Числовой ряд 1 2. Необходимое условие для определения, является ли ряд сходящимся. Основные свойства числовых рядов

Пусть задана бесконечная последовательность чисел u1, u2, u3…

Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.

Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un

Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.

2 Геометрический и арифметический ряды

Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим:
или

а+ аq +…+aq n -1

a  0 первый член q – знаменатель. Сумма ряда:

следовательно конечный предел последовательности частных сумм ряда зависит от величины q

Возможны случаи:

1 |q|<1

т. е. ряд схд-ся и его сумма
2 |q|>1
и предел суммы так же равен бесконечности

т. е. ряд расходится.

3 при q = 1 получается ряд: а+а+…+а… Sn = na
ряд расходится

4 при q1 ряд имеет вид: а-а+а … (-1) n -1 a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.

Рассмотрим ряд из бесконечных членов арифметической прогрессии:
u – первый член, d – разность. Сумма ряда

при любых u1 и d одновременно  0 и ряд всегда расходится.

3 С-ва сходящихся рядов

Пусть даны два ряда: u1+u2+…un =(1) иv1+v2+…vn = (2)

Произведением ряда (1) на число   R наз ряд: u1+u2+…un =(3)

Суммой рядов (1) и (2) наз ряд:

(u1+v1)+(u2+v2)+…(un+vn) =
(для разности там только - появица)

Т1 Об общем множителе

Если ряд (1) сходится и его сумма = S, то для любого числа  ряд = тоже сходится и его суммаS’ = S Если ряд (1) расходится и   0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.

Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд:
тоже сходится и если его сумма, то  = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=vn)

Для ряда (1) ряд
называетсяn – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: r n =

Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + r n

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.

4 Необходимый признак сходимости рядов

Если ряд сходится, то предел его общего члена равен нулю:

Док-во:

Sn-1\u1+u2+…+un-1

un=Sn-Sn-1, поэтому:

Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.

5 Интегральный признак сходимости ряда. Ряд Дирихле

Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают:u1>=u2>=u3…>=un

Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на такая, что f(n) = Un,  n  N, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:
, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).

Применим сей признак для исследования ряда Дирихле: Вот он: ,  R Сей ряд называют обобщенным гармоническим рядом, при  >0 общий член оного un=1/n  0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/x  (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:

Возможны три случая:

1  >1,

Интеграл а потому и ряд сходится.

Интеграл и ряд расходится

Интеграл и ряд расходится

1. Если сходится а 1 +а 2 +а 3 +…+а n +…=, то сходится и ряд а m+1 +а m+2 +а m+3 +…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2 . Если ряд а 1 +а 2 +а 3 +… сходится и его сумма равна S, то ряд Са 1 +Са 2 +…, где С= так же сходится и его сумма равна СS.

3. Если ряды а 1 +а 2 +… и b 1 +b 2 +… сходятся и их суммы равны соответственно S1 и S2, то ряды (а 1 +b 1)+(а 2 +b 2)+(а 3 +b 3)+… и (а 1 -b 1)+(а 2 -b 2)+(а 3 -b 3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

- необходимый признак (условие) сходимости ряда .

б). Если
то ряд расходящийся –достаточное условие расходимости ряда .

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды.

Признаки сходимости и расходимости знакоположительных рядов.

Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.

1. Первый признак сравнения.

Пусть даны два знакоположительных ряда а 1 +а 2 +а 3 +…+а n +…=(1) иb 1 +b 2 +b 3 +…+b n +…=(2).

Если члены ряда (1) не больше b n и ряд (2) сходится , то и ряд (1) также сходится.

Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. а n b n и ряд (2) расходится , то и ряд (1) также расходится.

Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.

2. Второй признак сравнения.

Если существует конечный и отличный от нуля предел
, то оба ряда сходятся или расходятся одновременно.

-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.

3. Признак Даламбера.

Если для знакоположительного ряда (а 1 +а 2 +а 3 +…+а n +…=) существует
(1), то ряд сходится, если q<1, расходится, если q>

4. Признак Коши радикальный.

Если для знакоположительного ряда существует предел
(2), то ряд сходится, еслиq<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

5. Признак Коши интегральный.

Вспомним несобственные интегралы.

Если существует предел
. Это есть несобственный интеграл и обозначается
.

Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.

Пусть ряд а 1 +а 2 +а 3 +…+а n +…=- знакоположительный ряд.

Обозначим a n =f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.

Если ряд конечен, то он сходится.

Очень часто встречаются ряды
-ряд Дерихле . Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.

1.Числовые ряды: основные понятия, необходимые условия сходимости ряда. Остаток ряда.

2.Ряды с положительными членами и признаки их сходимости: признаки сравнения, Даламбера, Коши.

3. Знакочередующиеся ряды, признак Лейбница.

1. Определение числового ряда. Сходимость

В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.

Пусть задана бесконечная числовая последовательность

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

. (1.1)

Числа называютсячленами ряда , –общим или n–м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления-го члена ряда по его номеру

Пример 1.1 . Пусть . Ряд

(1.2)

называется гармоническим рядом .

Пример 1.2 . Пусть ,Ряд

(1.3)

называется обобщенным гармоническим рядом . В частном случае при получается гармонический ряд.

Пример 1.3 . Пусть =. Ряд

называется рядом геометрической прогрессии .

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где – суммапервых членов ряда, которая называетсяn -й частичной суммой , т. е.

…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номераможет:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т. е.

В этом случае число называетсясуммой ряда (1.1) и пишется

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Рассмотрим несколько примеров.

Пример 1.4. Доказать, что ряд

сходится, и найти его сумму.

Найдем n-ю частичную сумму данного ряда .

Общий член ряда представим в виде.

Отсюда имеем: . Следовательно, данный ряд сходится и его сумма равна 1:

Пример 1.5 . Исследовать на сходимость ряд

Для этого ряда

. Следовательно, данный ряд расходится.

Замечание. При ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.

2. Основные свойства числовых рядов

Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т. е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся, которые будут рассмотрены в разделе 5), для которых, как показал Риман* , меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида (1.7)

Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т. е.

Доказательство теоремы следует из того, что , и если

S – сумма ряда (1.1), то

Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при , то это не значит, что ряд сходится. Например, для гармонического ряда (1.2)однако, как будет показано ниже, он расходится.