Что относят к энергии глубинного тепла земли. Энергия земли. Недостатки получения геотермальной энергии

Д ля России энергия тепла Земли может стать постоянным, надежным источником обеспечения дешевыми и доступными электроэнергией и теплом при использовании новых высоких, экологически чистых технологий по ее извлечению и поставке потребителю. В настоящее время это особенно актуально

Ограниченность ресурсов ископаемого энергетического сырья

Потребности в органическом энергетическом сырье велики в индустриально развитых и развивающихся странах (США, Япония, государства объединенной Европы, Китай, Индия и др.). При этом собственные ресурсы углеводородов в этих странах либо недостаточны, либо зарезервированы, а страна, например США, покупает энергетическое сырье за рубежом или разрабатывает месторождения в других странах.

В России, одной из богатейших по энергетическим ресурсам стран, хозяйственные потребности в энергии пока удовлетворяются возможностями использования природных ископаемых. Однако извлечение ископаемого углеводородного сырья из недр происходит очень быстрыми темпами. Если в 1940–1960-е гг. основными нефтедобывающими районами были «Второе Баку» в Поволжье и Предуралье, то, начиная с 1970-х гг., и по настоящее время таким районом является Западная Сибирь. Но и здесь наблюдается значительное снижение добычи ископаемых углеводородов. Уходит в прошлое эпоха «сухого» сеноманского газа. Прежний этап экстенсивного развития добычи природного газа подошел к завершению. Извлечение его из таких месторождений-гигантов, как Медвежье, Уренгойское и Ямбургское, составило, соответственно, 84, 65 и 50 %. Удельный вес запасов нефти, благоприятных для разработки, во времени также снижается.


Вследствие активного потребления углеводородного топлива, запасы нефти и природного газа на суше значительно сократились. Теперь основные их запасы сосредоточены на континентальном шельфе. И хотя сырьевая база нефтяной и газовой промышленности еще достаточна для добычи нефти и газа в России в необходимых объемах, в ближайшем будущем она будет обеспечиваться все в большей степени за счет освоения месторождений со сложными горно-геологическими условиями. Себестоимость добычи углеводородного сырья при этом будет расти.


Большая часть добываемых из недр невозобновляемых ресурсов используется как топливо для энергетических установок. В первую очередь это , доля которого в структуре топлива составляет 64 %.


В России 70 % электроэнергии вырабатывается на ТЭС. Энергетические предприятия страны ежегодно сжигают около 500 млн т у. т. в целях получения электроэнергии и тепла, при этом на производство тепла расходуется углеводородного топлива в 3–4 раза больше, чем на генерацию электроэнергии.


Количество теплоты, получаемое от сгорания названных объемов углеводородного сырья, эквивалентно использованию сотен тонн ядерного топлива – разница огромна. Однако ядерная энергетика требует обеспечения экологической безопасности (для исключения повторения Чернобыля) и защиты ее от возможных террористических актов, а также осуществления безопасного и дорогостоящего вывода из эксплуатации устаревших и отработавших свой срок энергоблоков АЭС. Доказанные извлекаемые запасы урана в мире составляют порядка 3 млн 400 тыс. т. За весь предшествующий период (до 2007 г.) его добыто около 2 млн т.

ВИЭ как будущее мировой энергетики

Возросший в последние десятилетия в мире интерес к альтернативным возобновляемым источникам энергии (ВИЭ) вызван не только истощением запасов углеводородного топлива, но и необходимостью решения экологических проблем. Объективные факторы (резервы ископаемого топлива и урана, а также изменения окружающей среды, связанные с использованием традиционной огневой и атомной энергетики) и тенденции развития энергетики позволяют утверждать, что переход к новым способам и формам получения энергии является неизбежным. Уже в первой половине XXI в. произойдет полный или почти полный переход на нетрадиционные источники энергии.


Чем раньше будет сделан прорыв в этом направлении, тем менее болезненным он будет для всего общества и более выгодным для страны, где будут сделаны решительные шаги в указанном направлении.


Мировая экономика в настоящее время уже взяла курс на переход к рациональному сочетанию традиционных и новых источников энергии. Энергопотребление в мире к 2000 г. составило более 18 млрд т у. т., а энергопотребление к 2025 г. может возрасти до 30–38 млрд т у. т., по прогнозным данным, к 2050 г. возможно потребление на уровне 60 млрд т у. т. Характерной тенденций развития мировой экономики в рассматриваемый период являются систематическое снижение потребления органического топлива и соответствующий рост использования нетрадиционных энергетических ресурсов. Тепловая энергия Земли занимает среди них одно из первых мест.


В настоящее время Министерством энергетики РФ принята программа развития нетрадиционной энергетики, в том числе 30-ти крупных проектов использования теплонасосных установок (ТНУ), принцип работы которых основан на потреблении низкопотенциальной тепловой энергии Земли.

Низкопотенциальная энергия тепла Земли и тепловые насосы

Источниками низкопотенциальной энергии тепла Земли являются солнечная радиация и тепловое излучение разогретых недр нашей планеты. В настоящее время использование такой энергии – одно из наиболее динамично развивающихся направлений энергетики на основе ВИЭ.


