Что такое поляризация электрода. Поляризация и перенапряжение. Кинетика электродных процессов

НЕРАВНОВЕСНАЯ ЭЛЕКТРОХИМИЯ. ЭЛЕКТРОЛИЗ

Электролиз - это процесс, в котором химические реакции происходят под действием электрического тока, подаваемого от внешнего источника. При электролизе происходит превращение электрической энергии в химическую. Ячейка для электролиза, называемая электролизером , состоит из двух электродов электролита. Электрод, на котором идет реакция восстановления (катод), у электролизера подключен к отрицательному полюсу внешнего источника. Электрод, на котором протекает реакция окисления (анод), подключен к положительному полюсу источника тока.

Рассмотрим электродные реакции на примере электролиза расплава NaCl. При плавлении происходит термохимическая диссоциация соли:

Если погрузить в расплавленную соль два графитовых электрода и подключить их к полюсам внешнего источника тока, то в электролите начнется направленное движение ионов и на электродах будут протекать следующие реакции:

а) восстановление ионов до металлического (катодный процесс) на отрицательном электроде, т.е. электроде, на которой поступает элементы от внешнего источника тока:

;

б) окисление хлорид-ионов до (анодный процесс) на положительном электроде, с которого электроны идут во внешнее цепь:

.

Суммарная реакция
.

Электролиз подчиняется законом Фарадея:

Первый закон: 1)количество вещества, испытавшего электрохимические превращения на электроде, прямо пропорционально количеству прошедшего электричества;

Второй закон: 2) массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как молярные массы их эквивалентов.

При превращении одного моля эквивалентов вещества на электроде через него проходит ≈96500 Кл(А*с). Эта величина называется постоянная Фарадея (F).

На законах Фарадея основаны расчеты электрохимических установок, а на их базе созданы счетчики количества электричества (кулонометры, интеграторы тока) и другие устройства.

Электролиз подчиняется уравнениям кинетики электродных процессов.



КИНЕТИКА ЭЛЕКТРОДНЫХ ПРОЦЕССОВ.

ПОЛЯРИЗАЦИЯ И ПЕРЕНАПРЯЖЕНИЕ

Равновесные потенциалы электродов могут быть определены в условиях отсутствия в цепи тока. При прохождении электрического тока потенциалы электродов изменяются. Изменение потенциала электрода при прохождении тока называется поляризацией:

где - поляризация; - потенциал электрода при прохождении тока; - равновесный потенциал.

Также различают анодную и катодную поляризацию и . Изменение потенциала при прохождении тока также называется перенапряжением. Этот термин обычно употребляют, когда известна причина изменения потенциала. Это также относится к некоторым конкретным процессом, например, к катодному выделению водорода (водородное перенапряжение).

Для экспериментального определения поляризации строят кривые зависимости потенциала электрода от протекающего через электрод тока. Так как ток пропорционален количеству вещества, прореагировавшего на электроде в единицу времени, то значение тока может быть использована для количественной оценки скорости электрохимической реакции. Так как электроды могут быть разными по площади, то в зависимости от площади электрода при одном и том же потенциала могут быть разные токи. Поэтому скорость реакции обычно относят к единице площади поверхности. Отношение тока J к площади электрода называют плотностью тока i :

Любая электрохимическая реакция протекает минимум в 3 стадии:

а) подвод реагентов к электроду;

б) собственно электрохимическая реакция, которая может включать в себя и химические реакция;

в) отвод продуктов реакции от электрода.

Если бы все стадии протекали мгновенно, то потенциал электрода при прохождении тока не изменялся бы, следовательно поляризация была бы равна нулю. Однако все 3 стадии протекают с конечными скоростями; причем одна из них лимитирует всю реакцию и для ускорения необходимо изменение потенциала электрода, т.е. поляризация. Следовательно, возникновение поляризации обусловлено замедленностью отдельных стадий электрохимического процесса. Соответственно в зависимости от характера замедленной стадии на электроде возникает или концентрированная, или электрохимическая поляризация.

Концентрационная поляризация. Изменение потенциала электрода вследствие изменения концентрации реагентов в приэлектродном слое при прохождении тока называется концентрационной поляризацией. Так как по уравнению Нернста потенциал электрода пропорционален логарифму активности ионов (в разбавленных растворах - концентрации ионов), то концентрационная поляризация должна быть пропорциональна разности логарифмов активностей ионов в приэлектродном слое и в объеме раствора :

С увеличением плотности тока растет разность между активностями в приэлектродном слое и объеме раствора и возникает концентрационная поляризация:

,

где - предельная плотности тока:

где - концентрация реагента в объеме раствора, - коэффициент диффузии реагентов; - толщина диффузионного слоя.

