Диффузия нейтронов. Смотреть что такое "Диффузия нейтронов" в других словарях

Связана с движением тепловых нейтронов в объеме. При возникновении разности значений плотностей тепловых нейтронов в разных точках объема появляется диффузионный ток (закон Фига). Вектор j — показывает в каком направлении и какой величины происходит переток нейтронов из одной точки в другую, вызванный разностью n 1 > n 2 .

J = — D grad (n), D’ = l tr v/3;
j = — D grad (Ф), D = l tr /3;

R 23 2 = 2 l a l tr N 1 — расстояние от точки появления до точки поглощения теплового нейтрона
. l a — длина свободного пробега
. L d = r 23 /√6 — длина диффузии
. Слабопоглощающая среда L d >L s — иначе сильнопоглощающая

Уравнение диффузии запишем из баланса нейтронов в произвольном единичном объеме активной зоны. Будем считать, что количество нейтронов в этом объеме будет меняться от интенсивности протекания трех процессов:
. Перетечка нейтронов из соседних объемов (диффузия)
. Поглощение нейтронов средой, находящейся в выделенном объеме
. Появление новых тепловых нейтронов вследствие замедления быстрых нейтронов
1/v ∂Ф/∂t = диффузия — поглощение + рождение
ΔФ = ∂ 2 Ф/∂x 2 + ∂ 2 Ф/∂y 2 + ∂ 2 Ф/∂z 2

1/v ∂Ф/∂t = DΔФ — ∑ a Ф + q T — дифференциальное уравнение диффузии тепловых нейтронов.

Т.к. замедление дискретно было введено понятие торможения. Надо записать, как меняется энергия нейтрона при торможении:


dE/dt = dE/dv ⋅ dv/dt, v — число соударений, dv/dt = v/l s = v ⋅ ∑ S

ξ = d ln(E)/dv = 1/E ⋅ dE/dv ⇒ dE/dv = ξ⋅E

Получим dE/dt = ξEv∑ s .
При записи уравнения диффузии примем допущения:
. В процессе замедления поглощение замедляющихся нейтронов отсутствует.
. Все быстрые нейтроны, рождающиеся в процессе деления, имеют одну и ту же энергию E 0 .
. Источники появления быстрых нейтронов равномерно распределены в объеме активной зоны.

Концентрация замедляющихся нейтронов в единице объема: n 1 (r, t), r = (x, y, z)

∂n 1 (r,t)/∂t = DΔФ = DvΔn 1 (r,t)

Перейдем к функции плотности замедления: n 1 (r, t) = n 2 (r,E)⋅dE/dt = q (r, E).

Δq(r,τ) = ∂q(r,E) (ξE∑ S)/(D∂E) = ∂q(r,τ)/∂τ — уравнение возраста нейтронов

Коэффициент размножения для бесконечной среды k ∞ = v a εϕθ. В ограниченном объеме происходят утечки, поэтому вводят эффективный коэффициент размножения: k эф = ωk ω — вероятность избежать утечки из активной зоны (показывает, сколько нейтронов поглотилось в активной зоне). ω1, чтобы обеспечить нормальную работу реактора. k ∞ характеризует потенциальную возможность осуществления цепной реакции. Если k ∞ ≤1, то обеспечить самоподдерживающуюся цепную реакцию невозможно. k ∞ определяется свойствами размножающей среды (составом). Уменьшая размер активной зоны мы можем снижать ω и создавать условия k эф = 1 — критическое состояние реактора. ω зависит от формы активной зоны, характера распределения полей замедляющихся и тепловых нейтронов в активной зоне.

Таким образом, появляется две задачи:
. Определить k ∞
. Найти подходящую ω (геометрию и распределение полей), чтобы k эф = 1. Эту задачу можно решить, если мы будем знать распределение полей.

Замедление и диффузия нейтронов.

За время существования нейтрона с момента испускания при давлении до момента поглощения проходят 2 процесса:

1).процесс замедления быстрого нейтрона от энергии деления(~2 Мэв) до тепловой энергии(<0,2эв)(0,025эв);

2).процесс диффузии теплового нейтрона.

Время существования нейтрона ~0,001сек и зависит от состава активной зоны.

Нейтроны подобно газам диффундируют из области с большей плотностью в область с меньшей плотностью.