Тепло Земли может использоваться в различных типах зданий и сооружений для отопления, горячего водоснабжения, кондиционирования (охлаждения) воздуха, а также для обогрева дорожек в зимнее время года, предотвращения обледенения, подогрева полей на открытых стадионах и т. п. В англоязычной технической литературе системы, утилизирующие тепло Земли в системах теплоснабжения и кондиционирования, обозначаются как GHP – «geothermal heat pumps» (геотермальные тепловые насосы). Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют это главным образом в целях отопления; охлаждение воздуха даже в летний период требуется относительно редко. Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США они чаще используются в системах воздушного отопления, совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку их эффективность увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры (35–40 о C).

Виды систем использования низкопотенциальной энергии тепла Земли

В общем случае можно выделить два вида систем использования низкопотенциальной энергии тепла Земли:


– открытые системы: в качестве источника низкопотенциальной тепловой энергии применяются грунтовые воды, подводимые непосредственно к тепловым насосам;

– замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса (или при использовании теплоносителя с повышенной относительно грунта температурой – его охлаждение).

Минусы открытых систем состоят в том, что скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:

– достаточная водопроницаемость грунта, позволяющая пополняться запасам воды;

– хороший химический состав грунтовых вод (например, низкое железосодержание), позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.


Замкнутые системы использования низкопотенциальной энергии тепла Земли


Замкнутые системы бывают горизонтальными и вертикальными (рис 1).


Рис. 1. Схема геотермально теплонасосной установки с: а – горизонтальными

и б – вертикальными грунтовыми теплообменниками.

Горизонтальный грунтовой теплообменник

В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно (рис. 2).


Рис. 2. Горизонтальные грунтовые теплообменники с: а – последовательным и

б – параллельным соединением.


Для экономии площади участка, на котором производится теплосъем, были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали (рис. 3), расположенной горизонтально или вертикально. Такая форма теплообменников распространена в США.

По мере развития и становления общества человечество стало искать все более современные и при этом экономичные способы получения энергии. Для этого сегодня возводятся различные станции, но в то же время широко используется энергия, содержащаяся в недрах земли. Какой она бывает? Попробуем разобраться.

Геотермальная энергия

Уже из названия понятно, что она представляет собой тепло земных недр. Под земной корой располагается слой магмы, являющийся огненно-жидким силикатным расплавом. Согласно данным исследований, энергетический потенциал этого тепла намного выше энергии мировых запасов природного газа, а также нефти. На поверхность выходит магма — лава. Причем наибольшая активность наблюдается в тех слоях земли, на которых находятся границы тектонических плит, а также там, где земная кора характеризуется тонкостью. Геотермальная энергия земли получается следующим образом: лава и водные ресурсы планеты соприкасаются, в результате чего вода начинает резко нагреваться. Это приводит к извержению гейзера, формированию так называемых горячих озер и подводных течений. То есть именно тем явлениям природы, свойства которых активно используются как энергии.

Искусственные геотермальные источники

Энергия, содержащаяся в недрах земли, должна использоваться грамотно. Например, есть идея создания подземных котлов. Для этого нужно пробурить две скважины достаточной глубины, которые будут соединяться внизу. То есть получается, что практически в любом уголке суши можно получать геотермальную энергию промышленным способом: через одну скважину будет закачиваться холодная вода в пласт, а через вторую - извлекаться горячая вода или пар. Искусственные источники тепла будут выгодны и рациональны, если получаемое тепло будет давать больше энергии. Пар можно направлять в турбогенераторы, в которых будет вырабатываться электричество.

Конечно, отобранное тепло - это всего лишь доля того, что имеется в общих запасах. Но следует помнить, что глубинный жар будет постоянно пополняться вследствие процессов сжатия горных пород, расслоения недр. Как говорят специалисты, земная кора аккумулирует тепло, общее количество которого в 5000 раз больше теплотворной способности всех ископаемых недр земли в целом. Получается, что время работы подобных искусственно созданных геотермальных станций может быть неограниченным.

Особенности источников

Источники, позволяющие получить геотермальную энергию, практически невозможно использовать полностью. Существуют они в 60 с лишним странах мира, при этом больше всего наземных вулканов на территории Тихоокеанского вулканического огненного кольца. Но на практике оказывается, что геотермальные источники в разных регионах мира совершенно разные по своим свойствам, а именно средней температуре, минерализации, газовому составу, кислотности и так далее.

Гейзеры - источники энергии на Земле, особенности которых в том, что они с определенными промежутками извергают кипящую воду. После того как произошло извержение, бассейн становится свободным от воды, на его дне можно заметить канал, который уходит глубоко в землю. Гейзеры как источники энергии используются в таких регионах, как Камчатка, Исландия, Новая Зеландия и Северная Америка, а одиночные гейзеры встречаются и в некоторых других областях.

Откуда берется энергия?

