Что такое сильный электролит. Сильные электролиты. Ионное произведение воды

Различают сильные и слабые электролиты. Сильные электролиты в растворах практически диссоциированы полностью. К этой группе электролитов относится большинство солей, щелочей и сильных кислот. К слабым электролитам принадлежат слабые кислоты и слабые основания и некоторые соли: хлорид ртути (II), цианид ртути (II), роданид железа (III), иодид кадмия. Растворы сильных электролитов при больших концентрациях обладают значительной электропроводностью, причем она с разбавлением растворов возрастает незначительно.

Растворы слабых электролитов при больших концентрациях отличаются незначительной электропроводностью, сильно увеличивающейся при разбавлении растворов.

При растворении вещества в каком-либо растворителе образуются простые (несольватированные) ионы, нейтральные молекулы растворенного вещества, сольватированные (в водных растворах гидратированные) ионы (например, и т. д.), ионные пары (или ионные двойники), представляющие собой электростатически ассоциированные группы противоположно заряженных ионов (например, ), образование которых наблюдается в подавляющем числе неводных растворов электролитов, комплексные ионы (например, ), сольватированные молекулы и др.

В водных растворах сильных электролитов существуют только простые или сольватированные катионы и анионы. В их растворах нет молекул растворенного вещества. Поэтому неверно предполагать наличие молекул или наличие длительных связей между или и в водном растворе хлорида натрия.

В водных растворах слабых электролитов растворенное вещество может существовать в виде простых и сольватированных (-гидратированных) ионов и недиссоциированных молекул.

В неводных растворах некоторые сильные электролиты (например, ) диссоциированы не полностью даже при умеренно высоких концентрациях. В большинстве органических растворителей наблюдается образование ионных пар противоположно заряженных ионов (нодробнее см. книга 2).

В ряде случаев невозможно провести резкую границу между сильными и слабыми электролитами.

Межионные силы. Под действием межионных сил вокруг каждого свободно движущегося иона группируются, располагаясь симметрично, другие ионы, заряженные обратным знаком, образуя так называемую ионную атмосферу, или ионное облако, замедляющее движение иона в растворе.

Например, в растворе вокруг движущихся ионов калия группируются ионы хлора, а вблизи движущихся ионов хлора создается атмосфера из ионов калия.

Ионы, подвижность которых ослаблена силами межионного протяжения, проявляют в растворах пониженную химическую активность. Это вызывает отклонения в поведении сильных электролитов от классической формы закона действия масс.

Посторонние ионы, присутствующие в растворе данного электролита, также оказывают сильное влияние на подвижность его ионов. Чем выше концентрация, тем значительнее межионное взаимодействие и тем сильнее посторонние ионы влияют на подвижность ионов.

У слабых кислот и оснований связь водорода или гидроксила в их молекулах является в значительной степени не ионной, а ковалентной; поэтому при растворении слабых электролитов в растворителях, отличающихся даоюе большой диэлектрической проницаемостью, большая часть их молекул не распадается на ионы.

Растворы сильных электролитов отличаются от растворов слабых электролитов тем, что в них нет недиссоциированных молекул. Это подтверждается современными физическими и физико-химическими исследованиями. Например, исследование кристаллов сильных электролитов типа рентгенографическим путем подтверждает тот факт, что кристаллические решетки солей построены из ионов.

При растворении в растворителе с большой диэлектрической проницаемостью вокруг ионов образуются сольватные (в воде гидратные) оболочки, препятствующие их соединению в молекулы. Таким образом, поскольку сильные электролиты даже в кристаллическом состоянии не содержат молекул, они тем более не содержат молекул в растворах.

Однако экспериментальным путем найдено, что электропроводность водных растворов сильных электролитов не эквивалентна той электропроводности, которую молено было бы ожидать при -ной диссоциации молекул растворенных электролитов на ионы.

С помощью теории электролитической диссоциаций, предложенной Аррениусом, оказалось невозможным объяснить этот и ряд других фактов. Для их объяснения были выдвинуты новые научные положения.

В настоящее время несоответствие свойств сильных электролитов классической форме закона действия масс может быть объяснено при помощи теории сильных электролитов, предложенной Дебаем и Хюкке-лем. Основная идея этой теории заключается в том, что в растворах между ионами сильных электролитов возникают силы взаимного притяжения. Эти межионные силы вызывают отклонение поведения сильных электролитов от законов идеальных растворов. Наличие этих взаимодействий вызывает взаимное торможение катионов и анионов.

