Фенотип организма формируется в результате взаимодействия. Реферат: Генотип, фенотип. Их соотношение. Где применяются генотипы

Генотип - совокупность всех генов организма, который он получает от родителей .

Фенотип- совокупность внешних и внутренних признаков организма, формирующихся в процессе взаимодействия генотипа и факторов окружающей среды.

Кариотип - совокупность диплоидного набора хромосом соматических клеток определенного биологического вида, который характеризуется постоянством числа, формы, размера.

СООТНОШЕНИЕ ГЕНОТИПА И ФЕНОТИПА.
Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Отдельный признак называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

Если мы знаем характер генетического контроля признака, то мы можем предсказать с определенной вероятностью фенотип на основе генотипа (если он известен). Если мы не знаем, как признак контролируется, то мы будем в полном неведении, и не сможем ничего сказать относительно признаков будущих поколений. Если мы знаем связь между генотипом и фенотипом, то мы можем сделать определенные предсказания о развитии признака (например, болезни) и, в некоторых случаях, предпринять действия полезные индивиду. Для этого нам надо установить генотип. Сейчас эта задача технически разрешима (поскольку секвенирование генома человека проведено), хотя и непомерно дорога.

В реальности нам дано лишь наблюдать проявление признака в поколениях и на основе этого создавать модель генетического контроля формирования признака, которая может быть верна лишь в данных конкретных условиях. Но, тем не менее, если мы создали такую модель, то мы можем в этом случае иметь средства для регуляции какого-то признака, в частности, повлиять возникновение или ход какой-либо болезни. Таким образом, генетический контроль и его изучение имеет большое практическое, в частности, медицинское, значение. И в основе всего лежат менделевские закономерности, которые могут проявляться по-разному в зависимости от конкретных особенностей генотипа и среды.

Мы сейчас рассмотрим, какие могут быть условия генотипа и среды, при которых эти закономерности будут выглядеть не такими, как их наблюдал Мендель, и почему это происходит. Мендель наблюдал, что при объединении задатков двух признаков в одном организме может быть проявление только одного признака. Второй задаток не проявляется. Такой тип доминирования называется полным.

Открытие законов Менделя заново привело к выявлению других типов доминирования. Например, неполного доминирования, когда фенотип гетерозиготы является промежуточным между двумя гомозиготами. Есть еще один тип доминирования, очень популярный в последнее время в суде, – кодоминирование – в гетерозиготе проявляются фенотипы каждой из гетерозигот. Это явление имеет место, в частности, и у человека. Если у вас есть папина хромосома и мамина хромосома (а это, несомненно, так), и они различаются в миллионе позиций, что можно выявить разными методами, то это все случаи кодоминирования.

Первичным фенотипом организма является последовательность нуклеотидов молекул его ДНК. На этом фенотипе строятся все фенотипы следующих уровней. То есть при исследовании вашей ДНК проявляются все и папины, и мамины признаки; каждая из молекул ДНК проявляет свой признак независимо от присутствия другой молекулы ДНК с другим признаком: при секвенировании или при расщеплении ДНК какими-либо ферментами видны оба состояния ДНК. Кодоминантные признаки (маркеры самой молекулы ДНК) характеризуют различие между хромосомами и используются для идентификации личности или установления отцовства (число таких случаев разрешаемых в суде составляет несколько сотен в год).

Когда мы говорим о генотипе и фенотипе – это такие крайние единого процесса реализации наследственной информации в индивидуальном развитии. Например, гладкая или морщинистая форма горошины, это ее фенотип. А генотип – это та специфическая последовательность нуклеотидов, которая в данных условиях определяет, что горошина будет гладкой или морщинистой. В 1999 году с менделевскими линиями гороха была проведена следующая работа. Участки хромосомы, отвечающие за форму горошины, были клонированы, секвенированы, и было установлены их особенности - различие последовательностей нуклеотидов – которые и определяли развитие гладкой или морщинистой формы горошины.

