Что значит звезда главной последовательности. Масса звезды. Красные гиганты и белые карлики

– наиболее распространенные из всех наблюдаемых космических объектов Вселенной.

Важнейшим параметром звезд является масса. Звездами называются газовые шары, масса которых превосходит 0,08 масс Солнца.

Изучая свечение звезд, их спектры, установили, что атмосферы звезд состоят из водорода, гелия и примеси некоторых других элементов. Именно в звездах имеются условия для формирования более тяжелых элементов, чем гелий.

Температуры и светимости звезд заключены в очень широких пределах, но эти параметры не являются независимыми. Светимость звезд сравнивают со светимостью Солнца. Абсолютная звездная величина Солнца M = +4,82 m . Светимость Солнца: L = 3,58·10 26 Вт. Существуют звезды, в сотни тысяч раз более яркие и в сотни тысяч раз более слабые, чем Солнце.

Звезды главной последовательности – это нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности.

Глубокий эволюционный смысл имеет диаграмма спектр–светимость .

Звезды образуются в результате гравитационной неустойчивости в холодных и плотных молекулярных облаках. Поэтому звезды всегда рождаются группами (скоплениями, комплексами). Стадия развития звезды, характеризующаяся сжатием и не имеющая еще термоядерных источников энергии, называется протозвездой . В течение сотен тысяч лет холодное газопылевое облако ощутимо сжимается; температура в центре облака увеличивается до миллионов кельвинов. По достижению температуры в несколько миллионов кельвинов в центре начинаются термоядерные реакции. Минимальная масса, которая необходима для этого, составляет 0,08 M .

В звездах главной последовательности происходит реакции так называемого протон-протонного цикла.

Дальнейшая эволюция звезды зависит от ее массы. Звезды скромных размеров и небольшой массы, включая и Солнце, в конце жизни, после стадии красного гиганта сжимаются и сбрасывают оболочку, превращаясь в белые карлики . Белые карлики имеют массу, не превышающую 1,2 M , радиус в 100 раз меньше солнечного. Их плотность в миллион раз больше солнечной.

Нейтронные звезды образуются при вспышках сверхновых звезд, если первоначальная масса звезды была 10–40 M либо при аккреции вещества на белый карлик в тесной двойной системе. Они быстро вращаются вокруг своей оси и обладают сильным магнитным полем. Движущиеся заряженные частицы генерируют электромагнитные волны, которые излучаются узким быстровращающимся пучком. Нейтронные звезды отождествляются с пульсарами.

Если конечная масса звезды больше 3 M , то звезда становится черной дырой . Гравитационное поле столь массивной звезды так сильно сдавливает ее вещество, что звезда не может остановиться на стадии нейтронной звезды и продолжает сжиматься вплоть до гравитационного радиуса. Предполагают, что количество черных дыр в нашей Галактике около десяти миллионов.

Наше Солнце имеет массу 1.99 × 10 27 тонн - в 330 тысяч раз тяжелее Земли. Но это далеко не предел. Самая тяжелая среди обнаруженных звезд, R136a1, весит как 256 Солнц. А , ближайшая к нам звезда, едва перевалила за десятую часть кряжести нашего светила. Масса звезды может быть удивительно разной - но есть ли ей границы? И почему она так важна астрономам?

Масса - одна из самых важных и необычных характеристик звезды. По ней астрономы могут точно сказать о возрасте звезды и дальнейшей ее судьбе. Более того, массивность определяет силу гравитационного сжатия светила - главного условия для того, чтобы ядро звезды «загорелось» в термоядерной реакции и начало . Поэтому масса является проходным критерием в категорию звезд. Слишком легкие объекты, вроде , не смогут толком светить - а слишком тяжелые переходят в категорию экстремальных объектов по типу .