Совсем близко к земной поверхности располагается неостывшая магма. Из нее выделяются газы и пары, которые поднимают и проходят по трещинам. Смешиваясь с подземными водами, они вызывают их нагревание, сами превращаются в горячую воду, в которой растворены многие вещества. Такая вода выделяется на поверхность земли в виде разных геотермальных источников: горячих ключей, минеральных источников, гейзеров и так далее. По мнению ученых, горячие недра земли - это пещеры или камеры, соединенные проходами, трещинами и каналами. Они как раз заполняются подземными водами, а совсем недалеко от них располагаются очаги магмы. Таким естественным образом и образуется тепловая энергия земли.

Электрическое поле Земли

Есть в природе еще один альтернативный источник энергии, который отличается возобновляемостью, экологической чистотой, простотой в использовании. Правда, до сих пор этот источник только изучается и не применяется на практике. Так, потенциальная энергия Земли кроется в ее электрическом поле. Получить энергию таким способом можно на основании изучения базовых законов электростатики и особенностей электрического поля Земли. По сути, наша планета с точки зрения электрической - это сферический конденсатор, заряженный до 300 000 Вольт. Его внутренняя сфера имеет отрицательный заряд, а внешняя - ионосфера - положительный. является изолятором. Через нее происходит постоянное течение ионных и конвективных токов, которые достигают силы во много тысяч ампер. Однако разница потенциалов между обкладками при этом не уменьшается.

Это говорит о том, что в природе есть генератор, роль которого состоит в постоянном восполнении утечки зарядов с обкладок конденсатора. В роли такого генератора и выступает магнитное поле Земли, вращающееся вместе с нашей планетой в потоке солнечного ветра. ЭнергиямагнитногополяЗемлиможет быть получена как раз путем подключения к этому генератору потребителя энергии. Чтобы сделать это, нужно выполнить монтаж надежного заземления.

Возобновляемые источники

Поскольку численность населения нашей планеты неуклонно растет, нам требуется все больше энергии, чтобы обеспечить население. Энергия, содержащаяся в недрах земли, может быть самой разной. Например, существуют возобновляемые источники: энергия ветра, солнца и воды. Они отличаются экологической чистотой, а потому использовать их можно, не боясь причинить вред окружающей среде.

Энергия воды

Этот способ используется уже на протяжении многих веков. Сегодня построено огромное количество плотин, водохранилищ, в которых вода используется для того, чтобы вырабатывалась электрическая энергия. Суть действия этого механизма проста: под влиянием течения реки вращаются колеса турбин, соответственно, энергия воды превращается в электрическую.

Сегодня существует большое количество гидроэлектростанций, которые преобразуют энергию потока воды в электроэнергию. Особенность этого способа в том, что возобновляются, соответственно, такие конструкции имеют низкую себестоимость. Именно поэтому, несмотря на то что строительство ГЭС ведется довольно долго, да и сам процесс весьма затратный, все же эти сооружения значительно выигрывают у электроемких производств.

Энергия солнца: современно и перспективно

Солнечная энергия получается с помощью солнечных батарей, однако современные технологии позволяют использовать для этого новые методы. Крупнейшей в мире является система, построенная в пустыне Калифорнии. Она полностью обеспечивает энергией 2000 домов. Конструкция работает следующим образом: от зеркал отражаются солнечные лучи, которые направляются в центральный бойлер с водой. Она закипает и превращается в пар, вращающий турбину. Она, в свою очередь, связана с электрическим генератором. Ветер тоже может использоваться как энергия, которую дает нам Земля. Ветер надувает паруса, вращает мельницы. А теперь с его помощью можно создавать устройства, которые будут вырабатывать электрическую энергию. Вращая лопасти ветряка, он приводит в действие вал турбины, который, в свою очередь, связан с электрогенератором.

Внутренняя энергия Земли

Она появилась вследствие нескольких процессов, главные из которых - аккреция и радиоактивность. По мнению ученых, становление Земли и ее массы произошло за несколько миллионов лет, причем произошло это вследствие образования планетезималей. Они слипались, соответственно, масса Земли становилась все больше. После того как наша планета стала иметь современную массу, но еще была лишена атмосферы, на нее беспрепятственно падали метеорные и астероидные тела. Этот процесс как раз и называется аккрецией, и приводил он к тому, что выделялась значительная гравитационная энергия. И чем большие по размеру тела попадали на планету, тем в большем объеме выделялась энергия, содержащаяся в недрах Земли.

Эта гравитационная дифференциация привела к тому, что вещества стали расслаиваться: тяжелые вещества просто тонули, а легкие и летучие всплывали. Дифференциация сказывалась также и на дополнительном выделении гравитационной энергии.

Атомная энергия

Использование энергии земли может происходить по-разному. Например, с помощью возведения атомных электростанций, когда тепловая энергия выделяется за счет распада мельчайших частиц материи атомов. В качестве основного топлива служит уран, который содержится в земной коре. Многие считают, что именно этот способ получения энергии наиболее перспективен, однако его применение сопряжено с рядом проблем. Во-первых, уран излучает радиацию, которая убивает все живые организмы. К тому же если это вещество попадет в почву или атмосферу, то возникнет настоящая техногенная катастрофа. Печальные последствия аварии на Чернобыльской АЭС мы испытываем на себе по сегодняшний день. Опасность таится в том, что радиоактивные отходы могут угрожать всему живому очень и очень долгое время, целые тысячелетия.

