Доказательство формул дифференцирования основных функций. Формулы и правила дифференцирования (нахождения производной). Формула производной частной функции

«Раскрытие скобок» — Учебник по математике 6 класс (Виленкин)

Краткое описание:


В этом разделе Вы будете учиться раскрывать скобки в примерах. Для чего это нужно? Все для того же, что и раньше – чтобы Вам было легшее и проще считать, чтобы допускать меньше ошибок, а в идеале (мечта Вашего учителя математики) для того, чтобы вообще все решать без ошибок.
Вы уже знаете, что скобки в математической записи ставятся, если подряд идут два математических знака, если мы хотим показать объединение чисел, их перегруппировку. Раскрыть скобки означает избавиться от лишних знаков. Например: (-15)+3=-15+3=-12, 18+(-16)=18-16=2. А помните распределительное свойство умножения относительно сложения? Ведь в том примере мы также избавлялись от скобок для упрощения вычислений. Названное свойство умножения также можно применять для четырех, трех, пяти и более слагаемых. Для примера: 15*(3+8+9+6)=15*3+15*8+15*9+15*6=390. Вы заметили, что при раскрытии скобок числа, находящиеся в них не меняют знака, если стоящее перед скобками число положительное? Ведь пятнадцать – положительное число. А если решить такой пример: -15*(3+8+9+6)=-15*3+(-15)*8+(-15)*9+(-15)*6=-45+(-120)+(-135)+(-90)=-45-120-135-90=-390. У нас перед скобками стояло отрицательное число минус пятнадцать, когда мы раскрыли скобки все числа стали менять свой знак на другой — противоположный – с плюса на минус.
Исходя из вышеуказанных примеров, можно озвучить два основных правила раскрытия скобок:
1. Если у Вас перед скобками стоит положительное число, то после раскрытия скобок все знаки чисел, стоявших в скобках, не изменяются, а остаются точно такими же как и были.
2. Если у Вас перед скобками стоит отрицательное число, то после раскрытия скобок знак минуса больше не пишется, а знаки всех абсолютно чисел, стоявших в скобках, резко меняются на противоположные.
Для примера: (13+8)+(9-8)=13+8+9-8=22; (13+8)-(9-8)=13+8-9+8=20. Немного усложним наши примеры: (13+8)+2(9-8)=13+8+2*9-2*8=21+18-16=23. Вы заметили, что раскрывая вторые скобки, мы умножали на 2, но знаки оставались теми же как и были. А вот такой пример: (3+8)-2*(9-8)=3+8-2*9+2*8=11-18+16=9, в этом примере число два — отрицательное, оно перед скобками стоит со знаком минус, поэтому раскрывая их, мы меняли знаки чисел на противоположные (девять было с плюсом, стало с минусом, восемь было с минусом, стало с плюсом).

А+(b + с) можно записать без скобок: a+(b + c)=a + b + c. Эту операцию называют раскрытием скобок.

Пример 1. Раскроем скобки в выражении а + (- b + c).

Решение. a + (-b+c) = a + ((-b) + c)=a + (-b) + c = a-b + c.

Если перед скобками стоит знак « + » то можно опустить скобки и этот знак « + » сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком « + ».

Пример 2. Найдем значение выражения -2,87+ (2,87-7,639).

Решение. Раскрывая скобки, получим - 2,87 + (2,87 - 7,639) = - - 2,87 + 2,87 - 7,639 =0 - 7,639 = - 7,639.

Чтобы найти значение выражения - (- 9 + 5), надо сложить числа -9 и 5 и найти число, противоположное полученной сумме: -(- 9 + 5)= -(- 4) = 4.

То же значение можно получить по-другому: вначале записать числа, противоположные данным слагаемым (т. е. изменить их знаки), а потом сложить: 9 + (- 5) = 4. Таким образом, -(- 9 + 5) = 9 - 5 = 4.

Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых.

Значит, - (а + b) = - а - b.

Пример 3. Найдем значение выражения 16 - (10 -18 + 12).

Решение. 16-(10 -18 + 12) = 16 + (-(10 -18 + 12)) = = 16 + (-10 +18-12) = 16-10 +18-12 = 12.

Чтобы раскрыть скобки, перед которыми стоит знак «-», надо заменить этот знак на « + », поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.

Пример 4. Найдем значение выражения 9,36-(9,36 - 5,48).

Решение. 9,36 - (9,36 - 5,48) = 9,36 + (- 9,36 + 5,48) = = 9,36 - 9,36 + 5,48 = 0 -f 5,48 = 5,48.

Раскрытие скобок и применение переместительного и сочетательного свойств сложения позволяют упрощать вычисления.

Пример 5. Найдем значение выражения (-4-20)+(6+13)-(7-8)-5.

Решение. Сначала раскроем скобки, а потом найдем отдельно сумму всех положительных и отдельно сумму всех отрицательных чисел и, наконец, сложим полученные результаты:

(- 4 - 20)+(6+ 13)-(7 - 8) - 5 = -4-20 + 6 + 13-7 + 8-5 = = (6 + 13 + 8)+(- 4 - 20 - 7 - 5)= 27-36=-9.

Пример 6. Найдем значение выражения

Решение. Сначала представим каждое слагаемое в виде суммы их целой и дробной частей, затем раскроем скобки, потом сложим отдельно целые и отдельно дробные части и, наконец, сложим полученные результаты:


Как раскрывают скобки, перед которыми стоит знак « + »? Как можно найти значение выражения, противоположное сумме нескольких чисел? Как раскрыть скобки, перед которыми стоит знак « - »?

