Фактическая теплота сгорания природного газа. Газовое топливо. Особенности продуктов сгорания

Бытовые греющие приборы, функционирующие на сжиженном или природном газе, не требуют от хозяев постоянного внимания и контроля. Эту задачу выполняет автоматика для газовых котлов отопления.

Электронные и механические управляющие блоки, интегрированные в теплогенератор, регулируют горение и способствуют поддержанию в теплоносителе необходимой температуры.

Автоматика работает исправно, четко и надежно, повышает эффективность греющего оборудования, способствует разумному потреблению энергетического ресурса и делает эксплуатацию греющей системы простой, комфортной и абсолютно безопасной.

Система-автомат предохраняет отопительные установки от перегрузок и активирует аварийное отключение подачи газа в случае внезапных форс-мажорных обстоятельств. Дополнительно техника регламентирует уровень интенсивности горения и текущий расход топлива, позволяя хозяевам экономить финансовые средства на обогреве помещений.

Автоматический узел имеет гибкие настройки и позволяет владельцу задавать оборудованию максимально удобные для себя параметры работы

По базовому принципу работы и конструктивным особенностям автоматика для оборудования, работающего на газе, подразделяется на:

  • устройства с энергетической зависимостью;
  • независимые от энергии приборы.

Системы первого типа представляют собой сложные электронные агрегаты и для корректной работы, которые нуждаются в бесперебойной подаче электрики. Вторые виды устройств являются упрощенными механическими конструкциями, не требующие энергетической подпитки.

Вид #1 - энергозависимые изделия

Энергозависимый модуль – это небольшой электронный прибор, реагирующий на подачу топливного ресурса. Включается и отключается в момент активации или закрытия основного газового крана. Отличается сложной конструкцией и большим количеством элементов и микросхем.

Позволяет хозяевам решать следующие задачи:

  • активация или прекращение подачи газа;
  • запуск отопительной системы в автоматическом режиме;
  • регулировка уровня мощности базовой горелки (благодаря наличию термостата);
  • выключение работающего котла как в экстренных ситуациях, так и в рамках заданного пользователем режима;
  • вывод текущих показателей на дисплей (общий уровень температуры воздуха в комнате, отметка, до которой прогрет рабочий теплоноситель и пр.).

Более «навороченные» модули имеют дополнительный функционал и предлагают пользователям неограниченные и максимально удобные условия для контроля работы и управления агрегатом. Электронные панели обеспечивают полноценную защиту греющего оборудования от неисправности и не дают котлу промерзнуть.

Если в комнате резко опускается температура, «умная» система сама запускает отопительное оборудование и отключает его, когда жилище наполняется комфортным теплым воздухом.

Опция самостоятельной диагностики, имеющаяся у отдельных модулей, предупреждает сбои в работе и способствует своевременному выявлению неисправных деталей и узлов в системе. Она дает возможность максимально рано заметить поломку и заменить какой-то мелкий элемент еще до того, как он создаст для оборудования реальную проблему.

Небольшие поломки греющей системы в итоге превращаются в глобальные сложности и влекут за собой денежные траты, связанные с ремонтом и демонтажем (полным или частичным) оборудования. Самостоятельная диагностика помогает выявить неисправность и дает возможность своевременно ее устранить

Электронная автоматика, отвечающая за безопасную эксплуатацию оборудования, обеспечивает бесперебойную работу котла, не дает системе перегреваться и перекрывает подачу газа в случае падения тяги или затухания пламени в горелке.

Ассортиментная линейка энергозависимой автоматики, представленная сегодня на рынке, радует разнообразием. Полезные и нужные мини-агрегаты выпускают знаменитые на весь мир бренды и небольшие компании, только пытающиеся завоевать свое место под солнцем.

Энергозависисмая автоматика представлена в форме панели управления, где пользователь может выставить удобные для себя параметры работы оборудования. Стоимость «умного» элемента высока, но затраты оправданы, ведь с помощью управляющего блока можно снизить потребление ресурса без какого-либо ущерба для собственного комфорта

Среди предлагающихся моделей есть как совсем простые изделия, так и более продвинутые агрегаты с опцией программирования.

На них пользователь может выбрать наиболее подходящие для себя и запрограммировать систему на работу в режиме день/ночь или, ориентируясь на прогноз погоды, выставить определенный уровень прогрева дома или квартиры на период от 1 до 7 суток.

Вид #2 - энергонезависимые агрегаты

Энергонезависимая автоматика более проста и практична. Управление и настройка осуществляются вручную при помощи механических поворотных тумблеров и не представляют сложности даже для тех, кто далек от техники. Работает устройство абсолютно автономно и не нуждается в подключении к центральной электросистеме.

Для отопления жилого дома и подачи горячей воды в краны ручку контроля достаточно повернуть в направлении увеличения на 2-3 деления. Если требуется принять ванну или душ, тумблер необходимо установить на максимальный показатель

Изделие маркируется цифровой шкалой с перечнем значений от минимальных до максимальных. Для активации пользователь выбирает нужную отметку и таким способом задает подходящую рабочую температуру непосредственно котлу.

После этих манипуляций подключается и берет под контроль указанный режим прогрева. Котел активно работает до тех пор, пока помещение не прогревается до желаемой температуры. Потом теморегулятор отключает подачу газа в систему и активируется снова только тогда, когда в комнате становится холоднее.

Принцип действия основан на специфической конструкции устройства. Встроенная в теплообменник термопара газового котла оснащена специальным стержнем. Он изготовлен из особого железно-никелевого сплава под названием инвар.

Физические характеристики этого прогрессивного материала наделяют его возможностью почти мгновенно улавливать минимальные температурные колебания.

Если в комнате становится чрезмерно жарко или слишком холодно, размер стержня изменяется. На это реагирует соединительный клапан и своевременно перекрывает либо активирует поступление газа в горелку.

Наличие энергонезависимой автоматической управляющей системы дает возможность пользователям устанавливать в доме или квартире наиболее подходящий для себя температурный режим и экономно расходовать топливный ресурс, не переплачивая по коммунальным счетам

Дополнительно автоматика энергонезависимого типа имеет чувствительные . Если в трубе внезапно снижается давление или уровень тяги в дымоходе по каким-то причинам падает, подача ресурса сразу же прекращается и утечки газа удается избежать.

Энергонезависимая автоматика стоит вполне разумных денег и, в отличие от электронных аналогов, не требует покупки и установки стабилизатора, контролирующего напряжение и выравнивающего непредвиденные скачки в центральной электросети

Корректную работу датчика пламени обеспечивает специальная пластина. При нормальном и правильном функционировании системы она находится в слегка изогнутом состоянии.

Таким способом деталь удерживает перекрывающий клапан в режиме «Открыто ». Когда пламя становится меньше, пластина выравнивается и клапан под ее давлением закрывается.

Конструкция и принцип функционирования

Автоматика, управляющая работой , состоит из многих элементов, условно разделенных на две подгруппы. В первую входят механизмы, обеспечивающие полноценное и безопасное функционирование самого котла. Ко второй относятся устройства, дающие возможность эксплуатировать отопительную систему в максимально удобном и комфортном для пользователя режиме.