Между столкновениями- прямой участок. Типичная траектория- зигзагообразный вид из прямолинейных отрезков разной длины.

Если бы отсутствовал нейтронный захват- траектория бесконечна. После рассеивающего соударения движется по направлению, образующему угол ψ с первоначальным направлением движения.

Угол ψ-у рассеяния. Важно для изучения диффузии и замедления, какова вероятность рассеяния в любом направлении. Экспериментально установлено, что имеет тенденцию к рассеянию в направлении своего первоначального движения.

Если бы рассеяние происходило с одинаковой вероятностью во все стороны (изотропное рассеяние), то значение const, осредненное по всем столкновениям было бы =0.

В действительности же средний cos ψ >0 (нуля) и определяется равенством cos ψ= ,

где А-массовое число рассеивающего ядра.

Начиная с бериллия, отклонение почти изотропно. При изотропном рассеянии среднее расстояние, проходимое между рассеивающими соударениями равно

В действительности же эффективное расстояние больше, чем средняя длина свободного пробега λ s , вследствие преимущественного рассеяния вперед. Это расстояние назавают транспортной длиной свободного пробега:

По аналогии с е вводится также понятие о транспортном сечении

Т.к. в качестве замедлителя в ядерных реакторах используют легкие элементы, то процесс замедления быстрых нейтронов происходит в основном в результате упругого рассеяния .

Потеря энергии при соударении зависит от ψ. При ψ=0 Е 2 /Е 1 =1. Наибольшая потеря Е при столкновения происходят при ψ= 0-π. При прочих равных условиях замедлитель тем эффективнее, чем больше энергии будет терять быстрый деления

при столкновении с ядрами замедлителя.

В качестве меры изменения энергии нейтрона при упругом столкновении испускается средний логарифмический декремент энергии на 1 столкновение(или средняя логарифмическая потеря энергии):

ξ=(ln Е 2 /Е 1) ср,

Е 1 - до столкновения

Е 2 - после столкновения

Усредненная по всевозможным углам рассеяния величина ξ зависит только от атомного веса элемента А:

т.е ξ не зависит от начальной энергии .

Это значит, что в среднем теряет одну и ту же долю своей первоначальной энергии независимо от того, при какой начальной энергии нейтрона произошло столкновение.

Высота ступенек говорит о изменении ln Е приходяшиеся на 1 столкновение, т.е. определяет ξ.,т.к. ξ не зависит от Е, то в среднем высота ступенек одинакова в течение всего времени замедления.

Среднее число столкновений с атомами вещества, необходимое для уменьшения энергии от Е 1 до Е 2 определяется соотношением

Физически-с увеличением ξ. Увеличивается потеря Е на 1 атом, а значит, уменьшается среднее число столкновений необходимых для снижения Е=2Мэв до 0,025эв.

С растет с увеличением массового числа ядер замедлителя(на воде требуется 19 столкновений, а на графите-114). Чем меньше С, тем лучше замедлитель. Однако и С,и ξ не достаточно полно отражают замедлительные свойства вещества. Они определяются средней потерей энергии на 1 столкновение, но не отражают того, на сколько вероятно рассеивающее столкновение нейтрона с ядрами данного замедлителя. Последнее определяется макроскопическим поперечным сечением рассеяния.

Σ s = σ s ∙N,

где σ s - микроскопическое сечение;

N-плотность ядер замедлителя

Поэтому в качестве более подходящей характеристики замедляющих свойств вводится произведение:

ξΣ s , называемое замедляющей способностью, т.к. оно характеризуется и потерей Е(ξ), и вероятностью того,что произойдет столкновение. При выборе замедлителя приходится считаться с тем важным требованием, чтобы он возможно меньше поглощал нейтроны. Поэтому вводится к-т замедлитель:

Для замедлителя ядерных реакторов могут использоваться только такие вещества, которые одновременно обладают высокими значениями к з и замедляющей способностью ξΣ s . Такими материалами являются обычная вода, тяжелая вода, графит, бериллий, окись бериллия и некоторые органические жидкости. Наилучший- тяжелая вода. В обычной воде к з наименьшее из-за повышенного захвата тепловых нейтронов в водороде.