И в то же время ученые едва могут вычислить массу звезды - единственным светилом, чья масса известна точно, является наше . Такую ясность помогла внести наша Земля. Зная массу планеты и скорость ее , можно вычислить и массу самой звезды на основании Третьего закона Кеплера, доработанного известным физиком Исааком Ньютоном. Иоганн Кеплер выявил связь между расстоянием от планеты до звезды и скоростью полного оборота планеты вокруг светила, а Ньютон дополнил его формулу массами звезды и планеты. Модифицированная версия Третьего закона Кеплера часто используется астрономами - причем не только для определения массы звезд, но и других космических объектов, составляющих вместе .

Про отдаленные светила пока приходится только догадываться. Самым совершенным (с точки зрения точности) является метод определения массы звездных систем. Его погрешность составляет «всего» 20–60%. Такая неточность критическая для астрономии - будь Солнце на 40% легче или тяжелее, жизнь на Земле не возникла бы.

В случае измерения массы одиночных звезд, возле которых нет видимых объектов, чью орбиту можно использовать для вычислений, астрономы идут на компромисс. Сегодня читается, что масса звезд одного одинакова. Также ученым помогает связь массы со светимостью или звезды, поскольку обе эти характеристики зависимы от силы ядерных реакций и размеров звезды - непосредственных индикаторов массы.

Значение массы звезды

Секрет массивности звезд кроется не в качестве, а в количестве. Наше Солнце, как и большинство звезд , на 98% состоит из двух самых легких элементов в природе - водорода и гелия. Но при этом в нем собрано 98% массы всей !

Как такие легкие вещества могут собраться вместе в громадные горящие шары? Для этого нужно свободное от крупных космических тел пространство, много материала и начальный толчок - чтобы первые килограммы гелия и водорода начали притягиваться друг к другу. В и молекулярных облаках, где рождаются звезды, водороду и гелию ничто не мешает скапливаться. Их собирается так много, что гравитация начинает насильно сталкивать ядра атомов водорода. Это начинает термоядерную реакцию, в ходе которой водород превращается в гелий.

Логично, что чем больше масса звезды, тем больше ее светимость. Ведь в массивной звезде водородного «топлива» для термоядерной реакции куда больше, а гравитационное сжатие, активирующее процесс - сильнее. Доказательством служит самая массивная звезда, R136a1, упомянутая в начале статьи - будучи больше по весу в 256 раз, она светит в 8,7 миллионов раз ярче нашей звезды!

Но у массивности есть и обратная сторона: из-за интенсивности процессов водород быстрее «сгорает» в термоядерных реакциях внутри . Поэтому массивные звезды живут совсем недолго в космических масштабах - несколько сотен, а то и десятков миллионов лет.

  • Интересный факт: когда масса звезды превышает массу Солнца в 30 раз, прожить она сможет не больше 3 миллионов лет - вне зависимости от того, насколько ее масса больше 30-кратной солнечной. Это связано с превышением предела излучения Эддингтона. Энергия запредельной звезды становится настолько мощной, что вырывает вещество светила потоками - и чем массивнее звезда, тем сильнее становится потеря массы.

Выше мы рассмотрели основные физические процессы, связанные с массой звезды. А теперь попробуем разобраться, какие звезды можно «сделать» с их помощью.

Ранние спектральные классы) в правый нижний угол (низкие светимости, поздние спектральные классы) диаграммы. Звёзды главной последовательности имеют одинаковый источник энергии («горение» водорода, в первую очередь, CNO-цикл), в связи с чем их светимость и температура (спектральный класс) определяются их массой :

L = M 3,9 ,

где светимость L и масса M измеряются в единицах солнечной светимости и массы, соответственно. Поэтому начало левой части главной последовательности представлено голубыми звёздами с массами ~50 солнечных , а конец правой - красными карликами с массами ~0,0767 солнечных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90 % времени эволюции большинства звёзд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов , нейтронных звёзд или чёрных дыр .