Как видно из уравнения, концентрационная поляризация снижается с увеличением коэффициента диффузии и концентрации реагента и уменьшаем толщины диффузионного слоя. Диффузионным слоем называется тонкий слой около поверхности электрода, в котором не происходит перемешивания жидкости и молекулы переносятся лишь путем диффузии. Концентрационная поляризация уменьшается при перемешивании раствора.

Электрическая поляризация (перенапряжение). Изменение потенциала, обусловленное замедленностью собственно электрохимических стадий реакций, называется электрохимической поляризацией (перенапряжением). Замедленность электрохимических стадий объясняется существенной перестройкой структуры реагирующих частиц в ходе реакции. Скорость электрохимических реакций может быть увеличена повышением температуры и применением катализатора. При повышении температуры растет доля активных молекул, в случае применения катализатора снижается энергия активации. Энергия активации электрохимической реакции может быть также снижена при изменении потенциала электрода по сравнению с его равновесным потенциалом, т.е. при поляризации.

Так как при уменьшении энергии активации растет скорость реакции, то увеличена поляризации, т.е. к повышению плотности тока. Чем больше энергия активации процесса, т.е. чем медленнее процесс протекает в прямом и обратном направлениях при равновесии, тем большая поляризация требуется для обеспечения определенной скорости электрохимического процесса, выражаемой через плотность тока. Связь между электрохимическим перенапряжением и плотностью тока выражается уравнением Тафеля , которое вначале было получено империческим путем, а затем выведено теоретически:

Константа в зависимости от природы реакции и температуры (при Т=298К в≈0,03-0,15). Константа зависит от природы реакции, материала электрода, состава раствора и температуры. При =1, . Константы и определяют графически из зависимости поляризации от логарифма плотности тока. Константа находим из графика при значении =1 или =0.

А тангенс угла наклона прямой равен константе в: .

Таким образом, в зависимости от типа замедленной стадии поляризации может быть снижена перемешиваниям раствора, применением катализаторов (например, электроды из Pt, Pd или Me группы Fe), увеличением температуры, концентрации реагентов и площади поверхности электродов.

Электролиз. Токи обмена. Поляризация электрода, перенапряжение. Концентрационная и электрохимическая поляризация. Напряжение разложения.

КИНЕТИКА ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ .

Равновесные состояния процессов внутри электролитов (электролитическая диссоциация, гидролиз, сольватация и др.) и процессов на электродах (электрохимические реакции и характеризующие их обратимые электродные потенциалы) не зависят от времени, к ним применимы оба закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а посвященный им раздел электрохимии – термодинамикой электрохимических процессов. Для электродных процессов равновесие характеризуется отсутствием электрического тока .

Процесс прохождения электрического тока конечной силы не является равновесным, и явления, связанные с прохождением тока, зависят от времени и от силы тока, величина которого может быть регулируема извне. Раздел электрохимии, рассматривающий неравновесные, главным образом стационарные процессы, протекающие на электродах во времени, называется кинетикой электрохимических (электродных) процессов или просто электрохимической кинетикой .

Электрический ток может протекать в результате замыкания электрохимического элемента, образуемого электродами и электролитом, или под влиянием приложенной к системе электроды – электролит внешней разности потенциалов. В последнем случае явления, происходящие на границах электрод – электролит, называются электролизом и состоят в выделении веществ (металлы, газы) из электролита на электроде, в растворении вещества электрода и в изменении состава электролита.

Электрохимическая кинетика основывается как на общих положениях химической кинетики, так и на частных закономерностях, характерных только для электрохимических процессов. Так, для электрохимии справедливы основной постулат химической кинетики, применимость понятия энергии активации для многих электрохимических процессов, положительное влияние температуры на скорость электролиза и т.п.

Достаточно отчетливо выражена и специфичность электрохимических процессов :

1. Электрохимическим путем можно проводить и такие реакции, которые химическим путем при обычной Т не идут (например, реакция разложения воды при обычной Т не идет, а электролизом вода легко разлагается). Самопроизвольные реакции всегда сопровождаются уменьшением свободной энергии; электрохимическим же путем можно проводить реакции, сопровождающиеся увеличением свободной энергии, т.е. возможности электросинтеза шире, чем возможности обычного химического синтеза. Необходимая свободная энергия доставляется системе извне в виде энергии электрического тока.

2. Суммарную скорость электрохимического процесса можно не только легко определить по величине силы тока, протекающего в цепи, но и регулировать путем изменения силы тока.

3. Скорость электрохимического процесса зависит от ЭДС и существенно зависит от условий диффузии ионов. Диффузия ионов часто оказывает определяющее влияние на скорость электродного процесса.

4. Энергия активации электрохимического процесса часто связана с падением потенциала в ДЭС.

