 1 C 1 D 1 вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 1. Его объем равен 2 .


Найдите объем тела вращения правильной треугольной призмы ABCA 1 B 1 C AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания и высота которого равны 1. Его объем равен.


Найдите объем тела вращения правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен 2, а высота равна 1. Его объем равен 4 .


Найдите объем тела вращения правильной четырехугольной пирамиды SABCD , все ребра которой равны 1, вокруг прямой с , содержащей высоту SH этой пирамиды.

Ответ. Искомым телом вращения является конус, радиус основания и высота которого равны.

Его объем равен.


Найдите объем тела вращения единичного тетраэдра ABCD вокруг ребра AB .

Ответ. 1. Искомое тело вращения составлено из двух конусов с общим основанием радиуса и высотой 0,5. Его объем равен 0,25 .


Найдите объем тела вращения единичного правильного октаэдра S’ABCDS” вокруг прямой S"S” .

Ответ. Искомое тело вращения состоит из двух конусов с общим основанием радиуса и высотами, равными. Его объем равен.


Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AD .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 2. Его объем равен 10 .