Новое время - новые идеи

Конечно, люди не останавливаются на достигнутом, и с каждым годом предпринимается все больше попыток найти новые способы получения энергии. Если энергия тепла земли получается достаточно просто, то некоторые способы не так просты. Например, в качестве источника энергии вполне можно использовать биологический газ, который получается при гниении отходов. Его можно применить для отапливания домов и нагревания воды.

Все чаще возводятся когда поперек устьев водоемов устанавливаются плотины и турбины, которые приводятся в действие приливами и отливами, соответственно, получается электроэнергия.

Сжигая мусор, получаем энергию

Еще один способ, который уже применяется в Японии, - это создание мусоросжигательных заводов. Они сегодня построены в Англии, Италии, Дании, Германии, Франции, Нидерландах и США, однако только в Японии эти предприятия стали использоваться не только по назначению, но и для получения электричества. На местных заводах сжигается 2/3 всего мусора, при этом заводы оснащены паровыми турбинами. Соответственно, они снабжают теплом и электричеством близлежащие территории. При этом по затратам построить такое предприятие гораздо выгоднее, чем возвести ТЭЦ.

Более заманчивой выглядит перспектива использования тепла Земли там, где сосредоточены вулканы. В таком случае не понадобится бурить Землю слишком глубоко, поскольку уже на глубине 300-500 метров температура будет выше точки кипения воды минимум в два раза.

Существует и такой способ получения электроэнергии, как Водород - самый простой и легкий химический элемент - может считаться идеальным топливом, ведь он есть там, где есть вода. Если сжигать водород, можно получать воду, которая разлагается на кислород и водород. Само водородное пламя безвредное, то есть вреда окружающей среде наноситься не будет. Особенность этого элемента в том, что у него высокая теплотворная способность.

Что в будущем?

Конечно, энергия магнитного поля Земли или та, которую получают на атомных станциях, не может удовлетворить полностью все потребности человечества, которые растут с каждым годом. Однако специалисты говорят о том, что поводов для переживаний нет, поскольку топливных ресурсов планеты пока хватает. Тем более что используется все больше новых источников, экологически чистых и возобновляемых.

Остается проблема загрязнения окружающей среды, причем растет она катастрофически быстро. Количество вредных выбросов зашкаливает, соответственно, воздух, которым мы дышим, вреден, вода имеет опасные примеси, а почва постепенно истощается. Именно поэтому так важно своевременно заняться изучением такого явления, как энергия в недрах Земли, чтобы искать способы сокращения потребностей в органическом топливе и активнее использовать нетрадиционные источники энергии.

Д.т.н. Н.А. Гнатусь, профессор,
академик Российской академии технологических наук, г. Москва

В последние десятилетия в мире рассматривается направление более эффективного использования энергии глубинного тепла Земли с целью частичной замены природного газа, нефти, угля. Это станет возможным не только в районах с высокими геотермальными параметрами, но и в любых районах земного шара при бурении нагнетательных и эксплуатационных скважин и создания между ними циркуляционных систем.

Возросший в последние десятилетия в мире интерес к альтернативным источникам энергии вызван истощением запасов углеводородного топлива и необходимостью решения ряда экологических проблем. Объективные факторы (резервы ископаемого топлива и урана, а также изменение среды, вызванные традиционной огневой и атомной энергетикой) позволяют утверждать, что переход к новым способам и формам получения энергии является неизбежным.

Мировая экономика в настоящее время взяла курс на переход к рациональному сочетанию традиционных и новых источников энергии. Тепло Земли занимает среди них одно из первых мест.

Ресурсы геотермальной энергии разделяются на гидрогеологические и петрогеотермальные. Первые из них представлены теплоносителями (составляют всего 1% от общих ресурсов геотермальной энергии) - подземными водами, паром и пароводяными смесями. Вторые представляют собой геотермальную энергию, содержащуюся в раскаленных горных породах.

Применяемая в нашей стране и за рубежом фонтанная технология (самоизлив) добычи природного пара и геотермальных вод проста, но неэффективна. При малом дебите самоизливающихся скважин их теплопродукция может окупить затраты на бурение лишь при небольшой глубине геотермальных коллекторов с высокой температурой в районах термоаномалий. Срок службы таких скважин во многих странах не достигает и 10 лет.

В то же время опыт подтверждает, что при наличии неглубоких коллекторов природного пара строительство ГеоТЭС представляет собой наиболее выгодный вариант использования геотермальной энергии. Эксплуатация таких ГеоТЭС показала их конкурентоспособность по сравнению с другими типами энергоустановок. Поэтому, использование запасов геотермальных вод и парогидротерм в нашей стране на полуострове Камчатка и на островах Курильской гряды, в регионах Северного Кавказа, а также возможно и в других районах целесообразно и своевременно. Но месторождения пара - редкость, его известные и прогнозные запасы невелики. Гораздо более распространенные месторождения теплоэнергетических вод далеко не всегда расположены достаточно близко от потребителя -объекта теплоснабжения. Это исключает возможность крупных масштабов их эффективного использования.