Равновесие между раствором и электродом, имеющим определенный потенциал, является динамическим: происходит непрерывный обмен заряженными частицами между электродом и раствором. При равновесии скорости перехода частиц в противоположных направлениях одинаковы. Количество электричества, переходящее в этих условиях в единицу времени от электрода к раствору и обратно, называется током обмена . Существование тока обмена можно доказать методом изотопных индикаторов.

При прохождении электрического тока через границу электрод – раствор двухсторонний ток обмена имеется, но на него накладывается, как правило, несравненно больший односторонний ток, определяемый ЭДС элемента или приложенной внешней разностью потенциалов.

Электрический ток вызывает изменения на поверхности электродов, зависящие от многих факторов и прежде всего от силы тока. Изменение электрического состояния электрода (его потенциала, плотности заряда ДЭС) под влиянием проходящего через границу раздела электрического тока называется поляризацией электрода . При поляризации потенциал электрода изменяется по сравнению с тем «равновесным» значением, которое он имел в данном растворе при отсутствии тока:

Dj = j i – j p

Dj – электродная поляризация; j i – потенциал электрода «под током»; j p – равновесный электродный потенциал. Т.к. при наложении катодного тока потенциал смещается в отрицательную сторону, а при наложении анодного – в положительную, то катодная электродная поляризация всегда отрицательна, а анодная всегда положительна :

Dj к = j i – j p < 0 ; Dj а = j i – j p > 0

Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. По крайней мере на некоторых из них она может протекать по двум или нескольким параллельным путям. Природа и число стадий каждой электрохимической реакции зависят от ее характера.

Из химической кинетики известно, что скорость последовательной реакции определяется скоростью наиболее медленной из ее последовательных стадий, а из ряда параллельных путей наиболее вероятен путь с наименьшими торможениями. Эти же представления справедливы и в случае электрохимических процессов. Стадия, определяющая скорость всего электродного процесса, называется замедленной или лимитирующей стадией . Замедленность той или иной стадии является непосредственной причиной поляризации электрода . Если известна природа замедленной стадии, т.е. ясна причина, обусловливающая появление поляризации, то вместо термина «поляризация» употребляют термин (электродное) перенапряжение (h ) . Т.о., перенапряжение – это поляризация электрода, обусловленная замедленным протеканием вполне определенной стадии суммарного электродного процесса.

В зависимости от природы замедленной стадии можно говорить о различных видах перенапряжения . Одной из обязательных стадий любого электродного процесса является транспортировка участников реакции – доставка (или отвод) к границе раздела электрод – электролит. Поляризацию, вызванную торможением на стадии транспортировки, называют концентрационной поляризацией , перенапряжением транспортировки или диффузионным перенапряжением h д . Замедленное протекание чисто химической стадии – реакции, предшествующей или следующей за актом разряда – вызывает появление химического или реакционного перенапряжения h х (h р ) . Любой электродный процесс включает в себя хотя бы одну стадию, связанную с переходом электронов через границу раздела электрод – электролит. Электродную поляризацию, вызванную замедленным протеканием этой стадии, называют электрохимическим перенапряжением h э , поскольку именно стадия перехода электронов является собственно электрохимическим актом. Для описания этого вида перенапряжения широко используют также термины перенапряжение замедленного разряда , перенапряжение переноса заряда , перенапряжение (электронного) перехода . Наконец, замедленность стадии построения или разрушения кристаллической решетки, а также замедленность перехода от одной модификации к другой соответствуют фазовому перенапряжению h ф .

В общем случае смещение потенциала электрода под током от равновесного значения представляет собой результат наложения всех видов перенапряжения:

Dj = h д + h р + h э + h ф

Однако можно найти такие электродные процессы и создать такие условия, при которых преобладающее значение будет иметь какой-либо один вид перенапряжения.

КОНЦЕНТРАЦИОННАЯ ПОЛЯРИЗАЦИЯ .

Концентрационная поляризация обусловлена уменьшением в процессе электролиза концентрации ионов, определяющих потенциал у поверхности электрода ; в результате этого изменяется равновесный потенциал электрода. Влиянием концентрационной поляризации на потенциал электрода под током можно пренебречь лишь при малых плотностях тока (т.е при малых скоростях электрохимической реакции). Напротив, при высоких плотностях тока стадии доставки могут определять скорость всего электродного процесса.

Рассмотрим процесс электролиза раствора AgNO 3 с концентрацией с о (Моль/л) в присутствии значительного количества KNO 3 . Катод – серебряная проволока, анод – Pt-жесть с очень большой поверхностью. В отсутствие тока потенциал катода может быть вычислен по уравнению Нернста:

j = j о + ln c о

Приложим к электродам небольшую разность потенциалов. На катоде начнется восстановление ионов серебра в металлическое серебро. При прохождении тока концентрация ионов серебра в непосредственной близости у катода уменьшается, а концентрация их в остальной части раствора остается постоянной. Возникает некоторый градиент концентраций, вызывающий диффузию ионов из объема раствора к поверхности электрода, а электрод принимает потенциал j i , соответствующий новому значению концентрации с (S) у его поверхности:

j i = j о + ln с (S)

По мере прохождения тока градиент концентрации у катода увеличивается, и подача ионов из глубины раствора путем диффузии усиливается. Через некоторое время создаются такие условия, при которых количество разряжающихся ионов становится равным количеству ионов, которое подводится к поверхности электрода. Устанавливается некоторое стационарное (т.е. не изменяющееся во времени) распределение ионов у катода.