Составляющие элементы системы безопасности

За эксплуатационную безопасность агрегата отвечают несколько модулей:

  1. Контроллер пламени – состоит из двух основных деталей — электромагнитного клапана и термопары. Своевременно и надежно перекрывает газ и препятствует образованию утечки.
  2. Термостат – осуществляет поддержку заданной температуры теплоносителя и предохраняет систему от перегрева. Когда теплоноситель остывает до минимальных температур, модуль запускает котел в работу, а после фиксации пиково-высоких показателей отключает его, полностью избавляя хозяев от необходимости постоянно уделять внимание системе.
  3. Датчик, контролирующий тягу , несет ответственность за прекращение подачи газа на горелку в случае изменения базового положения биметаллической пластины, предупреждая таким способом утечку газа.
  4. Предохранительный клапан – следит за количеством теплоносителя в контуре.

Помимо всех вышеперечисленных полезных качеств, автоматика имеет ряд дополнительных функций, повышающих комфортность использования оборудования.

Устройство выполняет авторозжиг газовой горелки, осуществляет выбор самого эффективного рабочего режима, способствует рациональному расходу энергоресурса и проводит самостоятельную диагностику, избавляя хозяев от всех этих занятий.

Принцип работы автоматики безопасности

Актуальная нормативная документация говорит, что комплекс безопасности газовых котлов должен быть обязательно оборудован прибором, прекращающим работу всей системы и перекрывающим подачу газа в случае неожиданной поломки или каких-либо еще форс-мажорных обстоятельств.

Для осуществления этой задачи автоматика должна держать под контролем такие параметры, как:

  • давление газа в системе;
  • наличие в горелке пламени оптимального размера;
  • полноценная, качественная тяга;
  • уровень температуры рабочего теплоносителя.

Когда в энергонезависимой механической системе давление газа опускается до критического уровня, подача ресурса немедленно прекращается. Это происходит автоматически благодаря наличию клапанного механизма, настроенного на определенное значение.

Энергозависимые электронные устройства сконструированы несколько иначе. В них вышеописанную функцию осуществляет реле минимального/максимального давления.

При увеличении количества атмосфер мембрана со штоком изгибается, размыкая контакты питания самого котла. Газ перестает поступать и не подается до тех пор, пока уровень давления не восстанавливается.

Самостоятельно устранять неполадки и как-то вмешиваться в базовый функционал оборудования запрещено законодательно. Исправлять любые возникшие проблемы может только квалифицированный специалист – сотрудник газоподающего предприятия

Если в горелке исчезает пламя, термопара остывает и перестает вырабатывать ток. После этого электромагнитная заслонка в клапане уже не функционирует, и газ перестает поступать к горелке. При падении тяги биметаллическая пластина интенсивно прогревается, меняет форму и воздействует на клапан, заставляя его прекратить подачу топлива.

Температуру теплоносителя держит под контролем термостат. Он обеспечивает поддержание выбранного пользователем режима прогрева, при этом не давая системе перегреться и выйти из строя.

Нюансы функционирования системы

Энергозависимая электронная автоматика в работе опирается на информацию, полученную от датчиков. Микропроцессор и внутренний контроллер анализируют эти данные, обрабатывают и подают системе команды, оптимально подходящие для отдельно взятой конкретной ситуации.

Чтобы электронная автоматика нормально функционировала в течение длительного времени, необходимо ежегодно вызывать мастера для осмотра оборудования, диагностики микропроцессора и просмотра отчетов модуля памяти

У механики несколько иной принцип. Когда котел выключен, внутренний газовый клапан полностью перекрыт. В момент запуска оборудования шайба на клапане выжимается и происходит принудительное открытие прохода для топливного ресурса к запальнику. Розжиг стимулирует нагревание термопары и на ней происходит выработка напряжения.

Этот ресурс использует в работе электромагнит, поддерживающий клапан в открытом положении. Поворачивая шайбу вручную пользователь может без всяких усилий регулировать уровень и мощность своего греющего оборудования.

Обзор популярных моделей и производителей

На рынке прогрессивного газового оборудования и сопутствующих элементов представлена автоматика как отечественных, так и зарубежных производителей. По принципу работы все устройства абсолютно одинаковы, однако в конструкционном плане между ними есть существенные различия.

Наличие управляющей автоматики в системе газового отопления дает возможность комфортно обогревать помещение и рационально расходовать энергоресурс. При разумном подходе экономия может составить от 30 до 43%

Стоимость на модули варьируется в широчайшем диапазоне. Простые механические изделия с минимумом функций принадлежат к классу бюджетных и продаются по самой низкой цене. Продвинутые электронные панели ценятся гораздо выше, но предоставляют пользователю более развернутые возможности для индивидуальных настроек и контроля работы.

Некоторые устройства, как например, автоматика САБК, помимо базовых функций, снабжаются встроенным стабилизатором давления. Это позволяет осуществлять более точную регулировку работы газового оборудования

Электронные приборы с возможностью программирования считаются люксовыми. Они дают возможность владельцу задавать оборудованию план работы на длительный период времени с учетом сезонных погодных условий и текущей температуры воздуха на улице.

№1 - автоматика EUROSIT 630

Автоматический энергонезависимый блок EUROSIT 630 производства итальянской компании Sit Group (Eurosit) по продажам занимает лидирующее место на рынке.

Считается универсальным и эффективно работает с парапетными и мощностью от 7 до 24 кВт. Включение/выключение, поджиг запальной горелки и установка желаемой температуры осуществляются с помощью одной ручки с кнопкой.

Модуль Eurosit 630 – это современный агрегат для управления газовым оборудованием. Полностью соответствует международным стандартам и требованиям безопасности, предъявляемым к таким устройствам. Имеет евросертификат качества и гарантию от производителя

Изделие отличается высоким уровнем надежности, выдерживает значительные эксплуатационные нагрузки и имеет обширный функционал. Конструктивные элементы «прячутся» в корпусе, к которому подводятся кабели датчиков и прочие соединительные трубки.

Время зажигания отопительного котла при помощи автоматики Eurosit 630 составляет 10 секунд. Газ сразу же подается в систему и очень скоро помещение прогревается до заданной температуры

Внутри агрегата располагаются отсекатель, пружинный клапан и регулятор давления. Подвод газа осуществляется снизу или сбоку сообразно пожеланиям пользователя. По стоимости агрегат входит в разряд бюджетных.

№2 - модуль Honeywell 5474

Прибор Honeywell 5474 изготовляется немецким концерном Honeywell , уже более сотни лет специализирующимся на разработке и продаже различных видов автоматики. Корректно работает с бытовыми мощностью до 32 кВт.

Honeywell 5474 – энергонезависимый прибор для управления системой отопления. Оснащен микрофакельными горелками из жаропрочной нержавеющей стали. Они обеспечивают более качественное сгорание газа, снижают выброс в атмосферу вредных веществ и не дают лишней саже откладываться в дымоходе

Автоматическая система Honeywell 5474 снабжена базовым набором контролирующих функций, которые гарантируют эффективную работу котла при абсолютной безопасности для пользователей.

Изделие в авторежиме поддерживает заданную температуру теплоносителя (от 40 до 90 градусов), отключает котел в случае прекращения подачи топлива, отсутствия тяги нужного уровня в дымоходе, возникновения обратной тяги или затухания горелки.

