Что такое генетический код. Однозначность генетического кода проявляется в том что. Значение вырожденности и универсальности

К серии статей, описывающих происхождение ГК, можно относиться как к расследованию событий, о которых у нас осталось очень немало следов. Однако для понимания этих статей необходимо немного приложить усилий для вникания в молекулярные механизмы синтеза белка. Данная статья является вступительной для серии автопубликаций, посвященных возникновению генетического кода, и с неё лучше всего начинать знакомство с этой темой.
Обычно генетический код (ГК) определяют как способ (правило) кодирования белка на первичной структуре ДНК или РНК. В литературе чаще всего пишут, что это - однозначное соответствие последовательности из трёх нуклеотидов в гене одной аминокислоте в синтезируемом белке или месту окончания синтеза белка. Однако в таком определении есть две ошибки. При этом подразумеваются 20, так называемых канонических аминокислот, которые входят в состав белков всех без исключения живых организмов. Эти аминокислоты являются мономерами белка. Ошибки следующие:

1) Канонических аминокислот не 20, а только 19. Аминокислотой мы можем называть вещество, которое одновременно содержит аминогруппу -NH 2 и карбоксильную группу - COOH. Дело в том, что мономер белка - пролин - аминокислотой не является, поскольку в нём вместо аминогруппы присутствует иминогруппа, поэтому пролин правильней называть иминокислотой. Однако в дальнейшем во всех статьях, посвящённых ГК, для удобства я буду писать о 20 аминокислотах, подразумевая указанный ньюанс. Структуры аминокислоты приведены на рис. 1.

Рис. 1. Структуры канонических аминокислот. Аминокислоты имеют константные части, обозначенные на рисунке чёрным цветом, и вариабельные (или радикалы), обозначенные красным.

2) Соответствие аминокислот кодонам не всегда является однозначным. О нарушении случаев однозначности см. ниже.

Возникновение ГК означает возникновение кодируемого синтеза белка. Это событие является одним из ключевых для эволюционного формирования первых живых организмов.

Структура ГК представлена в круговой форме на рис. 2.



Рис. 2. Генетический код в круговой форме. Внутренний круг - первая буква кодона, второй круг - вторая буква кодона, третий круг - третья буква кодона, четвертый круг - обозначения аминокислот в трехбуквенном сокращении; П - полярные аминокислоты, НП - неполярные аминокислоты. Для наглядности симметрии важен избранный порядок символов U - C - A - G .

Итак, приступим к описанию основных свойств ГК.

1. Триплетность. Каждая аминокислота кодируется последовательностью из трёх нуклеотидов.

2. Наличие межгенных знаков препинания. К межгенным знакам препинания относятся последовательности нуклеиновой кислоты, на которых трансляци я начинается или заканчивается.

Трансляци я может начаться не с любого кодона, а только со строго определённого - стартового . К стартовому кодону относится триплет AUG , с которого начинается трансляци я. В этом случае этот триплет кодирует или метионин, или другую аминокислоту - формилметионин (у прокариот), который может включаться только в начале синтеза белка. В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов , или стоп-сигналов : UAA, UAG, UGA. Они терминируют трансляци ю (так называется синтез белка на рибосоме).

3. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона.

4. Неперекрываемость. Кодоны не перекрываются друг с другом, каждый имеет своё упорядочённое множестов нуклеотидов, которое не перекрывается с аналогичными множествами соседних кодонов.

5. Вырожденность. Обратное соответствие в направлении аминокислота-кодон неоднозначно. Это свойство называется вырожденностью. Серия - это множество кодонов, кодирующих одну аминокислоту, другими словами, это группа эквивалентных кодонов . Представим себе кодон в виде XYZ. Если XY определяет “смысл ” (т.е. аминокислоту), то кодон называется сильным . Если же для определения смысл а кодона нужен определенный Z, то такой кодон называется слабым .

Вырожденность кода тесно связана с неоднозначностью спаривания кодон-антикодон (под антикодоном подразумевается последовательность из трёх нуклеотидов на тРНК , которая может комплементарно спариваться с кодоном на матричной РНК (см. более подробно об этом две статьи: Молекулярные механизмы обеспечения вырожденности кода и Правило Лагерквиста. Физико-химическое обоснование симметрий и соотношений Румера ). Один антикодон на тРНК может узнавать отодного до трёх кодонов на мРНК.