Влияние разбавления на межионное притяжение. Межионное притяжение вызывает отклонения в поведении реальных растворов аналогично тому, как межмолекулярное притяжение в реальных газах влечет за собой отступления их поведения от законов идеальных газов. Чем больше концентрация раствора, тем плотнее ионная атмосфера и тем меньше подвижность ионов, а следовательно, и электропроводность электролитов.

Подобно тому как свойства реального газа при низких давлениях приближаются к свойствам газа идеального, так и свойства растворов сильных электролитов при большом разбавлении приближаются к свойствам идеальных растворов.

Иными словами, в разбавленных растворах расстояния между ионами настолько велики, что испытываемое ионами взаимное притяжение или отталкивание чрезвычайно мало и практически сводится к нулю.

Таким образом, наблюдаемое увеличение электропроводности сильных электролитов при разбавлении их растворов объясняется ослаблением межионных сил притяжения и отталкивания, обусловливающим увеличение скорости движения ионов.

Чем менее диссоциирован электролит и чем более разбавлен раствор, тем меньше межионное электрическое влияние и тем меньше наблюдается отклонений от закона действия масс, и, наоборот, чем больше концентрация раствора, тем больше межионное электрическое влияние и тем больше наблюдается отклонений от закона действия масс.

По указанным выше причинам к водным растворам сильных электролитов, а также к концентрированным водным растворам слабых электролитов нельзя применять закон действия масс в его классической форме.

Диссоциация электролита количественно характеризуется степенью диссоциации. Степень диссоциации a это отношение числа молекул, диссоциированных на ионы N дисс. , к общему числу молекул растворенного электролита N :

a =

a – доля молекул электролита, распавшихся на ионы.

Степень диссоциации электролита зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры.

По способности к диссоциации электролиты условно разделяют на сильные и слабые. Электролиты, которые в растворе существуют только в виде ионов, принято называть сильными . Электролиты, которые в растворенном состоянии находятся частично в виде молекул и частично в виде ионов, называются слабыми .

К сильным электролитам относятся почти все соли, некоторые кислоты: H 2 SO 4 , HNO 3 , HCl, HI, HClO 4 , гидроксиды щелочных и щелочно-земельных металлов (см. прил., табл. 6).

Процесс диссоциации сильных электролитов идет до конца:

HNO 3 = H + + NO 3 - , NaOH = Na + + OH - ,

и в уравнениях диссоциации ставятся знаки равенства.

Применительно к сильным электролитам понятие «степень диссоциации» носит условный характер. «Кажущаяся» степеньдиссоциации (a каж) ниже истинной (см. прил., табл. 6). С увеличением концентрации сильного электролита в растворе усиливается взаимодействие разноименно заряженных ионов. При достаточном приближении друг к другу они образуют ассоциаты. Ионы в них разделены слоями полярных молекул воды, окружающих каждый ион. Это сказывается на уменьшении электропроводности раствора, т.е. создается эффект неполной диссоциации.

Для учета этого эффекта введен коэффициент активности g, который уменьшается с возрастанием концентрации раствора, изменяясь в пределах от 0 до 1. Для количественного описания свойств растворов сильных электролитов пользуются величиной, называемой активностью (a) .

Под активностью иона понимают ту эффективную концентрацию его, соответственно которой он действует при химических реакциях.

Активность иона (a ) равна его молярной концентрации (С ), умноженной на коэффициент активности (g):

а = gС .

Использование активности вместо концентрации позволяет применять к растворам закономерности, установленные для идеальных растворов.

К слабым электролитам относятся некоторые минеральные (HNO 2 , H 2 SO 3 , H 2 S, H 2 SiO 3 , HCN, H 3 PO 4) и большинство органических кислот (СН 3 СООН, Н 2 С 2 О 4 и др.), гидроксид аммония NH 4 OH и все малорастворимые в воде основания, органические амины.

Диссоциация слабых электролитов обратима. В растворах слабых электролитов устанавливается равновесие между ионами и недиссоциированными молекулами. В соответствующих уравнениях диссоциации ставится знак обратимости («). Например, уравнение диссоциации слабой уксусной кислоты записывается так:


CH 3 COOH « CH 3 COO - + H + .

В растворе слабого бинарного электролита (КА ) устанавливается следующее равновесие, характеризуемое константой равновесия, называемой константой диссоциации К д:

КА « К + + А - ,

.