Нередко в сложную проблему перерастают вопросы борьбы с солеотложением. Использование геотермальных, как правило, минерализованных источников в качестве теплоносителя приводит к зарастанию скважинных зон оксидом железа, карбонатом кальция и силикатными образованиями. Кроме того, проблемы эрозии-коррозии и солеотложений отрицательно отражаются на работе оборудования. Проблемой, также, становится сброс минерализованных и содержащих токсичные примеси отработанных вод. Поэтому, простейшая фонтанная технология не может служить основой широкого освоения геотермальных ресурсов.

По предварительным оценкам на территории Российской Федерации прогнозные запасы термальных вод с температурой 40-250 ОС, минерализацией 35-200 г/л и глубиной залегания до 3000 м составляют 21-22 млн м3/сут., что эквивалентно сжиганию 30-40 млн т у.т. в год.

Прогнозные запасы паровоздушной смеси с температурой 150-250 ОС полуострова Камчатка и Курильских островов составляет 500 тыс. м3/сут. и запасы термальных вод с температурой 40-100 ОС - 150 тыс. м3/сут.

Первоочередными для освоения считаются запасы термальных вод с дебитом около 8 млн м3/сут., с минерализацией до 10 г/л и температурой выше 50 ОС.

Гораздо большее значение для энергетики будущего имеет извлечение тепловой энергии, практически неисчерпаемых, петрогеотермальных ресурсов. Эта геотермальная энергия, заключенная в твердых горячих породах, и составляет 99% от общих ресурсов подземной тепловой энергии. На глубине до 4-6 км массивы с температурой 300-400 ОС можно встретить лишь вблизи промежуточных очагов некоторых вулканов, но горячие породы с температурой 100-150 ОС распространены на этих глубинах почти повсеместно, а с температурой 180-200 ОС на довольно значительной части территории России.

На протяжении миллиардов лет ядерные, гравитационные и другие процессы внутри Земли генерировали и генерируют тепловую энергию. Некоторая ее доля излучается в космическое пространство, а теплота аккумулируется в недрах, т.е. теплосодержание твердой, жидкой и газообразной фаз земного вещества и называется геотермальной энергией.

Непрерывная генерация внутриземного тепла компенсирует его внешние потери, служит источником накопления геотермальной энергии и определяет возобновляемую часть ее ресурсов. Общий вынос тепла недр к земной поверхности втрое превышает современную мощность энергоустановок мира и оценивается в 30 ТВт.

Однако очевидно, что возобновляемость имеет значение лишь для ограниченных природных ресурсов, а общий потенциал геотермальной энергии является практически неисчерпаемым, поскольку его следует определять как общее количество теплоты, которым располагает Земля.

Не случайно, в последние десятилетия, в мире рассматривается направление более эффективного использования энергии глубинного тепла Земли с целью частичной замены природного газа, нефти, угля. Это станет возможным не только в районах с высокими геотермальными параметрами, но и в любых районах земного шара при бурении нагнетательных и эксплуатационных скважин и создания между ними циркуляционных систем.

Разумеется, при низкой теплопроводности пород для эффективной работы циркуляционных систем необходимо иметь или создать в зоне отбора тепла достаточно развитую теплообменную поверхность. Такой поверхностью обладают нередко встречающиеся на указанных выше глубинах пористые пласты и зоны естественной трещиностойкости, проницаемость которых позволяет организовать принудительную фильтрацию теплоносителя с эффективным извлечением энергии горных пород, а также искусственного создания обширной теплообменной поверхности в слабопроницаемых пористых массивах методом гидроразрыва (см. рисунок).

В настоящее время гидроразрыв применяется в нефтегазовой промышленности как способ повышения проницаемости пластов для повышения нефтеотдачи при разработке нефтяных месторождений. Современная технология позволяет создавать узкую, но длинную трещину, или короткую но широкую. Известны примеры гидроразрывов с трещинами протяженностью до 2-3 км.

Отечественная идея извлечения основных геотермальных ресурсов, заключенных в твердых породах, была высказана еще в 1914 г. К.Э.Циолковским, а в 1920 г. геотермальная циркуляционная система (ГЦС) в горячем гранитном массиве описана В.А. Обручевым.

В 1963 г. в Париже была создана первая ГЦС извлечения тепла пород пористых пластов для отопления и кондиционирования воздуха в помещениях комплекса «Бродкастин Хаос». В 1985 г. во Франции работало уже 64 ГЦС общей тепловой мощностью 450 МВт при годовой экономии примерно 150 тыс. т нефти. В том же году первая подобная ГЦС была создана в СССР в Ханкальской долине около г. Грозного.