6. Однозначность. Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляци и.

Известно три исключения.

Первое. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.В начале гена формилметионин кодируется как обычным метиониновым кодоном AUG , так и ещё валиновым кодоном GUG или лейциновым UUG , которые внутри гена кодируют валин и лейцин, соответственно.

Во многих белках формилметионин отщепляется, либо удаляется формильная группа, в результате чего формилметионин превращается в обычный метионин.

Второе. В 1986 году сразу несколько групп исследователей обнаружили, что на мРНК терминирующий кодон UGA может кодировать селеноцистеин (см. рис. 3) при условии, что за ним следует особая последовательность нуклеотидов.

Рис. 3. Структура 21-й аминокислоты - селеноцистеина.

У E. coli (это латинское название кишечной палочки) селеноцистеил-тРНК в процессе трансляци и распознает в мРНК кодон UGA, но лишь в определенном контекст е: для узнавания UGA-кодона как осмысл енного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном.

Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется в контекст е с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Важно, что селеноцистеиновая тРНК обнаружена в представителях всех трёх ветвей жизни (архей, эубактерий и эукариот), что указывает на древность происхождения селеноцистеинового синтеза, и возможно на присутствие его ещё в последнем универсальном общем предке (о нём речь пойдёт в других статьях). Скорей всего селеноцистеин встречается у всех без исключения живых организмов. Но в каждом отдельном организме селеноцистеин встречается не более, чем в паред есятков белков. Он входит в состав активных центров ферментов, в ряде гомологов которых на аналогичной позиции может функционировать обычный цистеин.

До недавнего времени считалось, что кодон UGA может считываться либо как селеноцистеин, либо кактерминальный, но недавно было показано, что у инфузории Euplotes кодон UGA кодирует или цистеин, илиселеноцистеин. См. " Генетический код допускает разночтения "

Третье исключение. У некоторых прокариот (5 видов архей и одной эубактерии - в Википедии информация сильно устарела) встречается особая кислота - пирролизин (рис. 4). Она кодируется триплетом UAG , который в каноническом коде служит терминатором трансляци и. Предполагается, что в этом случае, подобно случаю с кодированием селеноцистеина, считывание UAG как пирролизинового кодона происходит благодаря особой структуре на мРНК. Пирролизиновая тРНК содержит антикодон CTA и аминоацилируется АРСаз ой 2-го класса (про классификацию АРСаз см. статью "Кодазы помогают понять, как возник генетический код ").

UAG в качестве стоп-кодона используется редко, а если и используется, то часто за ним следует другой стоп-кодон.

Рис. 4. Структура 22-й аминокислоты пирролизина.

7. Универсальность. После того, как в середине 60-х годов прошлого века расшифровка ГК была завершена, долгое время считалось, что код одинаков во всех организмах, что указывает на единство происхождения всего живого на Земле.

Попробуем понять, почему ГК универсален. Дело в том, что если бы в организме изменилось хотя бы одно правило кодирования, то это привело бы к тому, что изменилась структура значительной части белков. Такое изменение было бы слишком кардинальным и поэтому практически всегда летальное, так как изменение смысл а только одного кодона может затронуть в среднем 1/64 часть всех аминокислотных последовательностей.

Отсюда следует одна очень важная мысль - ГК почти не менялся со времени своего формирования более 3,5 млрд. лет назад. А, значит, его структура несёт в себе след его возникновения, и анализ этой структуры может помочь понять, как именно мог возникнуть ГК.

В действительности ГК может несколько отличаться у бактерий, митохондрий, ядерный код некоторых инфузорий и дрожжей. Cейчас насчитывают не менее 17 генетических кодов, отличающихся от канонического на 1-5 кодонов Суммарно во всех известных вариантах отклонений от универсального ГК используются 18 различных замен смысл а кодона. Больше всего отклонений от стандартного кода известно у митохондрий - 10. Примечательно, что митохондрии позвоночных, плоских червей, иглокожих, кодируются разными кодами, а плесневых грибков, простейших и кишечнополостных - одним.