№3 - премиум-автоматика от Honeywell

Кроме недорогих бюджетных моделей компания Honeywell выпускает и другие виды автоматического оборудования, например, люксовые хронотермостаты премиум-серии СТ либо программированные термостаты Honeywell YRLV430A1005/U.

Прибор YRLV430A1005/U при максимально широком функционале обладает дружественным интерфейсом и не вызывает у клиентов никаких сложностей в процессе использования. Стоимость изделия довольно высока, но все же ниже, чем у конкурентов, предлагающих сходные по характеристикам модели

Эти электронные панели позволяют задать греющему оборудованию самые подробные и точные настройки, вплоть до изменения температурного режима несколько раз в день в зависимости от времени суток, погодных условий и личных пожеланий.

№4 - устройство Орион

Автоматическое устройство Орион изготовляется в России. В комплектацию прибора входят пьезоэлектрический розжиг и датчик тяги.

Прибор Орион выглядит просто и имеет минимальный набор функций. Его возможности не слишком велики, но, благодаря лояльной стоимости и элементарному способу управления, агрегат пользуется спросом

Устройство отключает газ в случае произвольного затухания горелки или отсутствия нужной тяги. Когда температура воздуха в помещении снижается, термостат активирует подачу топлива и работа котла возобновляется.

Переход в режим уменьшения пламени при достижении определенной (заданной пользователем) температуры происходит автоматически и позволяет экономить топливный ресурс.

Выводы и полезное видео по теме

Подробное описание принципа работы автоматики, предназначенной для газового котла. Интересные особенности и нюансы контролирующего оборудования:

Как работает автоматика газового отопительного котла. Наглядная демонстрация процесса розжига газового агрегата:

Подробное описание одной из самых популярных моделей автоматики, предназначенной для управления и регулировки газового котла:

Газовая отопительная система, управляемая автоматикой, представляет собой практичный и экономически выгодный вариант домашнего греющего оборудования .

Механический контролер отличается невысокой ценой, надежностью и элементарным способом управления. Электронная панель стоит дороже, но имеет расширенный функционал, позволяющий создавать в помещении максимально комфортные условия.

Приобретать мини-агрегаты лучше в фирменных магазинах, где продается сертифицированный товар, соответствующий всем требованиям, предъявляемым к элементам греющих систем, работающих на газе.

Вам известны тонкости работы автоматики газового оборудования, не отмеченные в статье? Возникли вопросы в ходе ознакомления с материалом? Пишите, пожалуйста, комментарии, делитесь собственным мнением и фотоснимками по теме статьи.

Действие автоматики безопасности должно приводить к автоматическому отключению подачи газа к горелкам при отклонении контролируемых параметров за пределы допустимых значений.

Требования к исполнительным механизмам автоматики безопасности.

Перед горелками газоиспользующих установок должна предусматриваться установка автоматических быстродействующих запорных клапанов (ПЗК) с герметичностью затвора класса А в соответствии с ГОСТ 9544-93 и временем закрытия до 1 с.

Горелки должны быть оснащены:

  • номинальной мощностью до 0,35 МВт -одним газовым автоматическим запорным органом (ПЗК);
  • единичной мощностью свыше 0,35 до 2,0 МВт (свыше 0,35 МВт до 1,2 МВт - см. п. 5.9.8. ПБ 12-529-03) - по ходу газа двумя располагаемыми последовательно газовыми автоматическими запорными клапанами (ПЗК) и регулирующим устройством перед горелкой;
  • единичной мощностью свыше 2,0 МВт (свыше 1,2 МВт) - двумя располагаемыми последовательно газовыми автоматическими запорными клапанами (ПЗК) и автоматическим органом контроля утечки г а з а, установленным между ними и связанным с атмосферой, обеспечивающим автоматическую проверку герметичности затворов ПЗК перед запуском (розжигом), и регулирующим устройством перед горелкой.

На газоиспользующих установках, оборудованных группой горелок с контролируемым факелом, обеспечивающим розжиг остальных горелок (группы), допускается первый по ходу газа ПЗК устанавливать общим.

Прекращение подачи электроэнергии к газовому автоматическому запорному органу от внешнего источника должно вызывать его закрытие.

Запорный орган должен закрываться без дополнительного подвода энергии от внешнего источника.

Время от момента прекращения подачи энергии от внешнего источника до прекращения поступления газа через запорный орган не должно превышать 1 с.

Работоспособность автоматики горелок должна быть обеспечена при отклонениях питающего напряжения электрического тока от +10 до -15 % номинального. "

В качестве исполнительных механизмов автоматики безопасности, которые производят отключение подачи газа, в настоящее время используются электромагнитные устройства (клапаны). Такие клапаны просты и компактны, просто включаются в схему автоматики. Преимуществом таких клапанов является также их быстродействие - они обеспечивают практически мгновенное отключение подачи топлива при срабатывании устройств безопасности.

Основной недостаток - в открытом состоянии они потребляют электроэнергию.

Электромагнитный клапан является двухпозиционным запорным органом: находится либо в открытом, либо в закрытом положении.

Вентиль СВМГ (рисунок ниже) предназначен для установки на газопроводах с давлением газа от 0,01 до 0,1 МПа и температурой от -15 до +40 °С. Минимальное давление перед клапаном 0,5 кПа, мощность электромагнита типа ЭВ-2 в защищенном исполнении не более 40 Вт. Время открытия и закрытия не более 1 с. Монтируют на горизонтальном газопроводе магнитом вверх.

Вентиль СВМГ

1 - сальниковый ввод для электрокабеля; 2 - клемма электромагнита; 3 - электромагнит; 4 - упор; 5 - клемма провода заземления; 6 - упорный стержень; 7, 15 - пружины; 8 - якорь; 9 - крышка; 10 - плунжер разгрузочный; 11, 20 - отверстия; 12 - седло; 13 - плунжер основной; 14 - металлический диск; 16 - хвостовик разгрузочного плунжера; 17 - колпачок; 18 - штуцер; 19 - толкатель; 21 - корпус

Запорный механизм вентиля состоит из основного и разгрузочного плунжеров. Основной плунжер представляет собой тарельчатую мембрану из маслобензиностойкой резины, в центральную часть которой вмонтирован металлический диск. По периферии мембрана зажата между корпусом и крышкой вентиля и имеет ряд отверстий, через которые газ входного давления попадает в надмембранное пространство. Тянущий электромагнитный привод имеет катушку, расположенную в кожухе, якорь и трубку, приваренную к упору. Герметизация кожуха производится резиновым уплотнительным кольцом, установленным между трубкой и крышкой корпуса.

При отсутствии напряжения на клеммах электромагнита основной проход вентиля закрыт. Давление газа на входе в вентиль прижимает основной плунжер к центральной части мембраны с металлическим диском. Разгрузочный плунжер за счет своего веса и веса якоря нижним заостренным концом прижат к верхней стороне основного плунжера.

Включение тока вызывает движение якоря вверх: сначала выбирается зазор между крышкой и разгрузочным плунжером, а затем приподнимается разгрузочный плунжер. Через отверстия в верхней части хвостовика газ поступает в вертикальное осевое сверление хвостовика, а затем - в выходную полость корпуса. Уменьшение перепада давления газа над и под основным плунжером позволяет якорю поднять его до полного открытия седла. Для плавного хода якоря служит демпфирующее устройство с упорным стержнем и пружиной. При подъеме мембраны газ из надмембранной полости через отверстия хвостовика сбрасывается в рабочую полость вентиля.