Если в 1 л раствора растворено С молей электролита КА и степень диссоциации равна a, значит, продиссоциировало молей электролита и образовалось каждого иона по молей. В недиссоциированном состоянии остается (С ) молей КА .

КА « К + + А - .

С – aС aС aС

Тогда константа диссоциации будет равна:

(6.1)

Так как константа диссоциации не зависит от концентрации, то выведенное соотношение выражает зависимость степени диссоциации слабого бинарного электролита от его концентрации. Из уравнения (6.1) видно, что уменьшение концентрации слабого электролита в растворе приводит к росту степени его диссоциации. Уравнение (6.1) выражает закон разбавления Оствальда .

Для очень слабых электролитов (при a <<1), уравнение Оствальда можно записать следующим образом:

К д a 2 C , или a » (6.2)

Константа диссоциации для каждого электролита постоянна при данной температуре, она не зависит от концентрации раствора и характеризует способность электролита распадаться на ионы. Чем выше К д, тем в большей степени электролит диссоциирует на ионы. Константы диссоциации слабых электролитов сведены в таблицы (см. прил., табл. 3).

Гидролиз солей

Гидролизом называют реакции взаимодействия вещества с водой, приводящие к образованию слабых электролитов (кислот, оснований, кислых или основных солей). Результат гидролиза можно расценивать как нарушение равновесия диссоциации воды. Гидролизу подвержены соединения различных классов, но наиболее важным случаем является гидролиз солей. Соли, как правило, - сильные электролиты, которые подвергаются полной диссоциации на ионы и могут взаимодействовать с ионами воды.

Важнейшие случаи гидролиза солей :

1. Соль образована сильным основанием и сильной кислотой. Например: NaCl – соль образованная сильным основанием NaOH и сильной кислотой HCl;

NaCl + HOH ↔ NaOH + HCl – молекулярное уравнение;

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl - – полное ионное уравнение;

HOH ↔ OH - + H + – сокращенное ионное уравнение.

Как видно из сокращенного ионного уравнения соль образованная сильным основанием и сильной кислотой, с водой не взаимодействует, т. е. не подвергается гидролизу, и среда при этом остается нейтральной.

2. Соль образована сильным основанием и слабой кислотой. Например: NaNO 2 – соль, образованная сильным основанием NaOH и слабой кислотой HNO 2 , которая практически не диссоциирует на ионы.

NaNO 2 + HOH ↔ NaOH + HNO 2 ;

Na + + NO 2 - + HOH ↔ Na + + OH - + HNO 2 ;

NO 2 - + HOH ↔ OH - + HNO 2 .

В этом случае соль подвергается гидролизу, причем гидролиз идет по аниону, а катион в процессе гидролиза практически не участвует. Так как в результате гидролиза образуется щелочь, то в растворе находится избыток анионов OH - . Раствор такой соли приобретает щелочную среду, т.е. рН > 7.

I ступень Na 2 СO 3 + HOH ↔ NaOH + NaHCO 3 ;

CO 3 2- + HOH ↔ OH - + HCO 3 - ;

II ступень NaHСO 3 + HOH ↔ NaOH + H 2 CO 3 ;

HCO 3 - + HOH ↔ OH - + H 2 CO 3 .

При стандартных условиях и умеренном разбавлении раствора гидролиз солей протекает только по первой ступени. Вторая - подавляется продуктами, которые образуются на первой ступени. Накопление ионов OH - влечет за собой смещение равновесия влево.

3. Соль образована слабым основанием и сильной кислотой. Например: NH 4 NO 3 – соль, образованная слабым основанием NH 4 OH и сильной кислотой HNO 3 .

NH 4 NO 3 + HOH ↔ NH 4 OH + HNO 3 ;

NH 4 + + HOH ↔ H + + NH 4 OH.

В этом случае соль подвергается гидролизу, причем гидролиз идет по катиону, а анион в процессе гидролиза практически не участвует. Раствор такой соли приобретает кислую среду, т.е. рН < 7.

Как и в предыдущем случае, соли многозарядных ионов гидролизуются по стадиям, хотя вторая стадия также подавляется.

I ступень Mg(NO 3) 2 + HOH ↔ MgOHNO 3 + HNO 3 ;

Mg 2+ + HOH ↔ MgOH + + H + ;

II ступень MgOHNO 3 + HOH ↔ Mg(OH) 2 + HNO 3 ;

MgOH + + HOH ↔ Mg(OH) 2 + H + .