Участок главной последовательности звёздных скоплений является индикатором их возраста: так как темпы эволюции звёзд пропорциональны их массе, то для скоплений существует «левая» точка обрыва главной последовательности в области высоких светимостей и ранних спектральных классов, зависящая от возраста скопления, поскольку звёзды с массой, превышающий некий предел, заданный возрастом скопления, ушли с главной последовательности (см. рис., чётко видна точка ухода с главной последовательности на ветвь красных гигантов). Время жизни звезды на главной последовательности \tau_{\rm MS} в зависимости от начальной массы звезды M по отношению к современной массе Солнца \begin{smallmatrix}M_{\bigodot}\end{smallmatrix} можно оценить по эмпирической формуле:

\begin{smallmatrix} \tau_{\rm MS}\ \approx \ 6\cdot\ 10^{9} \text{лет} \cdot \left[ \frac{M_{\bigodot}}{M} + \ 0.14 \right]^{4} \end{smallmatrix}

Напишите отзыв о статье "Главная последовательность"

Примечания

См. также

Литература

Отрывок, характеризующий Главная последовательность

«Однако, кажется, никто не заметил», думал про себя Ростов. И действительно, никто ничего не заметил, потому что каждому было знакомо то чувство, которое испытал в первый раз необстреленный юнкер.
– Вот вам реляция и будет, – сказал Жерков, – глядишь, и меня в подпоручики произведут.
– Доложите князу, что я мост зажигал, – сказал полковник торжественно и весело.
– А коли про потерю спросят?
– Пустячок! – пробасил полковник, – два гусара ранено, и один наповал, – сказал он с видимою радостью, не в силах удержаться от счастливой улыбки, звучно отрубая красивое слово наповал.

Преследуемая стотысячною французскою армией под начальством Бонапарта, встречаемая враждебно расположенными жителями, не доверяя более своим союзникам, испытывая недостаток продовольствия и принужденная действовать вне всех предвидимых условий войны, русская тридцатипятитысячная армия, под начальством Кутузова, поспешно отступала вниз по Дунаю, останавливаясь там, где она бывала настигнута неприятелем, и отбиваясь ариергардными делами, лишь насколько это было нужно для того, чтоб отступать, не теряя тяжестей. Были дела при Ламбахе, Амштетене и Мельке; но, несмотря на храбрость и стойкость, признаваемую самим неприятелем, с которою дрались русские, последствием этих дел было только еще быстрейшее отступление. Австрийские войска, избежавшие плена под Ульмом и присоединившиеся к Кутузову у Браунау, отделились теперь от русской армии, и Кутузов был предоставлен только своим слабым, истощенным силам. Защищать более Вену нельзя было и думать. Вместо наступательной, глубоко обдуманной, по законам новой науки – стратегии, войны, план которой был передан Кутузову в его бытность в Вене австрийским гофкригсратом, единственная, почти недостижимая цель, представлявшаяся теперь Кутузову, состояла в том, чтобы, не погубив армии подобно Маку под Ульмом, соединиться с войсками, шедшими из России.
28 го октября Кутузов с армией перешел на левый берег Дуная и в первый раз остановился, положив Дунай между собой и главными силами французов. 30 го он атаковал находившуюся на левом берегу Дуная дивизию Мортье и разбил ее. В этом деле в первый раз взяты трофеи: знамя, орудия и два неприятельские генерала. В первый раз после двухнедельного отступления русские войска остановились и после борьбы не только удержали поле сражения, но прогнали французов. Несмотря на то, что войска были раздеты, изнурены, на одну треть ослаблены отсталыми, ранеными, убитыми и больными; несмотря на то, что на той стороне Дуная были оставлены больные и раненые с письмом Кутузова, поручавшим их человеколюбию неприятеля; несмотря на то, что большие госпитали и дома в Кремсе, обращенные в лазареты, не могли уже вмещать в себе всех больных и раненых, – несмотря на всё это, остановка при Кремсе и победа над Мортье значительно подняли дух войска. Во всей армии и в главной квартире ходили самые радостные, хотя и несправедливые слухи о мнимом приближении колонн из России, о какой то победе, одержанной австрийцами, и об отступлении испуганного Бонапарта.
Князь Андрей находился во время сражения при убитом в этом деле австрийском генерале Шмите. Под ним была ранена лошадь, и сам он был слегка оцарапан в руку пулей. В знак особой милости главнокомандующего он был послан с известием об этой победе к австрийскому двору, находившемуся уже не в Вене, которой угрожали французские войска, а в Брюнне. В ночь сражения, взволнованный, но не усталый(несмотря на свое несильное на вид сложение, князь Андрей мог переносить физическую усталость гораздо лучше самых сильных людей), верхом приехав с донесением от Дохтурова в Кремс к Кутузову, князь Андрей был в ту же ночь отправлен курьером в Брюнн. Отправление курьером, кроме наград, означало важный шаг к повышению.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "главная последовательность"