Если подача тока к электромагниту прекращается, то якорь, основной и разгрузочный плунжеры опускаются. Разгрузочный плунжер перекрывает отверстие в хвостовике основного плунжера, сброс газа в рабочую полость Прекращается, надмембранная полость вновь заполняется газом, и в ней создается давление, равное давлению под мембраной. Рабочее давление газа прижимает основной плунжер к седлу корпуса, герметизируя затвор.

Вентиль имеет ручной дублер, с помощью которого можно открыть проход газа вручную. Он состоит из толкателя, перемещаемого при помощи накидной ручки по резьбе штуцера, имеющего сальниковое устройство, до упора с нижней поверхностью хвостовика, отжимаемого от основного плунжера пружиной. Нормально дублер закрыт колпачком.

Вентиль мембранный с электромагнитным приводом (рисунок ниже) состоит из следующих элементов: корпус, седло, запирающий элемент (клапан) основного затвора с загрузочным отверстием α, резиновая мембрана, соединенная с клапаном основного затвора, крышка с каналом и разгрузочным отверстием β, запирающий элемент управляющего затвора (клапана), закрепленный на торце сердечника, обмотка, полюс, кабельный ввод (электропитание), шпиндель, ключ-колпачок (ручной дублер), пружина. Канал соединяет разгрузочное отверстие β с полостью выходного отверстия (патрубка) Б.

Вентиль мембранный с электромагнитным приводом

1 - корпус; 2 - седло; 3 - запирающий элемент (клапан) основного затвора с загрузочным отверстием α; 4 - резиновая мембрана, соединенная с клапаном основного затвора; 5 - крышка с клапаном δ и разгрузочным отверстием β; 6 - запирающий элемент управляющего затвора (клапана), закрепленный на торце сердечника 7; 8 - обмотка; 9 - полюс; 10 - кабельный ввод (электропитание); 11 - шпиндель; 12 - ключ-колпачок (ручной дублер); 13 - пружина; ø - канал, соединяющий разгрузочное β с полостью выходного отверстия (патрубка) Б; А - входной патрубок; Б - выходной патрубок; В - надмембранная по лость

Рабочая среда (газ) под рабочим давлением подается в патрубок А и через загрузочное отверстие α и канал δ попадает в надмембранное пространство В и полость герметичной трубки управления затвора.

При обесточенной обмотке запирающий элемент управления затвора перекрывает разгрузочное отверстие β, а запирающий элемент основного затвора перекрывает проход в седле.

Давление среды в полости В и герметичной трубке равно рабочему давлению. Давление обеспечивает герметичность закрытия основного и управляющего затвора; создается рабочим давлением, массой подвижных частей и действием пружины. Полости патрубков А и Б разобщены. Клапан закрыт.

При подаче напряжения на обмотку сердечник (с запирающим элементом) перемещается к полюсу и открывает проход рабочему давлению газа через разгрузочное отверстие β и далее по каналу в полость выходного патрубка Б. Соединяются полости В и патрубок Б. Так как проходное сечение загрузочного отверстия α меньше проходного отверстия β, то рабочее давление в полости В падает.

Давление в подмембранной полости больше давления в надмембранной полости В. Под действием перепада давления мембрана перемещается вверх, перемещая клапан основного затвора и открывая проход в седле основного затвора; поток рабочей среды поступает из патрубка А в патрубок Б. Клапан открыт.

После снятия нагрузки с обмотки сердечник с запирающим элементом под действием собственной массы и усилия пружины перемещается вниз и перекрывает разгрузочное отверстие β в седле управляющего затвора. При этом рабочая среда продолжает поступать через загрузочное отверстие а в полость В и герметичную трубку управляющего затвора.

Давление среды в этих полостях становится равным рабочему давлению. Перепад давления, воздействующего на мембрану, становится равным 0. Запирающий элемент основного затвора перемещается вниз, перекрывая проход в седле основного затвора. Полости патрубка А и патрубка Б разобщены. Клапан закрыт.

Вентиль ВНД-80 (рисунок ниже) используют в системах комплексной автоматики в качестве исполнительного механизма автоматики безопасности. Вентиль рассчитан на давление 3 кПа; тип электромагнита - МИС-6100Е.

Вентиль ВНД-80

1 - корпус; 2 - груз; 3 - шток; 4 - направляющий стакан; 5 - сердечник; 6 - электромагнит; 7 - защитный кожух; 8 - мембрана; 9 - плунжер

Вентиль состоит из корпуса с направляющим стаканом, на котором при помощи стоек крепится электромагнит, заключенный в защитный кожух. Для предотвращения попадания газа под кожух последний отделен от корпуса мембраной. Сердечник электромагнита соединен со штоком, на котором закреплены плунжер и груз.

При наличии тока в обмотке электромагнита якорь втянут в катушку и клапан открыт. В случае срабатывания датчиков автоматики безопасности цепь питания электромагнита разрывается, клапан под действием груза опускается и перекрывает проход газа к горелкам. Закрытый клапан прижимается к седлу грузом и давлением газа.

Клапаны газовые электромагнитные типа КГ (рисунок ниже) предназначены для дистанционного или автоматического включения и отключения газовых горелок, а при параллельной установке на двух линиях - для ступенчатого регулирования расхода газа. Максимальное рабочее давление газа - до 50 кПа. Размеры изменяются в зависимости от типа клапана, определяемого диаметром условного прохода. Клапаны выпускаются типов КГ-10У, КГ-20У, КГ-40, КГ-70.

Клапан КГ

1 корпус; 2 - крышка; 3, 14 - мембраны; 4 - однотарельчатый клапан; 5 - пружина; 6 - регулировочный болт; 7 - крышка; 8, 9 - отверстия; 10 - электромагнит; 11 - сердечник; 12 - серьга; 13 - соединительное устройство; 15, 20 - сверления; 16 - пружина; 17 - клапан; 18 - седло; 19 - штуцер

Между корпусом и крышкой зажата мембрана. В центральной части мембраны расположен однотарельчатый клапан, состоящий из верхнего диска и нижней мягкой прокладки. Газ входного давления из полости А через сверления (на рисунке показаны условным штрих-пунктиром, так как расположены в плоскости, повернутой примерно на 90°) поступает в полость Б, из которой по отверстиям (диаметром 1 мм) и перетекает в надмембранное пространство В. Если из полости В нет сброса газа, то давление в ней и под мембраной (полость А) одинаково. Под действием веса клапана и усилия пружины обеспечивается герметичное перекрытие прохода газа.

При подаче тока на электромагнит в него втягивается сердечник, который через серьгу и соединительное устройство поднимает клапан. Газ из надмембранной полости В через отверстие, открытое седло и штуцер сбрасывается в газопровод за клапаном, к запальнику или в топку. Давление в надмембранной полости В становится близким к атмосферному, мембрана и вместе с ней клапан под действием входного давления поднимаются, и открывается проход газа к горелке. Ход клапана может изменяться с помощью регулировочного болта, расположенного в крышке.

При отключении тока клапан электромагнита под действием веса движущихся частей и пружины опускается, выход газа из надмембранной полости перекрывается, и она вновь заполняется газом. Давление над мембраной и под ней выравнивается, клапан под действием пружины прекращает доступ газа к горелке.