В стационарных условиях сила тока, проходящего через раствор, определяется количеством грамм-ионов n i , продиффундировавших к электроду в единицу времени. Согласно закону Фика это количество равно

n i = DS

D – коэффициент диффузии разряжающегося иона;

S – площадь поверхности электрода;

l – толщина диффузионного слоя (слоя, в котором происходит уменьшение концентрации от с о до с (S)).

Чтобы вычислить силу тока I , текущего к электроду, необходимо величину n i умножить на zF, где z – заряд разряжающегося иона, F – число Фарадея (для AgNO 3 z = 1):

При увеличении силы тока величина с (S) уменьшается и при достижении некоторого предельного значения силы тока, называемого предельным током диффузии I д , становится равной нулю. Поэтому предельный ток диффузии равен:

Из двух предыдущих уравнений также получим:

Подставив полученное выражение для с (S) в уравнение для j i и вычтя из результата уравнение для j, найдем, что сдвиг потенциала, обусловленный концентрационной поляризацией, будет равен

Dj = ln

Величины Dj обоих электродов складываются в ЭДС концентрационной поляризации , направленную против приложенной к электролитической ванне разности потенциалов, поэтому последняя должна быть увеличена на ЭДС концентрационной поляризации, чтобы была получена необходимая для электролиза сила тока. Т.к. в электрохимических производствах при электролизе применяют токи большой плотности, возникают значительные ЭДС поляризации, что увеличивает расход электрической энергии, поэтому устранение или уменьшение концентрационной поляризации является важной практической проблемой. Одной из основных мер уменьшения концентрационной поляризации является перемешивание растворов. Возникновение концентрационной поляризации снижает ЭДС химических источников тока при их работе. Избежать этого удается путем создания особых условий эксплуатации источников тока или применения насыщенных растворов солей с избытком твердой соли (элемент Вестона).

ЭЛЕКТРОХИМИЧЕСКОЕ ПЕРЕНАПРЯЖЕНИЕ .

Любой электродный процесс обязательно включает в себя одну или несколько стадий, на которых частицы либо присоединяют к себе электроны (акт восстановления), либо теряют их (акт окисления). Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частицы или только к переносу заряда через границу раздела электрод–электролит. Приобретение (или потеря) частицей электрона приводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции

Н 3 О + + е – = Н адс + Н 2 О

приобретение электрона частицей Н 3 О + означает не только изменение заряда от величины z 1 = 1 до величины z 2 = 0, но и превращение гидратированного протона в адсорбированный на электроде атом водорода, т.е. разрыв связей между ионом водорода и растворителем и создание связи между атомом водорода и металлом.

При осаждении металла из раствора его простой соли металлический ион из аквакомплекса переходит в состояние адатома (или адиона)

M z + ×aq + ze – = М адс + Н 2 О

с последующим его вхождением в решетку металла.

Т.о., приобретение или потеря частицей заряда всегда сопровождаются перестройкой ее структуры и изменением ее природы . Чем глубже эти изменения, тем больше должна быть энергия активации и тем ниже скорость собственно электрохимической стадии, т.е. тем вероятнее, что именно она определяет скорость всего электродного процесса и обусловливает появление электрохимического перенапряжения.

Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Первая попытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г. Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода под током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А.Н.Фрумкиным (1933), который впервые учел влияние строения ДЭС на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние.

НАПРЯЖЕНИЕ РАЗЛОЖЕНИЯ .

Минимальная разность потенциалов, которую необходимо создать между электродами, чтобы электролиз начался, называется напряжением разложения электролита. При отсутствии перенапряжения на электродах напряжение разложения равно сумме равновесных потенциалов электродов, образующихся после начала электролиза (например, при электролизе НCl равно сумме равновесных потенциалов хлорного и водородного электродов). При наличии же перенапряжения хотя бы на одном электроде напряжение разложения больше суммы равновесных потенциалов.

Если при электролизе на электродах образуются твердые или жидкие растворы, и особенно при выделении газов, напряжение разложения зависит от формы и размеров электродов, характера их поверхности, условий удаления газов и многих других обстоятельств. Поэтому величина напряжения разложения не может служить однозначной характеристикой электролита при различных условиях.