Энциклопедический словарь, 1998 г.

главная последовательность

ГЛАВНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ диаграммы Герцшпрунга - Ресселла узкая полоса на этой диаграмме, в пределах которой находится подавляющее большинство звезд. Пересекает диаграмму по диагонали (от высоких до низких светимостей и температур). Звезды главной последовательности (к ним, в частности, относится Солнце) имеют одинаковый источник энергии - термоядерные реакции водородного цикла. Звезды находятся на главной последовательности в течение приблизительно 90% всего времени звездной эволюции. Этим объясняется преимущественная концентрация звезд в области главной последовательности.

Википедия

Главная последовательность

Главная последовательность - область на диаграмме Герцшпрунга - Рассела, содержащая звёзды , источником энергии которых является термоядерная реакция синтеза гелия из водорода.

Главная последовательность расположена в окрестностях диагонали диаграммы Герцшпрунга - Рассела и проходит из верхнего левого угла (высокие светимости, ранние спектральные классы) в правый нижний угол диаграммы. Звёзды главной последовательности имеют одинаковый источник энергии («горение» водорода, в первую очередь, CNO-цикл), в связи с чем их светимость и температура определяются их массой:

L = M ,

где светимость L и масса M измеряются в единицах солнечной светимости и массы, соответственно. Поэтому начало левой части главной последовательности представлено голубыми звёздами с массами ~50 солнечных, а конец правой - красными карликами с массами ~0,0767 солнечных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90 % времени эволюции большинства звёзд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звёзд или чёрных дыр.

Участок главной последовательности звёздных скоплений является индикатором их возраста: так как темпы эволюции звёзд пропорциональны их массе, то для скоплений существует «левая» точка обрыва главной последовательности в области высоких светимостей и ранних спектральных классов, зависящая от возраста скопления, поскольку звёзды с массой, превышающий некий предел, заданный возрастом скопления, ушли с главной последовательности. Время жизни звезды на главной последовательности $\tau_{\rm MS}$ в зависимости от начальной массы звезды M по отношению к современной массе Солнца $\begin{smallmatrix}M_{\bigodot}\end{smallmatrix}$ можно оценить по эмпирической формуле:

$$\begin{smallmatrix} \tau_{\rm MS}\ \approx \ 6\cdot\ 10^{9} \text{лет} \cdot \left[ \frac{M_{\bigodot}}{M} + \ 0.14 \right]^{4} \end{smallmatrix}$$

Звезды являются наиболее интересными астрономическими объектами, и представляют собой наиболее фундаментальные строительные блоки галактик. Возраст, распределение и состав звезд в галактике позволяет определить ее историю, динамику и эволюцию. Кроме того, звезды несут ответственность за производство и распределение в космическом пространстве тяжелых элементов, таких как углерод, азот, кислород, а их характеристики тесно связаны с планетарными системами, которые они образуют. Поэтому изучение процесса рождения, жизни и смерти звезд занимает центральное место в астрономической области.

Рождение звезд

Звезды рождаются в облаках пыли и газа, которые разбросаны в большинстве галактик. Ярким примером распределения такого облака является туманность Ориона.

Представленное изображение сочетает в себе изображения в видимо и инфракрасном диапазоне волн, полученные от космического телескопа Hubble и Spitzer. Турбулентность в глубине этих облаков приводит к созданию узлов с достаточной массы для начала процесса разогревания материала в центре этого узла. Именно это горячее ядро, более известное как протозвезда однажды сможет стать звездой.