Соединительное устройство позволяет регулировать ход золотника. Для исключения утечки газа в атмосферу из клапанного устройства электромагнита установлена мембрана.

Клапан КГ-10 (рисунок ниже) действует следующим образом. При отсутствии электрического тока на обмотке электромагнита газовый клапан закрыт. Под действием массы клапана и усилия пружины обеспечивается герметичное перекрытие прохода газа. При подаче электрического тока напряжением 220 В на обмотку электромагнита сердечник, шток и электромагнитный клапан перемещаются вверх, закрывается выход газа из подмембранной полости в надмембранную. Надмембранная полость через трубку сброса сообщается с газопроводом после газового клапана. Газ из надмембранной полости сбрасывается в газопровод, то есть давление в ней падает, мембрана прогибается вверх под действием давления газа снизу. Клапан открывается, пропуская газ к горелке.

Клапан КГ-10

1 - корпус; 2 - крышка; 3 - патрубок входа; 4 - патрубок выхода; 5 - клапан; 6 - седло клапана; 7 - мембрана; 8 - жесткий центр мембраны; 9 - соленоидный клапан; 10 -сердечник электромагнита; 11 - обмотка электромагнита; 12 - пружина; 13 - шток клапана; 14 - трубка; 15, 16 - каналы для прохода газа; 17 - колпачок; 18 - болт; 19 - пружина

Блок питания газовый (БПГ) (рисунок ниже). С помощью блока можно производить не только подачу и отсечку газа, но и ступенчатое регулирование расхода, а также включение или отключение запальника.

Блок питания газовый (БПГ)

1, 15, 16 - электромагниты; 2, 5 - штоки; 3 - пружина; 4 - мембрана; 6 - крышка; 7 - клапан большого горения; 8 - отверстие; 9 - корпус; 10 - клапан малого горения; 11 - клапан запальника; 12, 13 - штуцеры; 14 - коробка

Блок рассчитан на рабочее давление газа 0,8-5,0 кПа с температурой до 50 °С. Температура окружающего воздуха 5-50 °С при относительной влажности до 80%. Напряжение переменного тока 220 В, потребляемая мощность не более 100 В·А. Привод клапанов осуществляется электромагнитами типа ЭД-05101УЗ.

Корпус блока имеет два отверстия с седлами, перекрываемыми клапанами большого и малого горения, которые могут подниматься в основной полости крышки. В дополнительной полости правой части крышки расположен клапан запальника. Все три клапана с помощью штоков соединены с сердечниками электромагнитов и прижимаются к седлам пружинами. Для предотвращения проникновения газа из основной и дополнительной полостей крышки в коробку, где расположены электромагниты, служат мембраны.

В исходном положении (электромагниты обесточены) все три клапана закрыты, газ к основной горелке и запальнику не подается. При этом газ входного давления, поступающий через отверстия в клапане большого горения из корпуса в основную полость крышки, дополнительно поджимает клапан малого горения к седлу, повышая его герметичность.

Газ к клапану запальника подается через штуцер диаметром 6 мм. При подаче тока на электромагнит в него втягивается сердечник, поднимается клапан и газ поступает к запальному устройству через штуцер. Доступ газа к основной горелке для ее работы на малом режиме открывается при подаче тока на электромагнит и подъеме клапана. Расход газа в этом случае определяется диаметрами отверстий в клапане, которые соответствуют диаметру условного прохода 20 (для БПГ-1) и 40 (для БПГ-2) мм. Для перевода основной горелки на номинальный режим подается ток на: электромагнит и открывается клапан большого горения, диаметр условного прохода которого равен 40 (для БПГ-1) и 65 (для БПГ-2) мм.

Электромагнитный клапан ЭМК-15 (рисунок ниже) предназначен для автоматического прекращения подачи газа к горелке при погасании контролируемого факела. Рабочее давление газа не более 3,0 кПа. Клапан изготовляется в двух модификациях - ЭМК-П и ЭМК-1Н.

Клапан ЭМК-15

1 - входной патрубок; 2 - железная пластина; 3 - обмотка электромагнита; 4 - электромагнит; 5, 8, 15, 17 - прокладки; 6, 13, 14 - пружины; 7 - золотник; 9 - седло; 10 - выходной патрубок; 11 - пусковой рычаг; 12 - нижний шток; 16 - нижний золотник; 18 - нижнее седло; 19 - патрубок

В корпусе ЭМК-Ш-15 верхнее седло перекрывается золотником с уплотнительной прокладкой. Плотность запирания затвора обеспечивается пружиной и давлением газа. Если вручную поднять вверх пусковой рычаг, то нижний золотник с мягкой прокладкой под действием пружины перекроет нижнее седло, а шток нижнего золотника, преодолевая усилие пружины, поднимет золотник и соединенную с ним через шток железную пластину до упора с электромагнитом. При этом газ из входного патрубка поступает в полость А и из нее через патрубок к запальному устройству, не проникая в выходной патрубок.

При поступлении тока в обмотку электромагнита золотник удерживается в открытом положении при ЭДС не менее 25-35 мВ от термопары запальника. Время, необходимое для нагрева термопары и создания указанной ЭДС, составляет около 30 с. Затем рычаг отпускают, под действием пружины он и нижний золотник опускаются. Газ из полости А поступает в выходной патрубок и через него - к основной горелке, где поджигается от факела запальника. С момента прекращения нагрева термопары золотник закрывается не позже чем через 20 с.

Для предотвращения утечки газа в атмосферу при движении нижнего штока служит специальная уплотнительная прокладка, а для уплотнения резьбовых соединений - прокладка.

Клапаны ПКН (ПКВ) (рисунок ниже) предназначены для прекращения подачи газа потребителям при повышении или понижении давления газа сверх заданных пределов. ПКН (ПКВ) также широко используют в качестве запорных (отсечных) устройств, срабатывающих при изменении не только давления газа, но и других контролируемых параметров по сигналам соответствующих датчиков. Для этого ПКН (ПКВ) комплектуют дополнительным электромагнитом.

Клапан ПКН (ПКВ) с электромагнитной приставкой

1 - ударный молоточек; 2 - штифт молоточка; 3 - направляющий штырь; 4 - шток; 5 - пружина; 6 - запорная скоба; 7 - рамка; 8 - электромагнит; 9 - кронштейн; 10 - болт; 11 - анкерный рычаг; 12 - штифт рычага; 13 - клапан; 14 - корпус; 15 - грузовой р ычаг

Электромагнит устанавливают на специальном кронштейне. До установки на кронштейне электромагнит монтируют в специальной рамке, а затем кронштейн крепят двумя болтами, соединяющими корпус клапана с его мембранной головкой. К стенке рамки приварена ось, на которой свободно вращается опорная втулка молоточка. Запорная скоба, имеющая два отверстия, надета на шток и на направляющий штырь и соединена с якорем электромагнита.

При наличии напряжения на клеммах электромагнита его якорь опускается в крайнее нижнее положение и через шток, преодолевая сопротивление пружины, опускает вниз скобу. В этом положении скоба находится в зацеплении с штифтом молоточка.