4. Соль образована слабым основанием и слабой кислотой. Например: NH 4 CN – соль, образованная слабым основанием NH 4 OH и слабой кислотой HCN.

NH 4 CN + HOH ↔ NH 4 OH + HCN ;

NH 4 + + CN - + HOH ↔ NH 4 OH + HCN.

В этом случае в гидролизе участвуют и катионы и анионы. Они связывают и водородные катионы, и гидроксо-анионы воды, образуя слабые электролиты (слабые кислоты и слабые основания). Реакция раствора таких солей может быть либо слабокислой (если основание, образовавшееся в результате гидролиза, является более слабым, чем кислота), либо слабощелочной (если основание окажется более сильным, чем кислота), либо будет нейтральной (если основание и кислота проявляют одинаковую силу).

При гидролизе соли многозарядных ионов I стадия не подавляет последующие, и гидролиз таких солей протекает полностью даже при комнатной температуре.

I ступень (NH 4) 2 S + HOH ↔ NH 4 OH + NH 4 HS ;

2NH 4 + + S 2- + HOH ↔ NH 4 OH + NH 4 + + HS - ;

II ступень NH 4 HS + HOH ↔ NH 4 OH + H 2 S ;

NH 4 + + HS - + HOH ↔ NH 4 OH + H 2 S.

Сильные и слабые электролиты

Кислоты, основания и соли в водных растворах диссоциируют — распадаются на ионы. Этот процесс может быть обратимым или необратимым.

При необратимой диссоциации в растворах все вещество или почти все распадается на ионы. Это характерно для сильных электролитов (рис. 10.1, а, с. 56). К сильным электролитам относятся некоторые кислоты и все растворимые в воде соли и основания (гидроксиды щелочных и щелочноземельных элементов) (схема 5, с. 56).

Рис. 10.1. Сравнение числа ионов в растворах с одинаковым исходным количеством электролита: а — хлоридная кислота (сильный электролит); б — нитритная кислота

(слабый электролит)

Схема 5. Классификация электролитов по силе

При обратимой диссоциации протекает два противоположных процесса: одновременно с распадом вещества на ионы (диссоциацией) происходит обратный процесс объединения ионов в молекулы вещества (ассоциация). Благодаря этому часть вещества в растворе существует в виде ионов, а часть — в виде молекул (рис. 10.1, б). Электролиты,

которые при растворении в воде распадаются на ионы только частично, называют слабыми электролитами. К их числу относится вода, многие кислоты, а также нерастворимые гидроксиды и соли (схема 5).

В уравнениях диссоциации слабых электролитов вместо обычной стрелки записывают двунаправленную стрелку (знак обратимости):

Силу электролитов можно объяснить полярностью химической связи, которая разрывается при диссоциации. Чем более полярна связь, тем легче под действием молекул воды она превращается в ионную, следовательно, тем сильнее электролит. В солях и гидроксидах полярность связи наибольшая, поскольку между ионами металлических элементов, кислотными остатками и гидроксид-ионами существует ионная связь, поэтому все растворимые соли и основания — сильные электролиты. В оксигенсодержащих кислотах при диссоциации разрывается связь O-H, полярность которой зависит от качественного и количественного состава кислотного остатка. Силу большинства оксигенсодержащих кислот можно определить, если обычную формулу кислоты записать в виде E(OH) m O n . Если в этой формуле будет n < 2 — кислота слабая, если n >2 — сильная.

Зависимость силы кислот от состава кислотного остатка


Степень диссоциации

Силу электролитов количественно характеризует степень электролитической диссоциации а, показывающая долю молекул вещества, которые распались в растворе на ионы.

Степень диссоциации а равна отношению числа молекул N или количества вещества n, распавшегося на ионы, к общему числу молекул N 0 или количеству растворенного вещества n 0:

Степень диссоциации можно выражать не только в долях единицы, но и в процентах:

Значение а может изменяться от 0 (диссоциация отсутствует) до 1, или 100 % (полная диссоциация). Чем лучше распадается электролит, тем больше значение степени диссоциации.

По значению степени электролитической диссоциации электролиты часто разделяют не на две, а на три группы: сильные, слабые и электролиты средней силы. Сильными электролитами считают те, степень диссоциации которых более 30 %, а слабыми — со степенью менее 3 %. Электролиты с промежуточными значениями а — от 3 % до 30 % — называют электролитами средней силы. По этой классификации таковыми считаются кислоты: HF, HNO 2 , H 3 PO 4 , H 2 SO 3 и некоторые другие. Две последние кислоты являются электролитами средней силы только по первой стадии диссоциации, а по другим — это слабые электролиты.