Обратите внимание, что форма горошины является конечным признаком, а формированию признака этого уровня предшествует проявление признака на многих предыдущих уровнях. Во-первых, это наличие (аллель 1) или отсутствие (аллель 2) олигосахарида, которое и приводит к той или иной форме горошины. Еще более глубоким уровнем проявления фенотипа является то, что имеется соответствующий белок (аллель 1), который необходим для синтеза олигосахарида или это тот же белок, но альтернативной структуры (аллель 2), при которой олигосахарид не образуется. Еще более глубоким признаком является РНК, с которой синтезируется этот белок. Эти РНК различны по последовательности нуклеотидов (аллели 1 и 2), что и делает различными соответствующие белки. А эти РНК различны, потому что транскрибируется с разных молекул ДНК, папиной и маминой, у которых последовательности нуклеотидов в данной позиции различны (аллели 1 и 2). Все это – проявление одного и того же фенотипа, последовательно реализуемого на каждом из уровней.

Мы имеем право говорить о фенотипе на каждом из этих многих уровней – от конкретных особенностей последовательности нуклеотидов ДНК до формы горошины. При этом, как только мы продвигаемся от ДНК выше, тем больше влияние условий окружающей среды. Например, возможность функционирования разных аллелей на уровне ДНК (транскрипция папиной и маминой копии гена) будет мало зависеть от температуры, а возможность функционирования тех же аллелей на уровне белка может критически зависеть от температуры. При некоторых температурах белок (например, аллель 1) будет работать, а другой (аллель 2) не будет работать. Как только мы выдвигаемся на более высокий уровень в реализации фенотипа, появляется больше возможностей для влияния окружающей среды на проявление признака.

И наоборот, чем ближе мы продвигаемся к генотипу, тем предсказуемее связь между генотипом и фенотипом.

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и эта наука.

Что такое генотипы?

Под термином понимают совокупность генов одного организма, которые хранятся в хромосомах каждой его клетки. Понятие генотипа следует отличать от генома, т. к. оба слова несут различный лексический смысл. Так, геном представляет собой абсолютно все гены данного вида (геном человека, геном обезьяны, геном кролика).

Как формируется генотип человека?

Что такое генотип в биологии? Изначально предполагали, что набор генов каждой клетки организма отличается. Такая идея была опровергнута с того момента, как ученые раскрыли механизм образования зиготы из двух гамет: мужской и женской. Так как любой живой организм образуется из зиготы путем многочисленных делений, нетрудно догадаться, что все последующие клетки будут иметь абсолютно одинаковый набор генов.

Однако следует отличать генотип родителей от такового у ребенка. Зародыш в утробе матери имеет по половине набора генов от мамы и от папы, поэтому дети хоть и похожи на своих родителей, но в то же время не являются их 100% копиями.

Что такое генотип и фенотип? В чем их отличие?

Фенотип - это совокупность всех внешних и внутренних признаков организма. Примерами могут служить цвет волос, наличие веснушек, рост, группа крови, количество гемоглобина, синтез или отсутствие фермента.

Однако фенотип не является чем-то определенным и постоянным. Если наблюдать за зайцами, то окраска их шерсти меняется в зависимости от сезона: летом они серые, а зимой белые.

Важно понимать, что набор генов всегда постоянный, а фенотип может варьироваться. Если принять во внимание жизнедеятельность каждой отдельной клетки организма, любая из них несет абсолютно одинаковый генотип. Однако в одной синтезируется инсулин, в другой кератин, в третьей актин. Каждая не похожа друг на друга по форме и размерам, функциям. Это и называется фенотипическим проявлением. Вот что такое генотипы и в чем проявляются их отличия от фенотипа.

Данный феномен объясняется тем, что при дифференцировке клеток зародыша одни гены включаются в работу, а другие находятся в “спящем режиме”. Последние либо всю жизнь остаются неактивными, либо вновь используются клеткой в стрессовых ситуациях.

Примеры записи генотипов

На практике изучение проводится с помощью условной шифровки генов. Например, ген карих глаз записывают большой буквой «А», а проявление голубых глаз - маленькой буквой «а». Так показывают, что признак кареглазости доминантный, а голубой цвет - это рецессив.

