Бессоюзная и сочинительная связь примеры. Сочинительная связь как показатель равноценности. Сложные предложения со смешанными видами связи

Работа совершается в природе всегда, когда какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Работа силы равна произведению модулей силы и перемещения точки приложения силы и на косинус угла между ними.

А= F · S ·соs , где А Дж); F – сила, (Н); S- перемещение, (м).

Энергия не создается и не уничтожается, а только превращается из одной формы в другую: из кинетической в потенциальную и наоборот. Учитывая значение Ек и Еп, закон сохранения механической

энергии можно записать так:

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h 2 меньше h 1 . Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на Земле).

Полные механические энергии равны между собой, если пренебрегать силой сопротивления воздуха.

Кинети́ческая эне́ргия - скалярная функция , являющаяся мерой движения материальных точек , образующих рассматриваемую механическую систему , и зависящая только от масс и модулей скоростей этих точек . Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

T = ∑ m i v i 2 2 {\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}} ,

где индекс i {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения . Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия - часть полной энергии , обусловленная движением . Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T {\displaystyle T} , E k i n {\displaystyle E_{kin}} , K {\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

История понятия

Кинетическая энергия в классической механике

Случай одной материальной точки

По определению, кинетической энергией материальной точки массой m {\displaystyle m} называется величина

T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}} ,

при этом предполагается, что скорость точки v {\displaystyle v} всегда значительно меньше скорости света . С использованием понятия импульса ( p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} ) данное выражение примет вид T = p 2 / 2 m {\displaystyle \ T=p^{2}/2m} .

Если F → {\displaystyle {\vec {F}}} - равнодействующая всех сил , приложенных к точке, выражение второго закона Ньютона запишется как F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} . Скалярно умножив его на перемещение материальной точки и учитывая, что a → = d v → / d t {\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t} , причём d (v 2) / d t = d (v → ⋅ v →) / d t = 2 v → ⋅ d v → / d t {\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t} , получим F → d s → = d (m v 2 / 2) = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T} .

Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T {\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения .

Случай абсолютно твёрдого тела

T = M v 2 2 + I ω 2 2 . {\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

Здесь - масса тела, v {\displaystyle \ v} - скорость центра масс , ω → {\displaystyle {\vec {\omega }}} и - угловая скорость тела и его момент инерции относительно мгновенной оси , проходящей через центр масс .

Кинетическая энергия в гидродинамике

Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны , порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это - просто большие вихри, относимые к неупорядоченному движению атмосферы.

Кинетическая энергия в квантовой механике

В квантовой механике кинетическая энергия представляет собой оператор , записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ {\displaystyle {\hat {p}}=-j\hbar \nabla } , - мнимая единица):

T ^ = p ^ 2 2 m = − ℏ 2 2 m Δ {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

где ℏ {\displaystyle \hbar } - редуцированная постоянная Планка , ∇ {\displaystyle \nabla } - оператор набла , Δ {\displaystyle \Delta } - оператор Лапласа . Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики - уравнение Шрёдингера .

Кинетическая энергия в релятивистской механике

Если в задаче допускается движение со скоростями, близкими к скорости света , кинетическая энергия материальной точки определяется как

T = m c 2 1 − v 2 / c 2 − m c 2 , {\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

где - масса , v {\displaystyle \ v} - скорость движения в выбранной инерциальной системе отсчёта, c {\displaystyle \ c} - скорость света в вакууме ( m c 2 {\displaystyle mc^{2}} - энергия покоя). Как и в классическом случае, имеет место соотношение F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} , получаемое посредством умножения на d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F → = m ⋅ d (v → / 1 − v 2 / c 2) / d t {\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t} ).

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равен­ства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия - механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус ука­зывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потен­циальной энергий.