При прекращении подачи тока скоба под действием пружины поднимается вверх и выходит из зацепления со штифтом молоточка. Молоточек падает, ударяет по плечу анкерного рычага и освобождает удерживаемый защелками клапан ПКН (ПКВ), который прекращает подачу газа.

Клапаны КМГ (рисунок ниже). Клапаны магнитные газовые КМГ-100 с условным проходом 20 мм устанавливаются на газопроводах природного газа по ГОСТ 5542-87. Рассчитаны на рабочее давление 0-100 кПа. Герметичность затвора класса А по ГОСТ 9544-93. Рабочие температуры от -15 до +60 °С. Время открытия и закрытия - не более 1 с.

Клапаны КМГ

1 - корпус; 2 - электромагнит; 3 - разъем с встроенным выпрямителем; 4 - фильтр; 5 - разгрузочный клапан; 6 - регулятор потока газа

Клапаны газовые КМГ-20 с электромагнитным приводом предназначены для регулирования и отключения подачи природного газа в системах газоснабжения в горелках газовых и на аналогичном газопотребляющем и газоиспользующем оборудовании. Клапан типа КМГ-20-НО в нормальном исполнении используется как запорное устройство на газопроводе безопасности.

Клапаны КМГ имеют следующие варианты исполнения:

  • КМГ-20 - клапан газовый электромагнитный для применения в качестве запорного органа;
  • КМГ-20Р - клапан газовый электромагнитный с ручным регулятором потока газа для применения в качестве запорно-регулиру- ющего органа;
  • КМГ-20Д — клапан газовый электромагнитный с электромагнитным приводом регулятора потока газа. Совмещает в себе запорный клапан и клапан регулирования расхода среды. Обеспечивает двухпозиционный режим работы газоиспользующего оборудования.

При наличии напряжения на электромагнитах сердечник втянут в электромагнит и клапан открыт; клапан КМГ-20-НО - закрыт. При отсутствии напряжения - наоборот.

Клапаны КМГ-20Р и КМГ-25Р имеют ручные регуляторы потока газа с регулировочным винтом. Вращение регулировочного винта увеличивает или уменьшает площадь выпускного отверстия седла клапана, что вызывает изменение расхода среды.

Клапаны отсечные 1256-00Э ТО, 1256-50Э ТО, 1256-00Э ТО (рисунок ниже). Клапаны отсечные предназначены для работы в качестве отсечного органа на линии подачи газа к горелкам паровых и водогрейных котлов. Клапаны осуществляют выполнение технологических защит, автоматизированное дистанционное управление подачей газа к горелкам котлов.

Клапаны отсечные (1256-00Э ТО, 1256-50Э ТО)

1 - основание; 2 - корпус; 3 - крышка; 4 - тарелка (клапан); 5 - шток; 6 - гайка; 7 - кольцо; 8 - кольцо разрезное; 9 - пружина; 10 - кольцо; 11, 12 - кольца уплотнительные; 13 - седло клапана; 14 - болт; 15 - рычаг; 16 - паронитовая прокладка; 17 - болт; 18 - крышка; 19 - гайка; 20 - рычаг; 21 - фиксатор; 22 - защелка; 23 - коромысло; 24 - серьга; 25 - упор; 26 - ролик; 27 - верхний переключатель; 28 - нижний переключатель; 29 - электромагнит; 30 - МЭО; 31 - болт с гайкой крепления электропровода; 32 - крепление электромагнита; 33 - шплинт; 34 - крепление упора; 35 - ось; 36 - крепление переключателей

Технические данные: условный проход - 200, 150, 100 мм; рабочее давление среды - 0,25 МПа; время полного закрытия - не более 1 с; класс герметичности затвора по ГОСТ 9544-93 - I; тип привода - электрический; род тока - переменный.

Управление клапаном осуществляется автоматически с помощью электропривода типа МЭО-16.

Клапан состоит из следующих основных частей (рисунок выше):

  • корпуса, в выходном патрубке которого вварено седло;
  • крышки, соединенной при помощи болтов и гаек с корпусом клапана с уплотнением места соединения паронитовой прокладкой;
  • тарелки, соединенной при помощи гайки со штоком и образующей вместе с седлом корпуса и уплотнительным кольцом отсечной орган клапана;
  • привода.

Нижний конец штока образует с тарелкой разгрузочный орган клапана, а верхний конец штока соединен с приводом. Для обеспечения необходимого усилия для уплотнения отсечного органа клапана на штоке установлена пружина, верхний конец которой упирается в крышку, а нижний опирается на шток при помощи кольца и разрезного кольца.

Привод крепится совместно с крышкой к корпусу и состоит из следующих основных деталей (рисунок выше):

  • основания, на котором установлены электропривод типа МЭО-16. При помощи болтов с гайками электропривод крепится к основанию. Крутящий момент МЭО-16 с ролика передается рычагу;
  • электромагнита, закрепленного на основании посредством болтов с гайками. Сердечник электромагнита при помощи коромысла и серьги соединен с защелкой. Защелка и коромысло вращаются на оси, приваренной к основанию;
  • рычага с фиксатором, соединенных между собой болтами с гайками и шайбами, шплинта;
  • двух путевых выключателей закрепленных на основании болтами с гайками.

После подачи напряжения электропривод МЭО-16 при помощи своего рычага с закрепленным на нем роликом, преодолевая усилие пружины, поднимает рычаг со штоком и тарелкой клапана в верхнее положение, при котором фиксатор войдет в зацепление с защелкой. Упор при этом выйдет из зацепления с нижним путевым выключателем и войдет в зацепление с верхним путевым выключателем, подав напряжение на электромагнит и сигнал на возвращение рычага исполнительного механизма МЭО-16 в исходное положение, а рычаг удерживается в верхнем положении электромагнитом при помощи защелки, коромысла и серьги. При отключении электромагнита за счет усилия пружины клапана и веса падающих частей клапан закроется. Путевые выключатели одновременно с управлением клапаном сигнализируют о его открытии и закрытии.

Двойной магнитный клапан (рисунок ниже) обеспечивает прекращение подачи газа при регулировочных или аварийных остановках горелки. В целях повышения уровня безопасности магнитный клапан типа DMV состоит из встроенных в один корпус двух магнитных клапанов с малым временем срабатывания. Без напряжения на катушках клапаны закрыты. Двойной магнитный клапан имеет также регулирующий дроссель, что позволяет дополнительно ограничивать расход газа.

Двойной магнитный клапан


1 - электромагнитный клапан запальника; 2 - двойной магнитный клапан DMV; 3 - поверочная горелка; 4 - реле давления газа, макс.; 5 - реле давления газа, мин.; 6 - блок контроля герметичности VPS; 7 - компенсатор; 8 соединительные элементы

Клапан состоит из корпуса с патрубками для подключения импульсных трубок газовых линий и приборов, электромагнитной катушки с электроконтактной вилкой, электрического разъема и фильтра, установленного на входе в клапанный узел.

Автоматический контроль герметичности VPS-504 (рисунок ниже) монтируется на двойной магнитный клапан и работает по принципу нарастания давления. Программный датчик контроля герметичности начинает функционировать при запросе на выработку тепла перед включением горелки. Контроль герметичности производится перед каждым пуском горелки. При нарушении герметичности двойного магнитного клапана подача газа прекращается и появляется индикация «Неисправность».