В 1977 г. по проекту Лос-Аламосской национальной лаборатории США начались испытания опытной ГЦС с гидроразрывом практически непроницаемого массива на участке Фен-тон Хилл в штате Нью-Мехико. Нагнетаемая через скважину (нагнетательная) холодная пресная вода нагревалась за счет теплообмена с массивом горных пород (185 ОС) в вертикальной трещине площадью 8000 м2, образованной гидроразвывом на глубине 2,7 км. По другой скважине (эксплуатационная), также пересекающей эту трещину, перегретая вода выходила на поверхность в виде струи пара. При циркуляции в замкнутом контуре под давлением температура перегретой воды на поверхности достигала 160-180 ОС, а тепловая мощность системы - 4-5 МВт. Утечки теплоносителя в окружающий массив составляли около 1% общего расхода. Концентрация механических и химических примесей (до 0,2 г/л) соответствовала кондициям пресной питьевой воды. Трещина гидроразрыва не требовала крепления и поддерживалась в раскрытом состоянии гидростатическим давлением жидкости. Развивающаяся в ней свободная конвекция обеспечивала эффективное участие в теплообмене практически всей поверхности обнажения горячего породного массива.

Извлечение подземной тепловой энергии горячих непроницаемых пород, на основе освоенных и давно практикуемых в нефтегазовой промышленности методов наклонного бурения и гидроразрыва не вызывали сейсмической активности, ни каких-либо иных вредных воздействий на окружающую среду.

В 1983 г. английские ученые повторили американский опыт, создав экспериментальную ГЦС с гидроразрывом гранитов в Карнуэлле. Аналогичные работы проводились в Германии, Швеции. В США осуществлено более 224 проектов геотермального теплоснабжения. При этом допускается, что геотермальные ресурсы могут обеспечить основную часть перспективных потребностей США в тепловой энергии для неэлектрических нужд. В Японии мощность ГеоТЭС в 2000 г. достигла ориентировочно 50 ГВт.

В настоящее время исследования и разведка геотермальных ресурсов ведется в 65 странах. В мире на основе геотермальной энергии создано станций общей мощностью около 10 ГВт. Активную поддержку в освоении геотермальной энергии оказывает ООН.

Накопленный во многих странах мира опыт использования геотермальных теплоносителей показывает, что в благоприятных условиях они оказываются в 2-5 раз выгоднее тепловых и атомных энергоустановок. Расчеты показывают, что за год одна геотермальная скважина может обеспечить замещение 158 тыс. т угля.

Таким образом, тепло Земли представляет собой, пожалуй, единственный крупный, восполняемый энергоресурс, рациональное освоение которого обещает удешевление энергии по сравнению с современной топливной энергетикой. При столь же неисчерпаемом энергетическом потенциале солнечные и термоядерные установки, к сожалению, будут дороже существующих топливных.

Несмотря на весьма длительную историю освоения тепла Земли сегодня геотермальная технология еще не достигла своего высокого развития. Освоение тепловой энергии Земли испытывает большие трудности при строительстве глубоких скважин, являющихся каналом для вывода теплоносителя на поверхность. В связи с высокой температурой на забое (200-250 ОС) традиционные породоразрушающие инструменты малопригодны для работы в таких условиях, предъявляются особые требования к выбору бурильных и обсадных труб, цементных растворов, технологии бурения, креплению и заканчиванию скважин. Отечественная измерительная техника, серийная эксплуатационная арматура и оборудование выпускаются в исполнении, допускающем температуры не выше 150-200 ОС. Традиционное глубокое механическое бурение скважин подчас затягивается на годы и требует значительных финансовых затрат. В основных производственных фондах стоимость скважин составляет от 70 до 90%. Решить эту проблему можно и нужно лишь путем создания прогрессивной технологии разработки основной части геотермальных ресурсов, т.е. извлечения энергии горячих пород.

Проблемой извлечения и использования неисчерпаемой, восполняемой глубинной тепловой энергии горячих пород Земли на территории Российской Федерации наша группа российских ученых и специалистов занимается не один год. Цель работы - создание на основе отечественных, высоких технологий технических средств для глубокого проникновения в недра земной коры. В настоящее время разработано несколько вариантов буровых снарядов (БС), аналогов которым в мировой практике нет.

Работа первого варианта БС увязана с действующей традиционной технологией бурения скважин. Скорость бурения твердых пород (средняя плотность 2500-3300 кг/м3) до 30 м/ч, диаметр скважины 200-500 мм. Второй вариант БС осуществляет бурение скважин в автономном и автоматическом режиме. Запуск осуществляется со специальной пуско-приемочной платформы, с которой и ведется управление его движением. Одну тысячу метров БС в твердых породах сможет пройти в течение нескольких часов. Диаметр скважины от 500 до 1000 мм. Варианты БС многоразового использования обладают большой экономической эффективностью и огромным потенциальным значением. Внедрение БС в производство позволит открыть новый этап в строительстве скважин и обеспечить доступ к получению неисчерпаемых источников тепловой энергии Земли.