Эволюционная близость видов - отнюдь не гарант того, чтобы у них были сходные ГК. Генетические коды могут различаться даже у разных видов микоплазм (одни виды имеют канонический код, а другие - отличающиеся). Аналогичная ситуация наблюдается и для дрожжей.

Важно отметить, что митохондрии - потомки симбиотических организмов, которые приспособились жить внутри клеток. Они имеют сильно редуцированный геном , часть генов переселилась в ядро клетки. Поэтому изменения ГК в них становятся уже не столь кардинальными.

Обнаруженные позднее исключения представляют особый интерес с точки зрения эволюции, поскольку могу помочь пролить свет на механизмы эволюции кода.

Таблица 1.

Митохондриальные коды у различных организмов.

Кодон

Универсальный код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

UGA

STOP

Trp

Trp

Trp

STOP

AUA

Ile

Met

Met

Met

Ile

CUA

Leu

Leu

Leu

Thr

Leu

AGA

Arg

STOP

Ser

Arg

Arg

AGG

Arg

STOP

Ser

Arg

Arg

Три механизма смены аминокислоты, кодируемой кодом.

Первый - когда какой-то кодон не используется (или почти не используется) каким-то организмом в силу неравномерности встречаемости каких-то нуклеотидов (GC -состав), или комбинаций нуклеотидов. В результате такой кодон может вовсе исчезнуть из употребления (например, благодаря потере соответствующей тРНК ), а в дальнейшем может использоваться для кодирования другой аминокислоты без нанесения существенного ущерба организму. Этот механизм возможно отвечает за появление некоторых диалектов кодов у митохондрий.

Второй - превращение стоп-кодона в смысл овой. В этом случае часть у части транслируемых белков могут появиться дополнения. Однако ситуацию частично спасает то, что многие гены часто заканчиваются не одним, а двумя стоп-кодонами, поскольку возможны ошибки трансляци и, при которых стоп-кодоны считываются как аминокислоты.

Третий - возможно неоднозначное считывание определённых кодонов, как это имееют место у некоторых грибов.

8 . Связность. Группы эквивалентных кодонов (то есть кодонов, кодирующих одну и ту же аминокислоту) называются сериями . ГК содержит 21 серию, включая стоп-кодоны. В дальнейшем для определенности любая группа кодонов будет называться связной, если от каждого кодона этой группы можно перейти ко всем другим кодонам этой же группы путем последовательных замен нуклеотидов. Из 21 серии связны 18. 2 серии содержат по одному кодону, и лишь 1 серия для аминокислоты серин является несвязной и распадается на 2 две связные подсерии.


Рис. 5. Графы связности для некоторых кодовых серий. а - связная серия валина; б - связная серия лейцина; серия серина несвязная, распадается на две связных подсерии. Рисунок взят из статьи В.А. Ратнера " Генетический код как система ".

Свойство связности можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

9. Регулярность свойств аминокислот по корням триплетов. Все аминокислоты, кодируемые триплетами скорнем U, являются неполярными, не крайних свойств и размеров, имеюталифатические радикалы. Все триплеты с корнем C имеют сильные основы, ааминокислоты, кодируемые ими, имеют относительно малые размеры. Все триплеты с корнем A имеют слабые основы, кодируют полярные аминокислоты не малых размеров. Кодоны с корнем G характеризуются крайними и аномальнными вариантами аминокислот и серий. Они кодируют самую маленькую аминокислоту (глицин), самую длинную и плоскую (триптофан), самую длинную и «корявую» (аргинин), самую реактивную (цистеин), образует аномальную подсерию для серина.

10. Блочность. Универсальный ГК является «блоковым» кодом. Это означает, что аминокислоты со сходными физико-химическими свойствами, кодируются кодонами, отличающимися друг от друга одним основанием. Блочность кода хорошо видна на следующем рисунке.


Рис. 6. Блочная структура ГК. Белым цветом обозначены аминокислоты с алкильной группой.


Рис. 7. Цветовое представление физико-химических свойств аминокислот, основанное на значениях, описанных в кн книге Стайерса "Биохимия" . Слева - гидрофобность. Справа - способность к формированию альфа-спирали в белке. Красный, жёлтый и голубой цвета обозначают аминокислоты с большой, средней и малой гидрофобностью (слева) или соответствующей степенью способности к формированию альфа-спирали (справа).