Так, по признаку люди могут быть:

  • доминантными гомозиготами (АА, кареглазые);
  • гетерозиготами (Аа, кареглазые);
  • рецессивными гомозиготами (аа, голубоглазые).

По такому принципу изучают взаимодействие генов между собой, причем обычно используют сразу несколько пар генов. Отсюда возникает вопрос: что такое 3 генотип (4/5/6 и т. д.)?

Такое словосочетание означает, что берутся сразу три пары генов. Запись будет, например, такой: АаВВСс. Здесь появляются новые гены, которые отвечают за совершенно другие признаки (например, прямые волосы и кудряшки, наличие белка или его отсутствие).

Почему типичная запись генотипа условна?

Любой ген, открытый учеными, носит определенное название. Чаще всего это английские термины или словосочетания, которые в длину могут достигать немалых размеров. Орфография названий сложна для представителей зарубежной науки, поэтому ученые ввели более простую запись генов.

Даже учащийся старшей школы иногда может знать, что такое генотип 3а. Такая запись означает, что за ген отвечают 3 аллели одного и того же гена. При использовании настоящего названия гена понимание принципов наследственности могло бы быть затруднено.

Если речь идет о лабораториях, где проводятся серьезные исследования кариотипа и изучение ДНК, то там прибегают к официальным названиям генов. Особенно это актуально для тех ученых, которые публикуют результаты своих исследований.

Где применяются генотипы

Еще одна положительная черта использования простых обозначений - это универсальность. Тысячи генов имеют свое уникальное название, однако каждый из них можно представить одной лишь буквой латинского алфавита. В подавляющем большинстве случаев при решении генетических задач на разные признаки буквы повторяются вновь и вновь, при этом каждый раз расшифровывается значение. Например, в одной задаче ген B - это черный цвет волос, а в другой - это наличие родинки.

Вопрос “что такое генотипы” поднимается не только на занятиях по биологии. На самом деле условность обозначений обусловливает нечеткость формулировок и терминов в науке. Грубо говоря, использование генотипов - это математическая модель. В реальной жизни все сложнее, несмотря на то, что общий принцип все-таки удалось перенести на бумагу.

По большому счету генотипы в таком виде, в котором мы их знаем, применяются в программе школьного и вузовского обучения при решении задач. Это упрощает понимание темы “что такое генотипы” и развивает у учащихся способность к анализированию. В будущем навык использования такой записи также пригодится, однако при реальных исследованиях настоящие термины и названия генов более уместны.

В настоящее время гены изучаются в различных биологических лабораториях. Шифрование и использование генотипов актуально для медицинских консультаций, когда один или несколько признаков прослеживаются в ряде поколений. На выходе специалисты могут прогнозировать фенотипическое проявление у детей с определенной долей вероятностью (например, появление в 25% случаев блондинов или рождение 5% детей с полидактилией).

Генотип - это совокупность всех генов организма, являющихся его наследственной основой. Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды. Фенотип в общем случае - это то, что можно увидеть (окрас кошки), услышать, ощутить (запах), а также поведение животного. У гомозиготного животного генотип совпадает с фенотипом, а у гетерозиготного - нет. Каждый биологический вид имеет свойственный только ему фенотип. Он формируется в соответствии с наследственной информацией, заложенной в генах. Однако в зависимости от изменений внешней среды состояние признаков варьирует от организма к организму, в результате чего возникают индивидуальные различия - изменчивость. 45. Цитогенетический мониторинг в животноводстве.

Организация цитогенетического контроля должна строиться с учетом ряда основных принципов. 1. необходимо организация оперативного обмена информацией межу учреждениями, занимающимися вопросами цитогенетического контроля, с этой целью необходимо создание единого банка данных, который включал бы сведения о носителях хромосомной патологии. 2. включение сведений о цитогенетической характеристике животного в племенные документы. 3. закупка семени и племенного материала из-за рубежа должна проводиться лишь при наличии цитогенетического сертификата.