Автоматический контроль герметичности VPS-504

В состоянии покоя клапаны VI и V2 закрыты.

При повышении давления внутренний насос контроля герметичности увеличивает давление газа на участке испытания между магнитными клапанами на 20 мбар по отношению к установленному входному давлению. Встроенное реле дифференциального давления контролирует участок испытания на герметичность. При достижении величины контрольного давления насос выключается (окончание времени испытания). Время выключения (через 10-26 с) зависит от испытательного объема газа (максимально - 4,0 л).

При герметичности участка испытания через 26 с происходит размыкание контактов у автомата горения - загорается желтая сигнальная лампа. При нарушении герметичности участка испытания или если во время проверки (в течение 26 с) не происходит увеличения давления на 20 мбар, то VPS-504 включается в режиме неисправности. Красная сигнальная лампа горит до тех пор, пока контакты разъединены (при наличии запроса на подачу тепла).

В рабочем режиме клапаны V 1 и V 2 открыты. После кратковременного пропадания напряжения во время проверки или во время эксплуатации горелки происходит самозапуск устройства.

Организация диспетчерского пункта и централизованное управление котельной требуют создания системы защиты котельного агрегата. Задачей защиты является своевременное предупреждение диспетчера о возникших неполадках в работе котла или вспомогательного оборудования теплового агрегата и производство соответствующих отключений, ликвидирующих возможную аварию или предупреждающих нежелательные последствия возникших неисправностей.

Значительное число аварий в котельных происходит из-за отказов или сбоев в системах автоматики безопасности, ошибок обслуживающего персонала.

Особенности сжигания газового топлива диктуют необходимость применения на газифицированных агрегатах автоматической защиты, действие которой сводится к отключению подачи топлива к горелкам при отклонении контролируемых параметров за пределы допус­тимых значений. Согласно СНиП 11-37–76 на газифицированных агрегатах автоматика безопасности водогрейного котла должна обеспечивать прекращение подачи газа:

– при отключении напряжения питающей сети и в цепях управления;

– неисправности основных узлов блока управления и сигнализации;

– погасании пламени запальника и горелки;

– понижении и повышении давления газа перед горелкой;

– повышении температуры воды на выходе из котла;

– повышении и понижении давления воды за котлом;

– понижении разрежения в топке;

– повышении давления в топке (взрыв);

– загазованности котельной вследствие утечки газа;

– срабатывании пожарной сигнализации.

Автоматика безопасности парового котла должна дополнительно срабатывать:

– при отключении дымососа или вентилятора;

– понижении уровня воды в барабане (упуск воды);

– понижении давления воздуха в общем коробе или останове дутьевого вентилятора (вентиляторов);

– понижении давления и температуры острого пара;

– повышении давления и температуры острого пара;

– отключения питательного насоса, и др.

Существенной частью схемы действия защит является световая и звуковая сигнализация на щите диспетчера. Звуковая сигнализация обеспечивается сиреной, установленной на щите управления.

Световая сигнализация обеспечивается сигнальными лампами на щите управления в котельной и (или) в диспетчерском пункте.

Причина аварии отображается:

– на экране монитора рабочей станции оператора;

– щите контроллера при помощи панели оператора.

Сигнализация делится на предупредительную и аварийную.

Предупредительная сигнализация используется для оповещения персонала о выходе параметров, характеризующих работу котла, за установленные пределы или при достижении опасной концентрации СО, равной 20±5 мг/м 3 , в рабочей зоне. Назначение предупредительной сигнализации – привлечь внимание диспетчера к нарушению режима работы котельного агрегата. Приняв предупредительный сигнал, диспетчер наблюдает за действием защиты и контролирует процесс по показаниям приборов, принимая меры для предотвращения аварии. Сигнализация по превышению метана в воздухе котельной предусмотрена в щите сигнализации существующего общекотельного оборудования.



Сигналы аварийной сигнализации ста­вят в известность диспетчера о происшедшей аварии и причинах ее возникновения при аварийном останове котла, электродвигателей дымососа и вентилятора. Аварийная сигнализация включается при отсутствии напряжения в цепях предупредительной сигнализации и в случаях, когда концентрация СО в рабочей зоне превысила 100 мг/м 3 .

Поскольку при аварийном отключении котла по сигналу одного из аварийных преобразователей могут сработать другие датчики, задачей схемы защиты и сигнализа­ции является сохранение сигнала, из-за которого произошла авария, и нереагирование на сигналы, которые возникают как следствие аварии.

Сигнализация параметров и защита, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла, поэтому может возникнуть аварийная ситуация.

Например, при упуске воды из барабана уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван пережог труб донных экранов. Сработавшая без промедления защита предотвратит выход из строя парогенератора.

При уменьшении нагрузки парогенератора интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела.

Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию среди аварийных защит паровой котельной выделяют:

¨ останов парогенератора;

¨ снижение нагрузки парогенератора;

¨ выполнение локальных операций.

Порядок останова котлоагрегата:

¨ отключаются все топливопитающие агрегаты, закрываются все электрофицированные задвижки на газопроводе к котлу;

¨ дутьевые вентиляторы и дымососы остаются в работе;

¨ после подтверждения отключения топливоподачи:

– закрываются паровые задвижки;

– закрываются задвижки подачи воды в пароохладитель;

– открываются задвижки на продувку пароперегревателей.

Закрытие задвижек и регулирующих клапанов по питательной воде происходит только при срабатывании защит от повышения уровня воды в барабане.

Аварийное снижение нагрузки (снижение подачи топлива до минимально возможного) реализуется при повышении давления и температуры острого пара, а также при отключении дутьевых вентиляторов и дымососов.

Локальные операции (примеры):

– повышение уровня воды в барабане котла на 125 мм от нормы – открытие задвижек аварийного слива, при снижении уровня – закрытие задвижек аварийного слива;

– повышение давления острого пара до 15,1 МПа – открывание контрольного предохранительного клапана;

– повышение давления острого пара до 16,7 МПа – открывание рабочего предохранительного клапана.

Включение котла производится только после выяснения и устранения причины ава­рийного останова котла.

Необходимость оборудования котлов и производственных агрегатов автоматикой для отключения газа при нарушении других параметров решается в каждом конкретном случае в зависимости от мощности, технологии и режима работы тепловых агрегатов. Отключение газа при уменьшении разрежения обязательно только для агрегатов, оборудованных дымососами или инжекционными горелками.

Датчики автоматики безопасности должны быть автономны, независимы друг от друга и от системы регулирования, иметь свои устройства отбора импульсов и замыкать­ся на отдельную схему.

В схему автоматики безопасности в качестве составной части обычно включается дистанционный и автоматический розжиг котла, что предъявляет особые требования к таким присущим только схеме автоматики безопасности приборам и устройствам, как приборы контроля наличия пламени и отсечные устройства с электромагнитным приводом.

Электромагнитные вентили и клапаны в схемах автоматики безопасности применяются в качестве предохранительных быстродействующих отсечных устройств, предназначенных для прекращения подачи газа к агрегату или отдельным горелкам при аварий­ном выходе контролируемых параметров за заданные пределы.

По условиям эксплуатации (необходимость перекрытия подачи газа при отсутствии электроэнергии) электромагнитные вентили и клапаны относятся к нормально-закрытым (НЗ), в которых при прекращении подвода энергии, создающей перестановочные усилия, проходное сечение полностью перекрывается, в отличие от нормально-открытых (НО), когда при прекращении подвода энергии проходное сечение полностью открывается.