Свойство блочности и регулярности также можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

Кодоны с одинаковыми первыми основаниями (приставками кодонов) кодируют аминокислоты с близкими путями биосинтеза . Кодоны аминокислот, принадлежащих к шикиматному , пируватному , аспартатному и глутаматному семействам, имеют в качестве приставок U, G, A и C, соответственно. О путях древнего биосинтеза аминокислот и его связи со свойствами современного кода см. "Древний дублетный генетический код был предопределён путями синтеза аминокислот ". На основе этих данных некоторые исследователи делают вывод о том, что на формирование кода большое влияние оказали биосинтетические взаимоотношения между аминокислотами . Однако сходство биосинтетических путей вовсе не означает сходство физико-химических свойств .

11. Помехоустойчивость. В самом общем виде помехоустойчивость ГК означает, что при случайных точковых мутациях и ошибках трансляци и не очень сильно меняются физико-химические свойства аминокислот.

Замена одного нуклеотида в триплете в большинстве случаев или не приводит к замене кодируемой аминокислоты, или приводит к замене на аминокислоту с той же полярностью.

Один из механизмов, обеспечивающих помехоустойчивость ГК - его вырожденность. Средняя вырожденность равна - число кодируемых сигналов/общее число кодонов, где к кодируемым сигналам относятся 20 аминокислот и знак терминации трансляци и. Усредненная вырожденность для всех аминокислот и знака терминации составляет три кодона на кодируемый сигнал.

Для того, чтобы количественно оценить помехоустойчивость, введём два понятия. Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

Каждый триплет допускает 9 однократных замен. Всего кодирующих аминокислоты триплетов 61. Поэтому количество возможных замен нуклеотидов для всех кодонов -

61 x 9 = 549. Из них:

23 замены нуклеотидов приводят к появлению стоп-кодонов.

134 замены не меняют кодируемую аминокислоту.
230 замен не меняют класс кодируемой аминокислоты.
162 замены приводят к смене класса аминокислоты, т.е. являются радикальными.
Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляци и, а 176 - консервативны.
Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны.
Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 -консервативны, 102 - радикальны.

На основе этих расчётов получим количественную оценку помехоустойчивости кода, как отношение числа консервативных замен к числу радикальных замен. Оно равно 364/162=2.25

При реальной оценке вклада вырожденности в помехоустойчивость необходимо учитывать частоту встречаемости аминокислот в белках, которая варьирует в разных видах.

В чем причина помехоустойчивости кода? Большинство исследователей считают, что это свойство является следствием селекции альтернативных ГК .

Стивен Фриленд и Лоренс Херст генерировали случайные такие коды и выясняли, что только один из ста альтернативных кодов обладает не меньшей помехоустойчивостью по сравнению с универсальным ГК.
Еще более интересный факт обнаружился, когда эти исследователи ввели дополнительное ограничение, с тем чтобы учесть реально существующие тенденции в характере мутирования ДНК и появлении ошибок при трансляци и. При таких условиях лучше канонического кода оказался ТОЛЬКО ОДИН КОД ИЗ МИЛЛИОНА ВОЗМОЖНЫХ.
Столь беспрецедентную жизнестойкость генетического кода проще всего объяснить тем, что он сформировался в результате естественного отбора. Возможно когда-то в биологическом мире существовало множество кодов, каждый со своей чувствительностью к ошибкам. Организм, лучше справлявшийся с ними, имел больше шансов выжить, и канонический код просто победил в борьбе за существование. Это предположение кажется вполне реальным - ведь мы знаем, что альтернативные коды действительно существуют. Подробнее о помехоустойчивости см. Закодированная эволюция (С.Фриленд, Л. Херст "Закодированная эволюция".//В мире науки. - 2004, №7).

В заключение, предлагаю посчитать число возможных генетических кодов, которые можно сгенерировать для 20 канонических аминокислот. Почему-то это число нигде мне не попадалось. Итак, нам необходимо, чтобы в генерируемых ГК были обязательно 20 аминокислот и стоп-сигнал, кодируемые ХОТЯ БЫ ОДНИМ КОДОНОМ.

Мысленно будем нумеровать кодоны в каком-то порядке. Рассуждать будем следующим образом. Если у нас имеется ровно 21 кодон, то тогда каждая аминокислота и стоп-сигнал будут занимать ровно по одному кодону. В этом случае возможных ГК будет 21!