Цитогенетическое обследование в регионах осуществляется с использованием информации о распространенности хромосомных аномалий в породах и линиях:

1) породы и линии, в которых зарегистрированы случаи хромосомной патологии, передающейся по наследству, а также потомки носителей хромосомных аномалий при отсутствии на них цитогенетического паспорта;

2) породы и линии, не исследованные цитогенетически ранее;

3) все случаи массового нарушения репродукции или генетической патологии неясной природы.

В первую очередь обследованию подлежат производители и самцы, предназначенные для ремонта стада, а также племенной молодняк двух первых категорий. Хромосомные аберрации можно разделить на два больших класса: 1.конституциональные – присущие всем клеткам, унаследованные от родителей или возникшие в процессе созревания гамет и 2. соматические – возникающие в отдельных клетках в ходе онтогенеза. С учетом генетической природы и фенотипического проявления хромосомных аномалий несущие их животные могут быть подразделены на четыре группы: 1) носители наследуемых аномалий с предрасположенностью к снижению репродуктивных качеств в среднем на 10 %. Теоретически 50 % потомков наследуют патологию. 2) носители наследуемых аномалий, приводящих к четко выраженному снижению репродукции (30-50 %) и врожденной патологии. Около 50 % потомков наследуют патологию.

3) Животные с аномалиями, возникающими de novo, приводящими к врожденной патологии (моносомии, трисомии и полисомии в системе аутосом и половых хромосом, мозаицизм и химеризм). В подавляющем большинстве случаев такие животные бесплодны. 4) Животные с повышенной нестабильностью кариотипа. Репродуктивная функция снижена, возможна наследственная предрасположенность.

46. плейтропия (множественное действие генов) Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген проявляет свой множественный эффект. При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. При плейотропии, ген, воздействуя на какой то один основной признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых "основным" геном. Показателями зависимости функционирования наследственных задатков от характеристик генотипа является пенетрантность и экспрессивность. Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой розвивается организм. Такое колебание классов при расщеплении в зависимости от условий среды получило название пенетрантность - сила фенотипного проявления. Итак, пенетрантность - это частота проявления гена, явление появления или отсутствия признака у организмов, одинаковых по генотипу. Пенетрантность значительно колеблется как среди доминантных, так и среди рецессивных генов. Она может быть полной, когда ген проявляется в 100% случаев, или неполной, когда ген проявляется не у всех особей, содержащих его. Пенетрантностью измеряется процентом организмов с фенотипным признаком от общего количества обследованных носителей соответствующих аллелей. Если ген полностью, независимо от окружающей среды, определяет фенотипное проявление, то он имеет пенетрантность 100 процентов. Однако некоторые доминантные гены проявляются менее регулярно.

Множественное или плейотропное действие генов связывают с тем, на какой стадии онтогенеза проявляются соответствующие аллели. Чем раньше проявится аллель, тем больше эффект плейотропии.

Учитывая плейотропный эффект многих генов, можно предположить, что часто одни гены выступают в роли модификаторов действия других генов.

47. современные биотехнологии в животноводстве. Применение селекцион.- ген-ое.значение(исск.осем; транспл. Плода).

Аллельные гены. Итак, мы установили, что гетерозиготные особи имеют в каждой клетке два гена - А и а , отвечающие за развитие одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза количество хромосом в них уменьшается в 2 раза, поэтому каждая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном месте гомологичных хромосом.

Схематически гетерозиготная особь обозначается так:
Гомозиготные особи при подобном обозначении выглядят так:
или , но их можно записать и как АА и аа .

Фенотип и генотип. Рассматривая результаты самоопыления гибридов F 2 , мы обнаружили, что растения, выросшие из желтых семян, будучи внешне сходными, или, как говорят в таких случаях, имея одинаковый фенотип, обладают различной комбинацией генов, которую принято называть генотипом. Таким образом, явление доминирования приводит к тому, что при одинаковом фенотипе особи могут обладать различными генотипами. Понятия «генотип» и «фенотип» очень важные в генетике. Совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток и органов, составляет фенотип. Фенотип формируется под влиянием генотипа и условий внешней среды.