Оказалось, что напряжения разложения при электролизе кислородсодержащих кислот и щелочей средних концентраций на платиновых электродах близки по своим значениям. По-видимому, при электролизе целого ряда веществ протекают одинаковые процессы как на катоде, так и на аноде. Действительно, в этих растворах на катоде выделяется водород, а на аноде – кислород. В растворах кислот разряжаются ионы гидроксония:

2Н 3 О + + 2е = 2Н 2 О + Н 2

В растворах щелочей также происходит разряд ионов гидроксония, а не ионов щелочного металла. Однако вследствие незначительной концентрации Н 3 О + при большой силе тока водород в щелочи выделяется путем непосредственного разложения молекул воды, адсорбированных на электроде:

2Н 2 О + 2е = 2ОН – + Н 2

В растворах щелочей и солей щелочных металлов присутствуют два сорта катионов (например, К + и Н 3 О +). При изменении потенциала электрода в отрицательную сторону вначале достигается потенциал разряда ионов гидроксония, который в нейтральном растворе при Р = 1 атм равен всего – 0,4 В, и начинается процесс выделения водорода. Разряд же ионов калия (см. таблицу стандартных электродных потенциалов) может происходить лишь при высоких отрицательных потенциалах (при = 1 лишь при потенциале – 2,9 В), что при электролизе водных растворов вообще невозможно, т.к. при гораздо меньшем напряжении (1,3 – 1,7 В) начинается выделение Н 2 и О 2 .

Выделение кислорода на аноде из щелочных растворов может быть следствием единственно возможной электродной реакции – разряда ионов гидроксила:

4ОН – – 4е = 2Н 2 О + О 2

При электролизе кислот, где концентрация ионов гидроксила очень мала, кислород выделяется в результате непосредственного разложения молекул воды на аноде:

6Н 2 О – 4е = 4Н 3 О + + О 2

Ранее предполагалось, что в растворах кислородсодержащих кислот или их солей разряжаются соответствующие анионы. Это предположение неправильно. Ионы ОН – обладают наименьшим потенциалом разряда (+1,23 В), а потому при электролизе указанных солей выделение О 2 обусловлено разрядом ионов ОН – .

Т.о., при электролизе кислородсодержащих кислот, щелочей и соответствующих солей щелочных и щелочноземельных металлов на электродах протекает единственный процесс разложения воды, т.е. выделение кислорода и водорода . Роль остальных ионов сводится лишь к обеспечению достаточной для электролиза электропроводности. Следует отметить, что близость напряжения разложения при электролизе кислот и щелочей наблюдается только при использовании электродов из определенных металлов (Pt, Pd), на которых мало перенапряжение водорода.

В растворах солей металлов менее электроотрицательных, чем водород, на катоде может выделяться уже металл. При электролизе кислот, не содержащих кислорода, и их солей на аноде, как правило, разряжаются соответствующие анионы.

Интересно поведение соляной кислоты. В концентрированных растворах на аноде выделяется хлор, а в разбавленных – кислород, причем меняется величина напряжения разложения. С разбавлением кислоты уменьшается активность ионов хлора, и равновесный потенциал хлорного электрода делается более положительным, чем потенциал разряда ионов ОН – , поэтому и происходит изменение анодного процесса: существенно уменьшается разряд ионов хлора и происходит разряд ионов гидроксила или молекул воды и выделение кислорода.

Когда электрод находится при потенциале, равном равновесному, на нем устанавливается электрохимическое равновесие:

При смещении потенциала электрода в положительную или в отрицательную сторону на нем начинают протекать процессы окисления или восстановления. Отклонение потенциала электрода от его равновесного значения называется электрохимической поляризацией или просто поляризацией.

Поляризацию можно осуществить включением электрода в цепь постоянного тока. Для этого необходимо составить электролитическую ячейку из электролита и двух электродов - изучаемого и вспомогательного. Включая ее в цепь постоянного тока, можно сделать изучаемый электрод катодом или (при обратном включении ячейки) анодом. Такой способ поляризации называется поляризацией от внешнего источника электрической энергии.

Рассмотрим простой пример поляризации. Пусть медный электрод находится в 0, Iw растворе CuSO 4 , не содержащем никаких примесей, в том числе растворенного кислорода. Пока цепь не замкнута, потенциал электрода при 25 0 C будет иметь равновесное значение, равное

а на границе металла с раствором установится электрохимическое равновесие:

Подключим электрод к отрицательному полюсу источника тока - сделаем его катодом. Избыток электронов, который появится теперь на электроде, сдвинет потенциал электрода в отрицательную сторону и одновременно нарушит равновесие. Электроны будут притягивать катионы меди из раствора - пойдет процесс восстановления:

Если подключить электрод не к отрицательному, а к положительному полюсу источника тока - сделать его анодом, то вследствие удаления части электронов потенциал электрода сместится в положительную сторону и равновесие также нарушится. Но теперь на электроде будет протекать процесс окисления, так как в ходе этого процесса высвобождаются электроны:

Таким образом, поляризация электрода в отрицательную сторону связана с протеканием процесса восстановления, а поляризация в положительную сторону - с протеканием процесса окисления. Процесс восстановления иначе называют катодным процессом, а процесс окисления - анодным. В связи с этим поляризация в отрицательную сторону называется катодной поляризацией, а в положительную - анодной.