вещество ξ. С к з σ а σ s
Вода 0,918 1,53 0,66 0,0218 1,45 2,7
Тяжелая вода 0,51 0,37 2,6∙10 -3 0,86∙10 -4 0,50
Бериллий 0,207 0,176 9∙10 -3 10,8∙10 -4 0,84
Окись бериллия 0,174 0,129 9∙10 -3 11,2 6,5∙10 -4 0,81
Дифения 0,892 1,5 4∙10 -3 4,8 3,32∙10 -4 0,998
Дифениальная смесь 0,886 1,61 117,5
Графит 0,158 0,064 4∙10 -3 4,8 3,32∙10 -4 0,998
Гелий в нормальном состоянии 0,525 1,6∙10 -5
Литий 0,268 0,0172 Ничтожно малы
Бор 0,171 0,0875

В процессе замедления помимо изменения энергии, имеет место смещение нейтрона в пространстве от точки его испускания до точки, где он становится тепловым. Смещение в пространстве продолжается и в процессе диффузии ,достигшего теплового уровня.

Диффузия нейтронов изучается прежде всего для определения их пространственно-временного распределения в ядерном реакторе, поскольку на прогнозе таких полей строится дизайн разрабатываемых установок, а после введения их в эксплуатацию осуществляется их управление и обеспечивается безопасность. К сожалению расчёт эволюционирующих во времени нейтронных полей- чрезвычайно сложная задача. Используемые для этой цели дифференциальные уравнения включают многопараметров, не имеют аналитических решений, но даже численные их решения и нахождение различных асимптот представляют серьезную проблему.

В настоящей главе представлены некоторые аспекты математического описания диффузии нейтронов. Основное внимание уделено тепловым реакторным нейтронам.

Свойства нейтронов и процессы с их участием

С точки зрения диффузии, особенности нейтрона связаны с его небольшими размерами (и относительно высокими коэффициентами диффузии), химической инертностью и высокой склонностью к вступлению в ядерные реакции с атомами среды, приводящими или к поглощению или размножению нейтронов. К тому же нейтрон сравнительно короткоживу- щий радионуклид (период полураспада ~ю мин) и часто приходится учитывать его распад. Но наибольшие трудности вызывает то обстоятельство, что тепловые нейтроны не бывают моноэнергетическими - помимо тепловых нейтронов в реакторе присутствуют нейтроны с существенно более высокими энергиями, транспорт которых и процессы замедления существенно влияют на кинетику" диффузии.

Нейтрон - электрически нейтральная элементарная частица со спином V2, магнитным моментом р=-1,91 у в и массой, превышающей массу протона на 2,5 электронных масс; относится к барионам Мп-1,008986 а.ем. = 939,5 МэВ - 1838,5 т е. Из т п >тр+т е. В свободном состоянии нейтрон нестабилен: он распадается с периодом полураспада T=io,i8 мин (время жизни нейтрона t=88i.5±i.5 с), образуя протон и испуская электрон и антинейтрино, у (fr-распад). Нейтронное излучение - поток нейтронов , которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

Проходя сквозь вещество, нейтроны вызывают различные ядерные реакции и ушруто рассеиваются на ядрах. Интенсивностью этих микроскопических процессов, в конечном счёте, определяются все макроскопические свойства прохождения нейтронов через вещество, такие, как рассеяние, замедление, диффузия, поглощение и т. д. Так как нейтрон имеет нулевой электрический заряд, он практически не взаимодействует сэлектро- нами атомных оболочек. Поэтому атомные характеристики среды не играют никакой роли в распространении нейтронов ввеществе. Это чисто ядер- ный процесс. Сечения различных нейтрон-ядерных реакций зависят от энергии нейтронов, сильно и нерегулярно изменяются от ядра к ядру при изменении А или Z. Сечения взаимодействия нейтронов с ядрами в среднем растут по закону "l/u" при уменьшении энергии нейтрона (и - скорость нейтрона).

Нейтроны существенно различаются по своим энергиям. Обычно спектр нейтронов квалифицируют по скорости движения:

  • - Релятивистские нейтроны, с энергией более ю 10 эВ;
  • - Быстрые нейтроны, с энергией больше 0.1 МэВ (иногда больше 1 МэВ)
  • - Медленные нейтроны, с энергией менее юо кэВ.