Анализирующее скрещивание. По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся растений генотип можно определить в следующем поколении. Для перекрестно размножающихся видов используют так называемое анализирующее скрещивание. При анализирующем скрещивании особь, генотип которой следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т. е. имеющими генотип аа. Рассмотрим анализирующее скрещивание на примере. Пусть особи с генотипами АА и Аа имеют одинаковый фенотип. Тогда при скрещивании с особью, рецессивной по определяемому признаку и имеющей генотип аа , получаются следующие результаты:

Из этих примеров видно, что особи, гомозиготные по доминантному гену, расщепления в F 1 не дают, а гетерозиготные особи при скрещивании с гомозиготной особью дают расщепление уже в F 1 .

Неполное доминирование. Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомозиготному по доминантному гену. Часто гетерозиготные потомки имеют промежуточный фенотип, в таких случаях говорят о неполном доминировании (рис. 36). Например, при скрещивании растения ночная красавица с белыми цветками (аа) с растением, у которого красные цветки (АА), все гибриды F 1 имеют розовые цветки (Аа). При скрещивании гибридов с розовой окраской цветков между собой в F 2 происходит расщепление в отношении 1 (красный): 2 (розовый): 1 (белый).

Рис. 36. Промежуточное наследование у ночной красавицы

Принцип чистоты гамет. У гибридов, как мы знаем, объединяются разные аллели, привносимые в зиготу родительскими гаметами. Важно отметить, что разные аллели, оказавшиеся в одной зиготе и, следовательно, в развившемся из нее организме, не влияют друг на друга. Поэтому свойства аллелей остаются постоянными независимо от того, в какой зиготе они побывали до этого. Каждая гамета содержит всегда только один аллель какого-либо гена.

Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и расположенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготуаллельные гены ведут себя как независимые, цельные единицы.

  1. Будет ли правильным определение: фенотип есть совокупность внешних признаков организма?
  2. С какой целью проводят анализирующее скрещивание?
  3. Какое, на ваш взгляд, практическое значение имеют знания о генотипе и фенотипе?
  4. Сопоставьте типы наследования генетических признаков при скрещиваниях с поведением хромосом во время мейоза и оплодотворения.
  5. При скрещивании серой и черной мышей получено 30 потомков, из них 14 были черными. Известно, что серая окраска доминирует над черной. Каков генотип мышей родительского поколения? Решение задачи смотрите в конце учебника.
  6. Голубоглазый мужчина, оба родителя которого имели карие глаза, женился на кареглазой женщине, отец у которой имел карие глаза, а мать - голубые. От этого брака родился голубоглазый сын. Определите генотипы всех упомянутых лиц.
Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу .

Вот такая получается «петрушка», если не сказать хуже. Очередной раз сталкиваюсь с тем, что основополагающие понятия генетики в учебниках преподносятся так, что разобраться в них бывает трудно.

Эту статью меня так и подмывало назвать сначала «Фенотип и генотип». Понятно, что фенотип вторичен от генотипа. Но если сам термин «генотип» учащиеся чаще всего могут истолковать правильно, то относительно понятия «фенотипа», как выясняется, нет четкого представления.

Да откуда же ему быть «четкому», если определения фенотипа в учебной литературе носят такой расплывчатый характер.

«Фенотип — совокупность всех внешних признаков организма, определяемых генотипом и условиями окружающей среды». Или «Фенотип — совокупность всех внешних и внутренних признаков и свойств организма, зависящих от генотипа и условий внешней среды».

А если действительно и «внешних», и «внутренних», а это на самом деле так, то в чем тогда отличие фенотипа от генотипа?

Всё же придется начинать не с «хвоста», а с «головы». Уверен, пройдет пара минут и вы, несколько уточнив для себя, что такое «генотип организма», сможете получить более четкое представление и о «фенотипе».

Часто термины «признак» и «ген» мы используем как синонимы

Говорят, «генотип — совокупность всех признаков организма». И вот тут то важно понять самое главное — именно к определению генотипа такое определение вносит дополнительную путаницу. Да, действительно, информация о любом признаке закодирована в каком-либо гене (или совокупности генов) организма.