Другой способ поляризации электрода - это контакт его с электрохимической системой, электродный потенциал которой имеет более положительное или более отрицательное значение, чем потенциал рассматриваемого электрода.

Рассмотрим работу медно-цинкового гальванического элемента. При разомкнутой цепи как на медном, так и на цинковом электроде устанавливаются электрохимические равновесия. Но электродные потенциалы, отвечающие этим равновесиям, различны. В случае 0,1т растворов они равны:

При замыкании цепи оба электрода оказывают друг на друга поляризующее действие: потенциал медного электрода под влиянием контакта с цинком сдвигается в отрицательную сторону, а потенциал цинкового электрода под влиянием контакта с медью - в положительную. Иначе говоря, медный электрод поляризуется катодно, а цинковый - анодно. Одновременно на обоих электродах нарушаются электрохимические равновесия и начинают протекать электрохимические процессы: катодный процесс на медном электроде и анодный - на цинковом:

Поляризация электрода - необходимое условие протекания электродного процесса. Кроме того, от ее величины зависит скорость электродного процесса: чем сильнее поляризован электрод, тем с большей скоростью протекает на нем соответствующая полуреакция.

Кроме величины поляризации, на скорость электродных процессов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен из платины, то для выделения водорода с заданной скоростью необходима определенная величина катодной поляризации. При замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится большая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различные металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина поляризации, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапряжением данного электродного процесса. Таким образом, перенапряжение выделения водорода на различных металлах различно.

В табл. 20 приведены для 1 н. растворов величины катодной поляризации, которую необходимо осуществить на электроде для выделения на нем водорода со скоростью 0,1 мл в минуту с 1 см 2 рабочей поверхности электрода.

Таблица 20

Перенапряжение выделения водорода на различных металлах

Металл

электрода

Электролит

Металл

электрода

Электролит

Перенапряжение выделения водорода, В

Железо

Цинк

H 2 SO 4

Медь

H 2 SO 4

Ртуть

H 2 SO 4

Серебро

Свинец

H 2 SO 4

Выяснение связи между величиной поляризации и скоростью электродного процесса является важнейшим методом изучения электрохимических процессов. При этом результаты измерений обычно представляют в виде поляризационных кривых - кривых зависимости плотности тока

на электроде от величины поляризации. Вид поляризационной кривой того или иного электродного процесса отражает особенности его протекания. Методом поляризационных кривых изучают кинетику и механизм окислительно-восстановительных реакций, работу гальванических элементов, явления коррозии и пассивности металлов, различные случаи электролиза.

Большой вклад в развитие кинетики электродных процессов и теории перенапряжения внес советский ученый А.Н. Фрумкин .

  • Александр Наумович Фрумкин (1895-1976) - крупнейший советский электрохимик, академик, лауреат Ленинской и Государственной премий. Разработал количественную теорию влияния электрического поля на адсорбцию молекул, развил учениео строении границы металл - раствор, внес значительный вклад в теорию э. д. с. гальванического элемента.

При замыкании элемента Вольты на внешнюю цепь, содержащую амперметр, легко заметить, что показания амперметра не остаются постоянными, а непрерывно делаются все меньше и меньше. Через несколько минут после замыкания сила тока падает в несколько раз. Таким образом, элемент Вольты оказывается непригодным для получения постоянного тока. В чем же заключается причина уменьшения тока?

Ответ на этот вопрос мы находим в следующем опыте. Опустим в подкисленную воду два одинаковых электрода, например платиновых или угольных (рис. 121,а), и присоединим их к амперметру. Амперметр не покажет никакого тока, что и неудивительно, так как мы уже знаем, что между двумя одинаковыми электродами (уголь-уголь) даже в растворе электролита не возникает разности потенциалов. Отсоединим теперь эти угольные электроды от амперметра и подключим их к гальваническому элементу или какому-нибудь иному генератору тока. Сразу же начнется электролиз серной кислоты, и на одном из электродов будет выделяться водород, а на другом – кислород, получающийся при вторичной реакции между выделяющимися группами и водой:

Если отключить электроды от элемента, то они остаются покрытыми пузырьками соответствующих газов.