Если будет 22 кодона, то появляется лишний кодон, который может иметь один из любых 21 смысл ов, причём этот кодон может располагаться на любом из 22 мест, тогда как остальные кодоны имеют ровно по одному разному смысл у, как и для случая 21 кодонов. Тогда получим число комбинаций 21!х(21х22).

Если кодонов будет 23, то рассуждая аналогично, получим, что 21 кодон имеют ровно по одному разных смысл ов (21! вариантов), а два кодона - по 21 разных смысл а (21 2 смысл ов при ФИКСИРОВАННОМ положении этих кодонов). Число различных положений для этих двух кодонов будет 23х22. Общее число вариантов ГК для 23 кодонов - 21!х21 2 х23х22

Если кодонов будет 24 - то число ГК будет равно 21!х21 3 х24х23х22,...

....................................................................................................................

Если кодонов будет 64, то число возможных ГК будет 21!х21 43 х64!/21! = 21 43 х64! ~ 9.1х10 145

Ген - структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойства. Совокупность генов родители передают потомкам во время размножения.Большой вклад в изучение гена внесли российские учёные: Симашкевич Е.А.,Гаврилова Ю.А.,Богомазова О.В.(2011 год)

В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК, таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis cis-regulatory elements ), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans -регуляторные элементы, англ. trans-regulatory elements ). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям - случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations ), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу,по имени которой и получила название сама ДНК, а так же остаток фосфорной кислоты.Эти соединения носят название нуклеотидов.

Свойства гена

  1. дискретность - несмешиваемость генов;
  2. стабильность - способность сохранять структуру;
  3. лабильность - способность многократно мутировать;
  4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность - в генотипе диплоидных организмов только две формы гена;
  6. специфичность - каждый ген кодирует свой признак;
  7. плейотропия - множественный эффект гена;
  8. экспрессивность - степень выраженности гена в признаке;
  9. пенетрантность - частота проявления гена в фенотипе;
  10. амплификация - увеличение количества копий гена.

Классификация

  1. Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).
  2. Функциональные гены - регулируют работу структурных генов.

Генети́ческий код - свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида - аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом - урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства

  1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)
  5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными ; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

Биосинтез белка и его этапы

Биосинтез белка - сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни мРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, - альтернативный сплайсинг.

Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК (тРНК), которые образуют с аминокислотами комплексы - аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону мРНК. Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

0

Генетический код — это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.

Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).

В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».

В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.

Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на "языке РНК".

Аминокислота Кодирующие триплеты РНК
Аланин ГЦУ ГЦЦ ГЦА ГЦГ
Аргинин ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ
Аспарагин ААУ ААЦ
Аспарагиновая кислота ГАУ ГАЦ
Валин ГУУ ГУЦ ГУА ГУГ
Гистидин ЦАУ ЦАЦ
Глицин ГГУ ГГЦ ГГА ГГГ
Глутамин ЦАА ЦАГ
Глутаминовая кислота ГАА ГАГ
Изолейцин АУУ АУЦ АУА
Лейцин ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ
Лизин ААА ААГ
Метионин АУГ
Пролин ЦЦУ ЦЦЦ ЦЦА ЦЦГ
Серин УЦУ УЦЦ УЦА УЦГ АГУ АГЦ
Тирозин УАУ УАЦ
Треонин АЦУ АЦЦ АЦА АЦГ
Триптофан УГГ
Фенилаланин УУУ УУЦ
Цистеин УГУ УГЦ
СТОП УГА УАГ УАА

Свойства генетического кода

Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.

  • Однозначность (дискретность)

Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.

Каждая аминокислота может определяться более, чем одним триплетом. Исключение — метионин итриптофан . Другими словами — одной и той же аминокислоте может соответствовать несколько кодонов.

  • Неперекрываемость

Одно и то же основание не может одновременно входить в два соседних кодона.

Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.

У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Другими словами, универсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.

Из истории открытия генетического кода

Впервые идея о существовании генетического кода сформулирована А. Дауном и Г. Гамовым в 1952 — 1954 годах. Учёные показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трёх звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом .

Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (4 2 = 16).

Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (4 3 = 64).