Трехмерное компьютерное моделирование процесса формирования звезд показывает, что вращающиеся газовопылевые облака могут разрушиться на две или три части; это объясняет, почему большинство звезд в Млечном пути находятся в парах или небольших группах.

Не весь материл, из газопылевого облака попадает в будущую звезду. Оставшийся материал может образовать планеты, астероиды, кометы или просто остаться в виде пыли.

Главная последовательность звезд

Звезде размером с наше Солнце требуется порядка 50 миллионов лет чтобы созреть с момента образования до взрослого состояния. Наше Солнце будет находиться в этой фазе зрелости в течении примерно 10 миллиардов лет.

Звезды питаются энергией выделяемой в процессе ядерного синтеза водорода с образованием гелия в своих недрах. Отток энергии их центральных областей звезды обеспечивает необходимое давление для предотвращения коллапса звезды под действием собственности силы тяжести.

Как показано в диаграмме Герцшпрунга-Рассела, главная последовательность звезд охватывает широкий спектр светимости и цвета звезд, которые могут быть классифицированы в соответствии с этими характеристиками. Самые маленькие звезды известны как красные карлики, имеют массу около 10% массы Солнца и излучают только 0.01 % энергии по сравнению с нашим светилом. Температура их поверхности не превышает 3000-4000 К. Несмотря на свои миниатюрные размеры, красные карлики являются на сегодняшний день самым многочисленным типом звезд во Вселенной и имеют возраст десятки миллиардов лет.

С другой стороны, наиболее массивные звезды, известные как гипергиганты, могут иметь массу в 100 или более раз, больше массы Солнца и температуру поверхности более 30 000 К. Гипергиганты выделяют в сотни тысяч раз больше энергии, чем Солнце, но имеют время жизни всего несколько миллионов лет. Столь экстремальные звезды, как полагают ученые были широко распространены в ранней Вселенной, сегодня же они встречаются крайне редко - во всем Млечном пути известно несколько гипергигантов.

Эволюция звезды

В общих чертах, чем больше звезда, тем короче ее продолжительность жизни, хотя все кроме сверхмассивных звезд живут миллиарды лет. Когда звезда полностью вырабатывает водород в своем ядре, ядерные реакции в ее недрах прекращаются. Лишенное энергии ядро, необходимое для своего поддержания, начинает разрушаться в себя и становиться намного горячее. Оставшийся водород за пределами ядра продолжает поддерживать ядерную реакцию за пределами ядра. Все более и более горячее ядро начинает выталкивать внешние слои звезды наружу, заставляя звезду расширяться и охлаждаться, превращая ее в красного гиганта.

Если звезда достаточно массивна, процесс коллапса ядра может довести его температуру до достаточного уровня чтобы поддерживать более экзотические ядерные реакции, которые потребляют гелий и производят различные тяжелые элементы, вплоть до железа. Тем не менее, такие реакции дают только временную отсрочку от глобальной катастрофы звезды. Постепенно, внутренние ядерные процессы звезды становятся все более нестабильными. Эти изменения вызывают пульсацию внутри звезды, которая в дальнейшем приведет к сбросу внешних оболочки, окружая себя облаком газа и пыли. Что происходит дальше зависит от размера ядра.

Дальнейшая судьба звезды в зависимости от массы ее ядра

Для средних звезд, подобных Солнцу, процесс освобождения ядра от внешних слоев продолжается до тех пор, пока весь окружающий е материал не будет выброшен. Оставшееся, сильно разогретое ядро называется белый карлик.

Белые карлики имеющие размер сравнимой с Землей, имеет массу полноценной звезды. До недавнего времени они оставались загадкой для астрономов - почему не происходит дальнейшее разрушение ядра. Квантовая механика разрешила эту загадку. Давление быстро движущихся электронов спасает звезду от коллапса. Чем массивнее ядро, тем более плотный карлик образуется. Таким образом, чем меньше размер белого карлика, тем более он массивен. Эти парадоксальные звезды довольно часто встречаются во Вселенной - наше Солнце через несколько миллиардов лет тоже превратиться в белого карлика. Ввиду отсутствия внутреннего источника энергии, белые карлики со временем остывают и исчезают в бескрайних просторах космического пространства.