1218. Раскройте скобки:

а) 3,4+(2,6+ 8,3); в) m+(n-k);

б) 4,57+(2,6 - 4,57); г) с+(-a + b).

1219. Найдите значение выражения:

1220. Раскройте скобки:

а) 85+(7,8+ 98); г) -(80-16) + 84; ж) a-(b-k-n);
б) (4,7 -17)+7,5; д) -а + (m-2,6); з) -(а-b + с);
в) 64-(90 + 100); е) с+(- а-b); и) (m-n)-(p-k).

1221. Раскройте скобки и найдите значение выражения:


1222. Упростите выражение:


1223. Напишите сумму двух выражений и упростите ее:

а) - 4 - m и m + 6,4; г) а+b и р - b
б) 1,1+а и -26-а; д) - m + n и -k - n;
в) а + 13 и -13 + b; е)m - n и n - m.

1224. Напишите разность двух выражений и упростите ее:

1226. Решите с помощью уравнения задачу:

а) На одной полке 42 книги, а на другой 34. Со второй полки сняли несколько книг, а с первой - столько, сколько осталось на второй. После этого на первой полке осталось 12 книг. Сколько книг сняли со второй полки?

б) В первом классе 42 ученика, во втором на 3 ученика меньше, чем в третьем. Сколько учеников в третьем классе, если всего в этих трех классах 125 учеников?

1227. Найдите значение выражения:

1228. Вычислите устно:

1229. Найдите наибольшее значение выражения:

1230. Укажите 4 последовательных целых числа, если:

а) меньшее из них равно -12; в) меньшее из них равно n;
б) большее из них равно -18; г) большее из них равно k.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен  (или - ), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y , f (x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = (x), т.е. y = f((x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций  и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем  0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u )" =  u  1 u" (  R ).

2. (a u)" = a u lna u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u u".

7. (cos u)" = - sin u u".

8. (tg u)" = 1/ cos 2 u u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+, где 0 при х 0; отсюда  y = y" х +  x.

Главная часть приращения функции, линейная относительно х, называется дифференциалом функции и обозначается dy: dy = y" х. Если положить в этой формуле y=x, то получим dx = x"х = 1х =х, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции  y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y = f (x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 3 .15. Вычислить производную функции y=(3x 3 -2x+1)sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"sin x + (3x 3 -2x+1)(sin x)" = = (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 3.16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 3 .17. Найти производную сложной функции y= , u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то (2 x 4 +2+ .

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .


При решении задач дифференцирования приходится искать производные функций различных классов. В этой статье мы рассмотрим основные правила дифференцирования , которые будем постоянно использовать при нахождении производных. Все эти правила докажем на основе определения производной функции и обязательно остановимся на подробном решении примеров, чтобы понять принцип их применения.

При доказательстве правил дифференцирования будем считать функции f(x) и g(x) дифференцируемыми на некотором промежутке X .

То есть, для любого справедливо , где - приращения соответствующих функций.

В другой записи .

К основным правилам дифференцирования относят:

Вынесение постоянного множителя за знак производной.

Докажем формулу . По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

На этом доказательство первого правила дифференцирования завершено.

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Пример.

Выполнить дифференцирование функции .

Решение.

По свойствам логарифмической функции можно перейти к записи . Осталось вспомнить производную логарифмической функции и вынести постоянный множитель:

Пример.

Решение.

Преобразуем исходную функцию .

Применяем правило вынесения множителя за знак производной и из таблицы берем производную показательной функции:

Производная суммы, производная разности.

Для доказательства второго правила дифференцирования воспользуемся определением производной и свойством предела непрерывной функции.

Подобным образом можно доказать, что производная суммы (разности) n функций равна сумме (разности) n производных .

Пример.

Найти производную функции .

Решение.

Упростим вид исходной функции .

Используем правило производной суммы (разности):

В предыдущем пункте мы доказали, что постоянный множитель можно выносить за знак производной, поэтому

Осталось воспользоваться таблицей производных:

Производная произведения функций.

Докажем правило дифференцирования произведения двух функций .

Запишем предел отношения приращения произведения функций к приращению аргумента. Будем учитывать, что и (приращение функции стремиться к нулю при приращении аргумента, стремящемся к нулю).

Что и требовалось доказать.

Пример.

Продифференцировать функцию .

Решение.

В данном примере . Применяем правило производной произведения:

Обращаемся к таблице производных основных элементарных функций и получаем ответ:

Пример.

Найти производную функции .

Решение.

В этом примере . Следовательно,

Давайте рассмотрим случай нахождения производной произведения трех функций. В принципе, по этой же системе можно дифференцировать произведение и четырех, и пяти, и двадцати пяти функций.

Пример.

Выполнить дифференцирование функции .

Решение.

Будем исходить из правила дифференцирования произведения двух функций. В качестве функции f(x) будем считать произведение (1+x)sinx , а в качестве g(x) возьмем lnx :

Для нахождения вновь применяем правило производной произведения:

Используем правило производной суммы и таблицу производных:

Подставляем полученный результат:

Как видите, порой приходится применять несколько правил дифференцирования в одном примере. Сложного в этом ничего нет, главное действовать последовательно и не мешать все в кучу.

Пример.

Найти производную функции .

Решение.

Функция представляет собой разность выражений и , поэтому

В первом выражении выносим двойку за знак производной, а ко второму выражению применяем правило дифференцирования произведения:

Производная частного двух функций (производная дроби).

Докажем правило дифференцирования частного двух функций (дроби) . Стоит оговориться, что g(x) не обращается в ноль ни при каких x из промежутка X .