Для нужд теплоснабжения необходимая глубина скважин на всей территории страны лежит в пределах до 3-4,5 тыс. м и не превышает 5-6 тыс. м. Температура теплоносителя для жилищно-коммунального теплоснабжения не выходит за пределы 150 ОС. Для промышленных объектов температура, как правило, не превышает 180-200 ОС.

Цель создания ГЦС - обеспечение постоянным, доступным, дешевым теплом отдаленных, труднодоступных и не освоенных районов РФ. Продолжительность эксплуатации ГЦС - 25-30 лет и более. Срок окупаемости станций (с учетом новейших технологий бурения) - 3-4 года.

Создание в Российской Федерации в ближайшие годы соответствующих мощностей по использованию геотермальной энергии для неэлектрических нужд позволит заменить около 600 млн т у.т. Экономия может составить до 2 трлн руб.

В срок до 2030 г. появляется возможность создания энергетических мощностей по замене огневой энергетики до 30%, а до 2040 г. почти полностью исключить органическое сырье в качестве топлива из энергетического баланса Российской Федерации.

Литература

1. Гончаров С.А. Термодинамика. М.: МГТУим. Н.Э. Баумана, 2002. 440 с.

2. Дядькин Ю.Д. и др. Геотермальная теплофизика. С-Пб.: Наука, 1993. 255 с.

3. Минерально-сырьевая база топливно-энергетического комплекса России. Состояние и прогноз / В. К. Бранчугов, Е.А. Гаврилов, В.С. Литвиненко и др. Под ред. В.З. Гарипова, Е.А. Козловского. М. 2004. 548 с.

4. Новиков Г. П. и др. Бурение скважин на термальные воды. М.: Недра, 1986. 229 с.

2. Тепловой режим Земли

Земля представляет собой холодное космическое тело. Температура поверхности зависит главным образом от тепла, поступающего извне. 95 % тепла верхнего слоя Земли составляет внешнее (солнечное) тепло, и только 5 % – тепло внутреннее , которое исходит из недр Земли и включающая в себя несколько источников энергии. В недрах Земли температура увеличивается с глубиной от 1300 о С (в верхней мантии) до 3700 о С (в центре ядра).

Внешняя теплота . На поверхность Земли тепло поступает в основном от Солнца. Каждый квадратный сантиметр поверхности получает в течение одной минуты около 2 калорий тепла. Эта величина называется солнечной постоянной и определяет общее количество тепла, поступающего на Землю от Солнца. За год оно составляет величину в 2,26·10 21 калорий. Глубина проникновения солнечного тепла в недра Земли зависит главным образом от количества тепла, которое попадает на единицу площади поверхности, и от тепло­проводности горных пород. Максимальная глубина, на которую проникает внешнее тепло, со­ставляет в океанах 200 м, на суше – около 40 м.

Внутренняя теплота . С глубиной наблюдается повышение температуры, которая происходит весьма неравномерно на различных территориях. Увеличение температуры идет по адиабатическому закону и зависит от сжатия вещества под давлением при невозможности теплообмена с окружающей средой.

Основные источники тепла внутри Земли:

Тепло, выделяющееся при радиоактивном распаде элементов.

Остаточное тепло, сохранившееся со времен образования Земли.

Гравитационное тепло, выделяющееся при сжатии Земли и распределении вещества по плотности.

Тепло, образующееся за счет химических реакций, протекающих в недрах земной коры.

Тепло, выделяющееся при приливном трении Земли.

Различают 3 температурные зоны:

I – зона переменных температур . Изменение температуры определяется климатом местности. Суточные колебания практически затухают на глубине около 1,5 м, а годовые на глубинах 20…30 м. Iа – зона промерзания.

II – зона постоянных температур , находящаяся на глубинах 15…40 м в зависимости от региона.

III – зона нарастания температур .

Температурный режим горных пород в недрах земной коры принято выражать геотермическим градиентом и геотермической ступенью.

Величина нарастания температуры на каждые 100 м глубины называется геотермическим градиентом . В Африке на месторождении Витватерсранд оно равно 1,5 °С, в Японии (Эчиго) - 2,9 °С, в Южной Австралии – 10,9 °С, в Казахстане (Самаринда) – 6,3 °С, на Кольском полуострове – 0,65 °С.

Рис. 3. Зоны температур в земной коре: I – зона переменных температур, Iа – зона промерзания; II – зона постоянных температур; III – зона нарастания температур.

Глубина, при которой температура повышается на 1 градус, называется геотермической ступенью. Числовые значения геотермической ступени непостоянны не только на разных широтах, но и на разных глубинах одной и той же точки района. Величина геотермической ступени изменяется от 1,5 до 250 м. В Архангельске она равна 10 м, в Москве - 38,4 м, а в Пятигорске - 1,5 м. Теоретически средняя величина этой ступени составляет 33 м.

В скважине, пробуренной в Москве на глубину 1630 м, температура в забое составила 41 °С, а в шахте, пройденной в Донбассе на глубину 1545 м, температура оказалась равной 56,3 °С. Наиболее высокая температура зафиксирована в США в скважине глубиной 7136 м, где она равна 224 °С. Нарастание температуры с глубиной следует учитывать при проектировании сооружений глубокого заложения Согласно расчетам, на глубине 400 км температура должна достигать 1400…1700 °С. Наиболее высокие температуры (около 5000 °С) получены для ядра Земли.