Рис. 121. а) В подкисленную воду опущены два одинаковых электрода, тока в цепи нет. б) После того как в цепи был пропущен ток, между электродами возникает э. д. с. поляризации

Присоединим теперь электроды снова к амперметру (рис. 121,б). В этом случае в цепи появляется заметный ток, текущий от «кислородного» электрода к «водородному»: «водородный» электрод играет роль отрицательного полюса. Возникший ток, однако, быстро ослабевает; одновременно с этим исчезает и газ на электродах, и когда пропадают последние следы газа, то прекращается и ток.

Объяснение этого опыта заключается в том, что после электролиза оба электрода делаются неодинаковыми: один из них покрывается слоем кислорода, а другой – водорода. Поэтому и потенциалы обоих электродов относительно раствора тоже становятся различными, и между ними возникает разность потенциалов, так что угольные электроды делаются подобными полюсам гальванического элемента. По этой причине описанное явление получило название поляризации, а возникающая при этом э. д. с. – э. д. с. поляризации.

Теперь нетрудно понять, почему элемент Вольты обладает плохими качествами. Мы знаем (§ 76), что внутри элемента также течет ток, причем положительные ионы, в частности ионы водорода, перемещаются от отрицательного полюса (цинка) к положительному (меди). Поэтому на положительном полюсе выделяется водород и возникает дополнительная э. д. с. поляризации, стремящаяся вызвать ток противоположного направления. Появление э. д. с. поляризации и есть основная причина ослабления тока.

Отметим, что выделение газов на электродах нежелательно еще и по другой причине. Газы, выделившиеся на электродах, не проводят электричества. Поэтому появление на электродах пузырьков газа уменьшает поверхность соприкосновения металла и электролита и, следовательно, увеличивает внутреннее сопротивление элемента и этим также способствует ослаблению тока.

Из сказанного следует, что поляризация в гальванических элементах весьма нежелательна. Поэтому при конструировании гальванических элементов всегда стараются создать деполяризацию, т. е. такие процессы, которые, по возможности, устранили бы поляризацию.

77.1. Улучшится ли качество элемента Вольты, если удалять водород с положительного электрода механически, например все время протирая медную пластину жесткой щеточкой?

Электродная поляризация

1. а) В буквальном смысле, электродная поляризация – это неравномерное распределение частиц в растворе : накопление или уменьшение содержания каких-либо частиц возле одного или обоих электродов .

б) Это естественное явление, наблюдаемое при работе гальванического элемента и при электрофорезе.

Прежде мы рассматривали данные процессы в равновесном варианте, т.е. при бесконечно малом токе.

Если же дать возможность току реально течь в системе, то создаётся неравномерное распределение веществ по раствору, система (в т.ч. электроды) отклоняется от равновесного состояния, и потенциал электродов начинает заметно отличаться от равновесных значений:


Здесь Ψ i , I потенциал электрода «под током», Ψ i , р – равновесный потенциал, Δ(Ψ i) пол разность предыдущих величин, характеризующая поляризацию.

в) Поэтому под электродной поляризацией часто понимают просто отклонение электродов от равновесного состояния при функционировании системы.

2. Так, пусть речь идёт о гальваническом элементе (рис. 22.3).

а) Равновесная разность потенциалов в таком элементе (она же – ЭДС реакции, ΔΨ рц) определяется условием (14.8):


Иначе говоря, сам факт выхода из равновесного состояния означает в данном случае уменьшение разности потенциалов между электродами.

в) Конкретно, поляризация выражается здесь в том, что при появлении тока

- концентрация реагирующего вещества (Rd 1 в левом полуэлементе иOx 2 – в правом) возле каждого электрода уменьшается (т.к. вещество начинает исчезать в ходе реакции),

А концентрация продукта (соответственно, Ox 1 иRd 2) возрастает .

I. Это, с одной стороны, создает движущую силу для диффузии данных веществ: реагента - к электроду, продукта - от электрода.


б) При меньшем (по модулю) значении ΔΨ электролиз происходить не будет, а при большем значении ΔΨ на электродах начнутся реакции (14.2,а-б):

– и в цепи появится ток. При дальнейшем увеличении –ΔΨ возрастание тока будет всё сильнее (рис. 22.4).

Итак, для осуществления реального процесса здесь тоже необходимо отклонение системы от равновесного состояния.

в) Как и в предыдущем случае, отклонение ΔΨ от ΔΨ рц связано с изменением концентраций. Так, увеличение –ΔΨ повышает концентрацию ионов Cl – у анода (+) и снижает концентрацию ионов OHу катода (–), что, собственно, и представляет собой электродную поляризацию.

4. а) Ещё одно проявление поляризации – самопроизвольное изменение потенциала электродов по мере прохождения тока.

б) Например, при электролизе происходит постепенное снижение неравновесной разности потенциалов (т.е. приближение потенциала рабочего электрода Ψ i к равновесному значению Ψ i , р). Постепенно уменьшается ΔΨ и в гальваническом элементе.

в) Возможные причины того и другого таковы.