Степень диссоциации — величина переменная. Она зависит не только от природы электролита, но и от его концентрации в растворе. Эту зависимость впервые определил и исследовал Вильгельм Оствальд. Сегодня ее называют законом разведения Оствальда: при разбавлении раствора водой, а также при повышении температуры степень диссоциации увеличивается.

Вычисление степени диссоциации

Пример. В одном литре воды растворили гидроген флуорид количеством вещества 5 моль. Полученный раствор содержит 0,06 моль ионов Гидрогена. Определите степень диссоциации флуоридной кислоты (в процентах).

Запишем уравнение диссоциации флуоридной кислоты:

При диссоциации из одной молекулы кислоты образуется один ион Гидрогена. Если в растворе содержится 0,06 моль ионов H+, это означает, что продиссоцииро-вало 0,06 моль молекул гидроген флуорида. Следовательно, степень диссоциации равна:

Выдающийся немецкий физико-химик, лауреат Нобелевской премии по химии 1909 года. Родился в Риге, учился в Дерптском университете, где начал преподавательскую и научную деятельность. В 35 лет переехал в Лейпциг, где возглавил Физико-химический институт. Изучал законы химического равновесия, свойства растворов, открыл закон разведения, названный его именем, разработал основы теории кислотно-основного катализа, много времени уделял истории химии. Основал первую в мире кафедру физической химии и первый физико-химический журнал. В личной жизни обладал странными привычками: чувствовал отвращение к стрижке, а со своим секретарем общался исключительно при помощи велосипедного звонка.

Ключевая идея

Диссоциация слабых электролитов — обратимый процесс, а сильных —

необратимый.

Контрольные вопросы

116. Дайте определение сильных и слабых электролитов.

117. Приведите примеры сильных и слабых электролитов.

118. Какую величину используют для количественной характеристики силы электролита? Является ли она постоянной в любых растворах? Как можно увеличить степень диссоциации электролита?

Задания для усвоения материала

119. Приведите по одному примеру соли, кислоты и основания, которые являются: а) сильным электролитом; б) слабым электролитом.

120. Приведите пример вещества: а) двухосновная кислота, которая по первой стадии является электролитом средней силы, а по второй — слабым электролитом; б) двухосновная кислота, которая по обеим стадиями является слабым электролитом.

121. В некоторой кислоте по первой стадии степень диссоциации составляет 100 %, а по второй — 15 %. Какая кислота это может быть?

122. Каких частиц больше в растворе гидроген сульфида: молекул H 2 S, ионов H+, ионов S 2- или ионов HS - ?

123. Из приведенного перечня веществ отдельно выпишите формулы: а) сильных электролитов; б) слабых электролитов.

NaCl, HCl, NaOH, NaNO 3 , HNO 3 , HNO 2 , H 2 SO 4 , Ba(OH) 2 , H 2 S, K 2 S, Pb(NO 3) 2 .

124. Составьте уравнения диссоциации стронций нитрата, меркурий(11) хлорида, кальций карбоната, кальций гидроксида, сульфидной кислоты. В каких случаях диссоциация происходит обратимо?

125. В водном растворе натрий сульфата содержится 0,3 моль ионов. Какую массу этой соли использовали для приготовления такого раствора?

126. В растворе гидроген флуорида объемом 1 л содержится 2 г этой кислоты, а количество вещества ионов Гидрогена составляет 0,008 моль. Какое количество вещества флуорид-ионов в этом растворе?

127. В трех пробирках содержатся одинаковые объемы растворов хлорид-ной, флуоридной и сульфидной кислот. Во всех пробирках количества вещества кислот равны. Но в первой пробирке количество вещества ионов Гидрогена составляет 3 . 10 -7 моль, во второй — 8 . 10 -5 моль, а в третьей — 0,001 моль. В какой пробирке содержится каждая кислота?

128. В первой пробирке содержится раствор электролита, степень диссоциации которого составляет 89 %, во второй — электролит со степенью диссоциации 8 %о, а в третьей — 0,2 %о. Приведите по два примера электролитов разных классов соединений, которые могут содержаться в этих пробирках.

129*. В дополнительных источниках найдите информацию о зависимости силы электролитов от природы веществ. Установите зависимость между строением веществ, природой химических элементов, которые их образуют, и силой электролитов.

Это материал учебника

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.