Если белый карлик образовался в двойной или кратной звездной системе, окончание его жизни может быть более насыщенным известным как образование новой звезды. Когда астрономы данному событию дали такое название, они действительно думали что происходит образование новой звезды. Однако сегодня известно что на самом деле речь идет о очень старых звездах - белых карликах.

Если белый карлик находится достаточно близко к звезде компаньону, его гравитация может перетянуть на себя водород из внешних слоев атмосферы своего соседа и создать свой собственных поверхностный слой. Когда собирается достаточное количество водорода на поверхности белого карлика, происходит взрыв ядерного топлива. Это приводит к увеличению его яркости и сбрасывания оставшегося материала с поверхности. В течении нескольких дней, яркость звезды падает и цикл начинается снова.

Иногда, особенно у массивных белых карликов (масса которых больше 1,4 массы Солнца) может обрастать настолько большим количеством материала, что во время взрыва они разрушаются полностью. Этот процесс известен как рождение сверхновой звезды.

Звездам главной последовательности с массой около 8 и более масс Солнца суждено умереть в результате мощного взрыва. Этот процесс называют рождением сверхновой звездой.

Сверхновая звезда это не просто большая новая звезда. В новой звезде взрываются только поверхностные слои, в то время как в сверхновой происходит коллапс самого ядра звезды. В результате происходит высвобождение колоссального количества энергии. В период от нескольких дней до нескольких недель, сверхновая может затмить своим светом целую галактику.

Термины Новая и Сверхновая звезда не совсем точно определяют суть процесса. Как мы уже знаем, физически, образование новых звезд не происходит. Происходит разрушение уже существующих звезд. Объясняет подобное заблуждение несколько исторических случаев, когда на небе появлялись яркие звезды, которые до этого времени были практически или полностью невидны. Этот эффект и появления новой звезды и повлиял на терминологию.

Если в центре сверхновой звезды расположено ядро с массой от 1,4 до 3 масс Солнца, разрушение ядра будет продолжаться до тех пор пока электроны и протоны не объединятся и не создадут нейтроны, которые впоследствии образуют нейтронную звезду.

Нейтронный звезды являются невероятно плотными космическими объектами — их плотность сопоставима с плотностью атомного ядра. Так как большое количество массы упаковано в маленьком объеме, гравитация на поверхности нейтронной звезды просто запредельна

Нейтронные звезды имеют большие магнитные поля, которые могут ускорить атомные частицы вокруг ее магнитных полюсов производя мощные пучки радиации. Если такой пучок ориентирован в сторону Земли, то мы можем регистрировать регулярные импульсы в рентгеновском диапазоне от этой звезды. В таком случае она называется пульсаром.

Если ядро звезды более 3 солнечных масс, то в процессе его коллапса образуется черная дыра: бесконечно плотный объект, гравитация которого настолько сильна, что даже свет не может покинуть ее. Так как фотоны это единственный инструмент, благодаря которому мы может изучать вселенную, обнаружение черных дыр напрямую невозможно. О их существовании можно узнать только косвенно.

Одним из главных косвенных факторов указывающих на существовании в определенной области черной дыры является ее огромная гравитация. Если рядом с черной дырой расположен какой-либо материал — чаще всего это звезды-компаньоны — он будет захвачен черной дырой и притянут к ней. Притянутая материя будет двигаться в сторону черной дыры по спирали образуя вокруг нее диск, который нагревается до огромных температур, испуская обильное количество рентгеновских и гамма-лучей. Именно их обнаружение, косвенно указывает на существование рядом со звездой черной дыры.

Полезные статьи которые ответят на большинство интересных вопросов о звездах.

Объекты глубокого космоса