I. Прежде всего, это т.н. концентрационная поляризация ­– накопление на электроде продуктов реакции, что обусловлено низкой скоростью их диффузии от электрода. Снижение при этом межэлектродной разности потенциалов непосредственно следует из уравнения Нернста (14.17,а).

II. Кроме того, продукты реакции нередко бывают газообразными (О 2 , Н 2 и др.). Пузырьки же газа постепенно покрывают электрод и, обладая изолирующими свойствами, как бы всё более уменьшают его поверхность. Это тоже приводит к падению ΔΨ и ослаблению тока.

г) Однако может наблюдаться и противоположный эффект - такое смеще-
ние потенциала электрода, которое способствует процессу. Причиной служит
химическая поляризация .

При этом из-за невысокой скорости химического превращения (перехода
электронов от вещества к электроду или наоборот) у электрода создается
повышенная концентрация реагентов (что, как отмечалось, следует из фор-
мулы (22.17) при k < B ′). Данное явление называется перенапряжением .

Полярография

1. а) Известен метод исследования, основанный на двух рассмотренных особенностях электрохимических процессов – зависимости от диффузии и явлении поляризации.

б) Суть метода – определение в поляризованной системе электролиза зависимости диффузионного тока от потенциала рабочего электрода (т.е. речь идёт о снятии вольтамперной характеристики в указанном объекте).

2. Устройство полярографа (рис. 22.5) таково.

а) Рабочий электрод (на рисунке это катод) заполнен ртутью и заканчивается тонким стеклянным капилляром, из которого периодически капает ртуть.

б) Благодаря узости капилляра электрод имеет очень малую поверхность. Поэтому ток - небольшой (т.к. I = iS ), что делает его гораздо более чувствительным к изменению потенциала электрода.

в) А благодаря вытекающим каплям поверхность электрода постоянно обновляется (в частности, уносятся продукты восстановления ртути), т.е. устраняются последствия временной поляризации.

г) Вспомогательный электрод (анод) - просто жидкая ртуть на дне ячейки.

д) Раствор с исследуемым веществом контактирует с обоими электродами.

3. а) Помимо данного вещества, в раствор вносят специальный электролит -
т.н. полярографический фон . Он должен удовлетворять трем условиям:

I. иметь высокую подвижность ионов;

II. быть индифферентным - не реагировать на электродах при используемых напряжениях;

III. иметь концентрацию, в 50–100 раз бóльшую, чем у определяемого вещества.

б) Из-за высокой концентрации и большой подвижности ионы этого («фонового») электролита, перемещаясь к электродам, обуславливают появление электродной поляризации. Вместе с тем они создают в растворе поле, противоположное исходному и практически его нейтрализующее.




в) Поэтому для частиц исследуемого вещества остаётся лишь одна составляющая тока – диффузионная :

Таким образом, в обычных условиях диффузионный компонент тока в той или иной мере противодействует «электрическому» компоненту. В отсутствие же последнего ток в системе поддерживается за счёт именно диффузии ионов: они перемещаются из отдалённых участков раствора (с концентрацией c ∞ ) к электроду, на поверхности которого вступают в реакцию и оттого имеют более низкую концентрацию (с S < c ∞ ).

4. а) Когда потенциал рабочего электрода ещё мал и недостаточен для энергообеспечения реакции, в системе может наблюдаться остаточный ток (I o), обусловленный теми или иными загрязнениями.

б) Электролиз же исследуемого вещества начинается, когда потенциал электрода становится выше равновесного значения (Ψ р, рис. 22.6).


в) Если рабочий электрод является катодом, на нём инициируется реакция:

Это-то и приводит к понижению с S (Ох )приэлектродной концентрации вещества Ох. Одновременно здесь же возрастает концентрация восстановленной формы, с S (Rd ). Заметим: отсюда следует, что пара Ox/Rd тоже вносит вклад в электродную поляризацию.

г) По мере увеличения потенциала рабочего электрода последний со всё большей лёгкостью отдаёт электроны на восстановление Ox в Rd. Поэтому концентрация с S (Ох ) становится всё меньше, а диффузионный ток, согласно законам Фика, всё выше.


д) Но рост тока происходит не беспредельно, а до тех пор, пока с S (Ох ) не снизится практически до нуля. Следовательно, максимальный диффузионный ток определяется величиной

где c ср - средняя концентрация формы Ох в системе.

5. а) В итоге, график зависимости тока от потенциала рабочего электрода будет описываться S -образной кривой, начинающейся от I 0 и стремящейся к I max . Последнюю величину иногда называют диффузионным током, хотя, как мы видим, это не совсем точно: диффузионным ток является почти на всём протяжении графика (начиная с I 0).

Получающаяся кривая (см. рис. 22.6) называется полярографической волной .


В полярографии данное значение называют потенциалом полуволны .