или по «температуре»:

  • - Надтепловые нейтроны, с энергией от 0.025 Д° 1 эВ;
  • - Горячие нейтроны, с энергией порядка 0.2 эВ;
  • - Тепловые нейтроны, с энергией примерно 0,025 эВ;
  • - Холодные нейтроны, с энергией от 5-10-5 эВ до 0.025 эВ;
  • - Очень холодные нейтроны, с энергией 2Ю-? - 5-10-5 эВ;
  • - Ультрахолодные нейтроны, с энергией менее 2-ю - " эВ.

С точки зрения диффузии важны тепловые нейтроны, которые находятся в тепловом равновесии с атомами среды при комнатной температуре. Их средние энергии - сотые доли электронвольта. Часто в качестве характерной энергии теплового нейтрона указывают величину 0.025 эВ, полученную из соотношения Етепл=кТ, где к- постоянная Больцмана. Заметим, что скорость медленных нейтронов весьма относительна: нейтрон с энергией 0.025 эВ имеет скорость 2 км/с.

Как известно, в нейтронных источниках нейтроны рождаются в основном с энергиями от десятков кэВ до нескольких МэВ, однако большинство важных в прикладном отношении нейтронных реакций интенсивно идёт при низких энергиях нейтронов, поэтому во всех работах с использованием нейтронов существенное внимание уделяется процессам замедления нейтронов. Замедление нейтронов происходит при упругих столкновениях с ядрами. Однако замедление нейтронов не может привести к их полной остановке из-за теплового движения ядер.

Важной характеристикой процесса замедления является длина замедленияЦсм].

Средняя длина замедления нейтронов до произвольного уровня энергии Ц?) - это среднестатистическое пространственное смещение нейтрона в процессе его замедления от начальной энергии Е 0 , с которой нейтрон был рождён, до данной энергии Е (в частности, - до Е с, если речь идет о полной длине замедления нейтрона до теплового уровня - 1 3 (Е С)). Длина замедления - среднеквадратичное значение частных смещений отдельных нейтронов (по прямой) при замедлении до Е с.

Рожденный в делении быстрый нейтрон, испытывая серию последовательных рассеяний, проходит в среде путь в виде ломаной линии, отрезки которой представляют собой пространственные смещения нейтрона между актами двух последовательных рассеяний. В процессе замедления из-за случайного характера рассеивающих соударений с ядрами среды нейтрон может удаляться от точки своего рождения или приближаться к ней, но в любом случае величина пространственного смещения каждого нейтрона при замедлении до любой энергии - своя, у разных нейтронов эти величины могут сильно отличаться. Однако среднее значение этой величины при рассеянии больших количеств замедляющихся нейтронов в среде

Физическая константа этой среды.

Среднеквадратичнаявеличина смещения нейтронов в процессе замедления:

Рис. 1. Траектории перемещения нейтрона от места его рождения до места гибели.

Квадрат среднего расстояния, которое нейтрон преодолевает в одном направлении от источника до точки поглощения

Это значит, что / 3 2 - одна шестая среднего квадрата прямого расстояния перемещения нейтрона от точки, при которой он испущен до точки, где был поглощён.

В теории реакторов чаще используется не сама величина средней длины замедления, а возраст нейтронов.

Возраст нейтронов с энергией Е - это шестая часть среднего квадрата пространственного смещения нейтрона в среде при замедлении от начальной энергии Еи до данной энергии Е.

Величина возраста обозначается т(?) с указанием на энергию Е замедляющихся нейтронов, которой соответствует возраст. Размерность гне время, а площадь, т.е. см 2 .

где А, 2 - среднеквадратичное расстояние, на которое нейтрон уходит от источника в процессе замедления в интервале энергий от 1 МэВ до 1эВ.

Начиная с энергий 0.5-м эВ при столкновениях нейтронов с ядрами становится существенной тепловая энергия атомов. Распределение нейтронов начинает стремиться к равновесному, т.е. максвелловскому

dN /Е 1 эВ.

Этот процесс называется термализацией нейтронов. Возраст нейтронов зависит от свойств среды, в которой осуществляется миграция ней- троног

где замедляющая способность, Efr- транспортное макросечение. Возраст тепловых нейтронов:

Возраст нейтрона для среды его обитания определяет меру способности вещества среды давать определенное среднеквадратичное пространственное смещение в ней замедляющихся нейтронов. Поэтому каждое однородное вещество характеризуется своимзначением возраста нейтронов любой энергии Е. В частности возраст тепловых нейтронов для воды в нормальных условиях Тлю = 27.3 см 2 ; для бериллия т„ ю =90см 2 ; для графита Тто= 352см 2 . Указанные значения возраста тепловых нейтронов называют стандартными, т. е. действительными только в нормальных условиях (при атмосферном давлении и температуре 20°С) для начальной энергии Е 0 =2 МэВ и Е с = 0.625 эВ. Важно, что возраст тепловых нейтронов существенно зависит от параметров состояния вещества (давления и температуры).