При работе агрегатов на газовом топливе в их топках, газоходах при определенных условиях может образоваться взрывоопасная газовоздушная смесь. Если ее температура достигнет температуры воспламенения газа (500–800 °С в зависимости от вида газа), то независимо от того, произошло ли это во всем объеме, ограниченной его части или даже в одной точке, возможны взрыв смеси и, как следствие, разрушение или повреждения конструктивных элементов самого агрегата либо его ограждающих поверхностей. Накопление в топках и газоходах горючих газов и образование взрывоопасной смеси происходят наи­более часто вследствие утечки газа из газопроводов в топку через газогорелочные уст­ройства из-за негерметичности запорной арматуры, нарушения порядка продувки газопро­водов и розжига горелок, а также других нарушений инструкций по эксплуатации.

Наиболее ответственным с точки зрения безопасности является розжиг холодного агрегата. Примерно 15 % взрывов происходит при повторных розжигах: если стабильный факел у горелки по какой-либо причине не образовался (пламя оторвалось или проскочи­ло в горелку) и после этого топка и газоходы не были тщательно провентилированы, то в большинстве случаев возможен взрыв или хлопок. Однако это случается и на работающих агрегатах.

Главная причина этого – сжигание газа со значительным химическим недожогом. Продукты неполного горения газового топлива в смеси с воздухом накапливаются в застойных зонах газоходов и могут взорваться при достижении в этих зонах соответствующих температур и концентраций горючих газов. В этих же застойных зонах могут нахо­диться и газовоздушные смеси, образовавшиеся при утечке газа в топку до розжига агре­гата. Кроме того, горючие газы и продукты неполного горения накапливаются в газоходах работаю­щего агрегата из-за нарушения устойчивости горения (отрыв или проскок пламени при резких изменениях режимов работы), неисправности газогорелочных, тягодутьевых и стабилизирующих устройств, повреждения газоходов и воздуховодов и т.д.

Перед вводом газового котла в эксплуатацию проверяется наличие газа в системе, исправность приборов и их целостность. Датчик давления в газовой трубе показывает наличие газа. Сразу же с началом полной вентиляции котла начинается контроль герметичности обоих магнитных главных газовых клапанов (вентилей). При закрытых вентилях замерный участок между двумя вентилями находится без давления. Следовательно, первый магнитный вентиль плотный, контроллер давления показывает, что утечки нет. Главный газовый электромагнитный клапан открывается на две секунды, так что замерный участок наполняется газом. В течение всего времени, до окончания вентиляции, давление в замерном участке должно быть постоянным. Если через неплотный вентиль проходит газ, следовательно, давление в замерном участке понижается, что зафиксирует контроллер давления газа. В этом случае топочный автомат перед зажиганием подает сигнал «Нет герметичности, авария». Котел не запускается.

В настоящее время широко используются для контроля пламени пирометры. Исходящее от пламени инфракрасное излучение принимается пирометрической трубкой, которая различает равномерный свет, излучаемый раскаленной кладкой, и переменный свет пламени. Равномерное излучение игнорируется, в то время как переменный свет, начиная уже с частоты более 2 Гц, усиливается в пирометрической трубке и в качестве входного сигнала подается в контроллер пламени. В последнем пульсирующая частота пламени от 2 до 40 Гц воспринимается и вызывает срабатывание реле, контролирующего пламя. При потухании пламени реле в течение одной секунды принимает свое исходное положение.

В случае утечки газа в помещении газоанализатор подает сигнал об утечке, срабатывает звуковая и световая сигнализация, работа котельной установки останавливается. При утечке газа происходит интенсивная вытяжка газа из помещения с помощью вентиляторов. Также предусмотрена аварийная остановка котельной, например в случае пожара. Аварийный выключатель находится на пульте управления. В этом случае еще срабатывает светозвуковая сигнализация, вентиляционные шахты перекрываются во избежание разгорания огня в помещении.

Увеличение температуры воды (пара) сверх нормы может привести к печальным последствиям. Пусть рабочая температура водогрейного котла 130 °С. При увеличении температуры воды до 140 °С происходит аварийное снижение нагрузки. Если температура продолжает расти, а подачу газа уменьшить больше нельзя, то при достижении температуры 150 °С происходит аварийное отключение котла.

Для предохранения водогрейных котлов от превышения давления сетевой воды на трубопроводе прямой сетевой воды установлены два предохранительных клапана, срабатывающих при давлении 7,5 кгс/см 2 . Кроме того, двигатель на трубопроводе прямой сетевой воды рекомендуется оборудовать регулируемым электроприводом или регулируемой задвижкой, обеспечивая необходимое давление в зависимости от расхода сетевой воды.

Если концентрация солей в котловой воде превышает допустимые величины, это может привести к уносу солей в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной или импульсной продувкой , которая регулируется автоматически. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. Концентрация примесей, в свою очередь, зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды. Автоматическое регулирование непрерывной продувки осуществляется через регулировочный клапан по информации с трех датчиков. Основной – солесодержание в котловой воде. Два остальных – расход пара и расход продувочной воды.

При автоматизации обязательны блокировки, например:

¨ при отключении дымососа отключается дутьевой вентилятор;

¨ дутьевой вентилятор не может быть включен при остановленном дымососе.

Автоматика безопасности независима от автоматики регулирования и должна иметь автономные датчики (рис. 14.21). В табл. 14.2 даны сведения о некоторых датчиках системы безопасности водогрейного котла, их параметрах и месте установки, в табл. 14.3 приведены технологические параметры парового котла.

Таблица 14.2

Датчики истемы безопасности

№ п/п Аварийный параметр Датчик Кол-во Диапазон Место уста­новки
Погасание пламени запальни­ка и горелки Фотодатчик Горелка
Повышение и понижение дав­ления газа перед горелкой Давления 1–0,4 кгс/см 2 После РО
Повешение температуры воды после котла Температуры более 105 °С После выхода из котла
Повышение и понижение дав­ления воды за котлом Давления 6–1,5 кгс/см 2 После выхода из котла
Повышение давления / пони­жение разрежения в топке Давления 2–20 Па В топке
Загазованность помещения котельной Газоанализа­тор Вдоль ГРУ
Повышение и понижение дав­ления газа на вводе Давление 1–0,8 кгс/см 2 После РД

Таблица 14.3

Технологические параметры парового котла

Параметр Ед. изм. Min Норма Max
Производительность т/ч 9,5 10,0 10,5
Температура перегретого пара °С
Давление в барабане котла МПа 1,33 1,40 1,47
Температура питательной воды после экономайзера °С
Расход природного газа м/ч 237,5 250,0 262,5
Содержание О 2 в отходящих газах % 1,33 1,40 1,47
Температура отходящих газов °С 180,5 190,0 199,5
Давление газа перед горелками МПа 0,0475 0,0500 0,0525
Разрежение в топке мм. в. ст. 4,75 5,00 5,25
Уровень в барабане мм –100 +100
Расход питательной воды м/ч
Давление питательной воды МПа 1,805 1,900 1,995

14.10. Определение параметров объекта
регулирования, регуляторов и настройка АСР