Геотермальная энергия - это энергия тепла, которое выделяется из внутренних зон Земли на протяжении сотен миллионов лет. По данным геолого-геофизических исследований, температура в ядре Земли достигает 3 000-6 000 °С, постепенно снижаясь в направлении от центра планеты к ее поверхности. Извержение тысяч вулканов, движение блоков земной коры, землетрясения свидетельствуют о действии мощной внутренней энергии Земли. Ученые считают, что тепловое поле нашей планеты обусловлено радиоактивным распадом в ее недрах, а также гравитационной сепарацией вещества ядра.
Главными источниками разогрева недр планеты есть уран, торий и радиоактивный калий. Процессы радиоактивного распада на континентах происходят в основном в гранитном слое земной коры на глубине 20-30 и более км, в океанах - в верхней мантии. Предполагают, что в подошве земной коры на глубине 10-15 км вероятное значение температур на континентах составляет 600-800 ° С, а в океанах - 150-200 ° С.
Человек может использовать геотермальную энергию только там, где она проявляет себя близко к поверхности Земли, т.е. в районах вулканической и сейсмической активности. Сейчас геотермальную энергию эффективно используют такие страны, как США, Италия, Исландия, Мексика, Япония, Новая Зеландия, Россия, Филиппины, Венгрия, Сальвадор. Здесь внутреннее земное тепло поднимается к самой поверхности в виде горячей воды и пара с температурой до 300 °С и часто вырывается наружу как тепло фонтанирующих источников (гейзеры), например, знаменитые гейзеры Йеллоустонского парка в США, гейзеры Камчатки, Исландии.
Геотермальные источники энергии подразделяют на сухой горячий пар, влажный горячий пар и горячую воду. Скважину, которая является важным источником энергии для электрической железной дороге в Италии (близ г. Лардерелло), с 1904 г. питает сухой горячий пар. Два другие известные в мире места с горячей сухим паром - поле Мацукава в Японии и поле гейзеров возле Сан-Франциско, где также давно и эффективно используют геотермальную энергию. Больше всего в мире влажного горячего пара находится в Новой Зеландии (Вайракей), геотермальные поля чуть меньшей мощности - в Мексике, Японии, Сальвадоре, Никарагуа, России.
Таким образом, можно выделить четыре основных типа ресурсов геотермальной энергии:
поверхностное тепло земли, используемое тепловыми насосами;
энергетические ресурсы пара, горячей и теплой воды у поверхности земли, которые сейчас используются в производстве электрической энергии;
теплота, сосредоточенная глубоко под поверхностью земли (возможно, при отсутствии воды);
энергия магмы и теплота, которая накапливается под вулканами.

Запасы геотермальной теплоты (~ 8 * 1030Дж) в 35 млрд раз превышают годовое мировое потребление энергии. Лишь 1% геотермальной энергии земной коры (глубина 10 км) может дать количество энергии, в 500 раз превышающее все мировые запасы нефти и газа. Однако сегодня может быть использована лишь незначительная часть этих ресурсов, и это обусловлено, прежде всего, экономическими причинами. Начало промышленному освоению геотермальных ресурсов (энергии горячих глубинных вод и пара) было положено в 1916 году, когда в Италии ввели в эксплуатацию первую геотермальную электростанцию мощностью 7,5 МВт. За прошедшее время, накоплен немалый опыт в области практического освоения геотермальных энергоресурсов. Общая установленная мощность действующих геотермальных электростанций (ГеоТЭС) равнялась: 1975 г. - 1 278 МВт, в 1990 году - 7 300 МВт. Наибольшего прогресса в этом вопросе достигли США, Филиппины, Мексика, Италия, Япония.
Технико-экономические параметры ГеоТЭС изменяются в довольно широких пределах и зависят от геологических характеристик местности (глубины залегания, параметров рабочего тела, его состав и т.д.). Для большинства введенных в эксплуатацию ГеоТЭС себестоимость электроэнергии является подобной себестоимости электроэнергии, получаемой на угольных ТЭС, и составляет 1200 ... 2000 долл. США / МВт.
В Исландии 80% жилых домов обогревается с помощью горячей воды, добытой из геотермальных скважин под городом Рейкьявик. На западе США за счет геотермальных горячих вод обогревают около 180 домов и ферм. По мнению специалистов, между 1993 и 2000 гг глобальное выработки электричества с помощью геотермальной энергии выросло более чем вдвое. Запасов геотермального тепла в США существует так много, что оно может, теоретически, давать в 30 раз больше энергии, чем ее сейчас потребляет государство.
В перспективе возможно использование тепла магмы в тех районах, где она расположена близко к поверхности Земли, а также сухого тепла разогретых кристаллических пород. В последнем случае скважины бурят на несколько километров, закачивают вниз холодную воду, а обратно получают горячую.