Точное описание всех процессов с участием нейтронов (соударения, транспорт, ядерные реакции) затруднено. Первая аппроксимация описывает движение нейтронов как вид диффузии. Эта аппроксимация называется диффузионной аппроксимацией и была использована при создании первых реакторов. Теперь используют более развитые подходы, однако диффузионная теория всё ещё широко используется при проектировании больших ядерных реакторов. Полная теория, описывающая все транспортные свойства при слабых аппроксимациях,основана на решении транспортного уравнения Больцмана. Теория диффузии на основе закона Фика, обычно используемая для химической диффузии, может быть полезна и при описании диффузии нейтронов. Если плотность (поток) нейтронов высока в одной части реактора, то возникает ток нейтронов, направленный в регион с низким потоком нейтронов. Фиковская теория диффузии - только первое приближение. Более сложные методы используют вблизи источников нейтронов, границ системы и в случае сильно поглощающей среды.

Диффузия нейтронов

Замедленные до тепловых энергий нейтроны начинают диффундировать, распространяясь по веществу во все стороны от источника. Этот процесс уже приближенно описывается обычным уравнением диффузии с обязательным учетом поглощения, которое для тепловых нейтронов всегда велико (на практике для того их делают тепловыми, чтобы нужная реакция шла интенсивно). Такая возможность вытекает из того, что в хорошем замедлителе (в котором сечение рассеяния уs значительно превышает сечение поглощения уa) тепловой нейтрон может испытать очень много соударений с, ядрами до захвата:

N= уs/уa=лa/лs, (3.10)

при этом в связи с малостью среднего свободного пути лs, для тепловых нейтронов выполняется условие применимости диффузионного приближения -- малость изменения плотности нейтронов на протяжении лs. Наконец, скорость движения тепловых нейтронов можно считать постоянной: .

Диффузионное уравнение имеет следующий вид:

где с(r , t) - плотность тепловых нейтронов в точке r в момент t; Д - оператор Лапласа; D - коэффициент диффузии; tзахв - среднее время жизни тепловых нейтронов до захвата; q - плотность источников тепловых нейтронов. Уравнение (3.11) выражает баланс изменения плотности нейтронов во времени за счет трех процессов: притока нейтронов из соседних областей (DД с), поглощения нейтронов (- с /tзахв) и образования нейтронов (q). В общем случае (с учетом анизотропии рассеяния) коэффициент диффузии:

однако для тепловых нейтронов его можно с хорошей степенью точности записать в простейшей форме:

Это связано с тем, что энергия тепловых нейтронов меньше энергии химической связи атомов в молекуле, из-за чего рассеяние тепловых нейтронов происходит не на свободных атомах, а на тяжелых связанных молекулах (или даже на кристаллических зернах среды).

Основной характеристикой среды, описывающей процесс диффузии, является длина диффузии L, определяемая соотношением

где - средний квадрат расстояния, на которое уходит тепловой нейтрон в веществе от места рождения до поглощения. Длина диффузии имеет примерно тот же порядок, что и длина замедления. Обе эти величины определяют расстояния от источника, на которых в веществе будет заметное количество тепловых нейтронов. В таблице 3.1 приведены величины ф и L для наиболее употребительных замедлителей. Из этой таблице видно, что у обычной воды >>L, что указывает на сильное поглощение. У тяжелой воды, наоборот, L>>. Поэтому она и является лучшим замедлителем. Величина L зависит не только от собственной диффузии, но и от поглощающих свойств среды. Поэтому L не полностью характеризует процесс диффузии. Дополнительной независимой характеристикой диффузии является время жизни диффундирующего нейтрона.

Таблица 3.1

Значения и L для наиболее употребительных замедлителей

Диффузное отражение нейтронов

Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т. е. имеют альбедо до 0,9. В частности, для обычной воды альбедо равно 0,8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность столь интенсивного отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т. е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдет из среды при последующих столкновениях.