Но всех генов очень много, весь генотип организма огромен, а в течение жизни данной особи или отдельной клетки реализуется (то есть служит образованию каких-либо определенных признаков) лишь незначительная часть генотипа.

Поэтому правильным будет запомнить, что «генотип — совокупность всех генов организма». А уж какие из этих генов реализуются в течение жизни организма в его фенотипе , то есть послужат образованию каких-либо признаков — это зависит как от взаимодействия множества этих генов, так и от конкретных условий окружающей среды.

Таким образом, если правильно понимать, что собой представляет генотип, то не остается и лазейки для путаницы в терминах, обозначающих, что такое «генотип», а что такое «фенотип».

Понятно, что «фенотип — это совокупность всех реализовавшихся в течение жизни организма генов, послуживших образованию конкретных признаков данного организма в определенных условиях среды».

Поэтому на протяжении жизни организма, под действием меняющихся условий среды, фенотип может изменяться, хотя он и базируется на том же самом неизменном генотипе. А в каких границах может меняться фенотип?

Норма реакции

Эти границы для фенотипа четко очерчены генотипом и носят название «нормы реакции». В фенотипе ведь не может проявиться ничего того, чего бы не было уже «записано» ранее в генотипе.

Чтобы лучше понять, что вкладывается в понятие «нормы реакции», разберем на конкретных примерах возможного проявления «широкой» или «узкой» нормы реакции.

Вес (масса) коровы и удойность коровы, какой признак имеет более широкую, а какой более узкую норму реакции?

Понятно, что вес взрослой коровы определенной породы как ее хорошо ни корми не может превысить, к примеру, 900 кг, а при плохом содержании — не может быть меньше 600 кг.

А удойность? При оптимальном содержании и кормлении удойность может меняться от каких-то максимально возможных для данной породы величин, она может упасть до 0, при неблагоприятных условиях содержания. Значит масса коровы имеет довольно узкую норму реакции, а удойность — очень широкую.

Пример с картофелем. Любому очевидно, что «вершки» имеют довольно узкую норму реакции, а масса клубней — очень широкую.

Думаю, теперь всё «устаканилось». Генотип — множество всех генов организма, это весь его потенциал на что он может быть способен в жизни. А фенотип — лишь проявление небольшой части этого потенциала, реализация лишь части генов организма в ряд конкретных признаков в течение его жизни.

Наглядным примером реализации в течение жизни организма части его генотипа в фенотип, являются однояйцевые близнецы. Имея абсолютно одинаковый генотип, в первые годы жизни они почти неотличимы друг от друга фенотипически. Но взрослея, имея сначала незначительные отличия в поведении, в каких-то привязанностях, отдавая предпочтение тому или иному роду деятельности, эти близнецы становятся довольно отличимыми и фенотипически: по выражению лица, строению тела.

В конце этой заметки, я бы хотел вот на что ещё обратить ваше внимание. Слово генотип для изучающих основы генетики имеет как бы два смысла. Выше мы разобрали значение «генотипа» в широком его понимании.

Но для уяснения законов генетики, при решении генетических задач, под словом генотип подразумевают лишь сочетание каких-то конкретных отдельных аллелей одной (моногибридное скрещивание) или двух (дигибридное скрещивание) пар определенных генов, контролирующих проявление конкретного одного или двух признаков.

То есть, и фенотип то у нас при этом какой-то усеченный, говорим «фенотип организма», а сами изучили механизм наследования лишь одного, двух его признаков. В широком же смысле термин «фенотип» относится к любым морфологическим, биохимическим, физиологическим и поведенческим характеристикам организмов.

P.S. В связи с характеристиками понятий «генотип» и «фенотип», уместным было бы здесь разобрать вопрос о наследственной и ненаследственной формах изменчивости организмов. Ну да ладно, об этом как раз и поговорим в .

***************************************************************

У кого есть вопросы по статье к репетитору биологии по Скайпу , замечания, пожелания — прошу в писать комментарии.