Этот же процесс приводит к тому, что концентрация нейтронов резко снижается вблизи границы среды, в которой они рождаются, так как вероятность для нейтрона уйти наружу велика.

Диффузия нейтронов Диффузия нейтронов, распространение нейтронов в веществе, сопровождающееся многократным изменением направления и скорости движения в результате их столкновений с атомными ядрами. Д. нейтронов аналогична Д. в газах и подчиняется тем же закономерностям (см. Диффузия ). Быстрые нейтроны , т. е. нейтроны с энергией, во много раз большей, чем средняя энергия теплового движения частиц среды, при Д. отдают энергию среде и замедляются. В слабо поглощающих средах нейтроны приходят в тепловое равновесие со средой (тепловые нейтроны). В неограниченной среде тепловой нейтрон диффундирует до тех пор, пока не поглотится одним из атомных ядер. Д. тепловых нейтронов характеризуется коэффициентом диффузии D и средним квадратом расстояния от точки образования теплового нейтрона до точки его поглощения, равным L2 T = 6Dt , где t ‒ среднее время жизни теплового нейтрона в среде.

Для характеристики Д. быстрых нейтронов употребляют средний квадрат расстояния L2 Б между точкой образования быстрого нейтрона (в ядерной реакции, например реакции деления) и точкой его замедления до тепловой энергии. В табл. приведены для некоторых сред значения L2 T для тепловых нейтронов и L2 Б для нейтронов, испускаемых при делении урана.

Значения L2 T и L2 Б для некоторых веществ

L2 T , см2

L2 Б , см2

D2 0 ..... Берилий Be .... Графит С...

1,5·105

При Д. в ограниченной среде нейтрон с большой вероятностью вылетает за её пределы, если полуразмер (радиус) системы мал по сравнению с величиной

напротив, нейтрон с большой вероятностью поглотится в среде, если её радиус велик по сравнению с этой величиной.

Д. нейтронов играет существенную роль в работе ядерных реакторов . В связи с этим разработка ядерных реакторов сопровождалась интенсивным развитием теории Д. нейтронов и методов её экспериментального изучения.

Лит.: Бекурц К., Виртц К., Нейтронная физика, пер. с англ., М., 1968.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Диффузия нейтронов" в других словарях:

    Это хаотическое движение нейтронов в веществе. Она аналогична диффузии в газах и подчиняется тем же закономерностям, главной из которых является то, что диффудирующее вещество распространяется от областей с большей концентрацией к областям с… … Википедия

    Распространение нейтронов в в ве, сопровождающееся многократным изменением направления и скорости их движения в результате их столкновений с ат. ядрами. Д. н. в среде аналогична диффузии атомов и молекул в газах и подчиняется тем же… … Физическая энциклопедия

    - (от лат. diffusio распространение растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие… … Большой Энциклопедический словарь

    I Диффузия (от лат. diffusio распространение, растекание) взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Д. происходит в направлении падения концентрации вещества и ведёт к… …

    - (от лат. diflusio распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотич. тепловым движением молекул (атомов) в одно или многокомпонентных газовых либо конденсир. средах. Такой перенос осуществляется при… … Химическая энциклопедия

    И; ж. [от лат. diffusio распространение, растекание] 1. Физ. Взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового перемещения частиц вещества. Д. газов. Д. жидкостей. 2. Взаимопроникновение, взаимообмен чем л. Д.… … Энциклопедический словарь

    - (от лат. diffusio распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу в ва и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие… … Естествознание. Энциклопедический словарь

    Уменьшение кинетической энергии нейтронов в результате многократных столкновений с атомными ядрами вещества. В ядерных реакциях (См. Ядерные реакции), являющихся источниками нейтронов, образуются, как правило, быстрые нейтроны (с энергией … Большая советская энциклопедия

    Уменьшение кинетич. энергии нейтронов в результате многократных столкновений их с ат. ядрами. Механизм З. н. зависит от энергии нейтронов. Достаточно быстрые нейтроны расходуют энергию гл. обр. на возбуждение ядер. При уменьшении энергии… … Физическая энциклопедия

    Последняя стадия процесса замедления нейтронов. При уменьшении кинетич. энергии нейтронов до величин … Физическая энциклопедия