Функция двух случайных аргументов примеры. Законы распределения функций случайных величин. Функция одного и двух случайных аргументов. Распределение «хи квадрат»

Если каждой паре возможных значений случ величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случ аргументов X и Y: Z=φ(X, Y).

1. Пусть X и Y – дискретные независимые случ величины.

Для того, чтобы составить закон распределения функции Z=X+Y, надо найти все возможные значения Z и их вероятности. Т.к. X и Y независимые случ величины, то zi=xi+yi, pz=px*py. Если zi=zj, то их вероятности складываются.

2. Пусть X и Y – непрерывные случ величины. Доказано: если X и Y независимы, то плотность распределения g(z) суммы Z=X+Y (при условии, что плотность хотя бы одного из аргументов задана на интервале(-∞;∞) одной формулой) может быть найдена с помощью формулы:

Где f1, f2 – плотности распределения аргументов.

Если возможные значения аргументов неотрицательны, то g(z) находят по формуле:

Плотность распределения суммы независимых случ величин называют композицией, а закон распределения вероятностей называют устойчивым, если композиция таких законов есть тот же закон. M(z)=M(x)+M(y); D(z)=D(x)+D(y).

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 26. Функция двух случайных аргументов.:

  1. 15. Частные производные функции двух аргументов, их геометрический смысл.
  2. 23. Наименьшее и наибольшее значения функции двух аргументов в замкнутой области.
  3. Математическое ожидание скалярной функции случайных аргументов. Двумерный дискретный случай.
  4. 31. Функция распределения системы двух случайных величин
  5. 120. Покажите на примере и объясните суть приёмов в споре «аргумент к публике», «аргумент к жалости», «аргумент к невежеству», «аргумент к «тщеславию» и «аргумент к личности». Проиллюстрируйте примером и объясните логический термин «верификация».

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин (X_1,X_2,\ldots,X_n) , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Y=\varphi(X_1,X_2,\ldots,X_n).

Требуется определить закон распределения случайной величины Y , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Y=\varphi(X).

\begin{array}{|c|c|c|c|c|}\hline{X}&x_1&x_2&\cdots&x_n\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Тогда Y=\varphi(X) также дискретная случайная величина с возможными значениями . Если все значения y_1,y_2,\ldots,y_n различны, то для каждого k=1,2,\ldots,n события \{X=x_k\} и \{Y=y_k=\varphi(x_k)\} тождественны. Следовательно,

P\{Y=y_k\}=P\{X=x_k\}=p_k


и искомый ряд распределения имеет вид

\begin{array}{|c|c|c|c|c|}\hline{Y}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Если же среди чисел y_1=\varphi(x_1),y_2=\varphi(x_2),\ldots,y_n=\varphi(x_n) есть одинаковые, то каждой группе одинаковых значений y_k=\varphi(x_k) нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения f(x) случайной величины X , найти плотность распределения g(y) случайной величины Y=\varphi(X) . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция y=\varphi(x) является монотонно возрастающей, непрерывной и дифференцируемой на интервале (a;b) , на котором лежат все возможные значения величины X . Тогда обратная функция x=\psi(y) существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

G(y)=f\bigl(\psi(y)\bigr)\cdot |\psi"(y)|.

Пример 1. Случайная величина X распределена с плотностью

F(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}

Найти закон распределения случайной величины Y , связанной с величиной X зависимостью Y=X^3 .

Решение. Так как функция y=x^3 монотонна на промежутке (-\infty;+\infty) , то можно применить формулу (6.2). Обратная функция по отношению к функции \varphi(x)=x^3 есть \psi(y)=\sqrt{y} , ее производная \psi"(y)=\frac{1}{3\sqrt{y^2}} . Следовательно,

G(y)=\frac{1}{3\sqrt{2\pi}}e^{-\sqrt{y^2}/2}\frac{1}{\sqrt{y^2}}

Рассмотрим случай немонотонной функции. Пусть функция y=\varphi(x) такова, что обратная функция x=\psi(y) неоднозначна, т. е. одному значению величины y соответствует несколько значений аргумента x , которые обозначим x_1=\psi_1(y),x_2=\psi_2(y),\ldots,x_n=\psi_n(y) , где n - число участков, на которых функция y=\varphi(x) изменяется монотонно. Тогда

G(y)=\sum\limits_{k=1}^{n}f\bigl(\psi_k(y)\bigr)\cdot |\psi"_k(y)|.

Пример 2. В условиях примера 1 найти распределение случайной величины Y=X^2 .

Решение. Обратная функция x=\psi(y) неоднозначна. Одному значению аргумента y соответствуют два значения функции x


Применяя формулу (6.3), получаем:

\begin{gathered}g(y)=f(\psi_1(y))|\psi"_1(y)|+f(\psi_2(y))|\psi"_2(y)|=\\\\=\frac{1}{\sqrt{2\pi}}\,e^{-\left(-\sqrt{y^2}\right)^2/2}\!\left|-\frac{1}{2\sqrt{y}}\right|+\frac{1}{\sqrt{2\pi}}\,e^{-\left(\sqrt{y^2}\right)^2/2}\!\left|\frac{1}{2\sqrt{y}}\right|=\frac{1}{\sqrt{2\pi{y}}}\,e^{-y/2}.\end{gathered}

Закон распределения функции двух случайных величин

Пусть случайная величина Y является функцией двух случайных величин, образующих систему (X_1;X_2) , т. е. Y=\varphi(X_1;X_2) . Задача состоит в том, чтобы по известному распределению системы (X_1;X_2) найти распределение случайной величины Y .

Пусть f(x_1;x_2) - плотность распределения системы случайных величин (X_1;X_2) . Введем в рассмотрение новую величину Y_1 , равную X_1 , и рассмотрим систему уравнений

Будем полагать, что эта система однозначно разрешима относительно x_1,x_2


и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины Y

G_1(y)=\int\limits_{-\infty}^{+\infty}f(x_1;\psi(y;x_1))\!\left|\frac{\partial\psi(y;x_1)}{\partial{y}}\right|dx_1.

Заметим, что рассуждения не изменяются, если введенную новую величину Y_1 положить равной X_2 .

Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина Y является функцией случайного аргумента X с заданным законом распределения

Y=\varphi(X).

Требуется, не находя закона распределения величины Y , определить ее математическое ожидание

M(Y)=M[\varphi(X)].

Пусть X - дискретная случайная величина, имеющая ряд распределения

\begin{array}{|c|c|c|c|c|}\hline{x_i}&x_1&x_2&\cdots&x_n\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Составим таблицу значений величины Y и вероятностей этих значений:

\begin{array}{|c|c|c|c|c|}\hline{y_i=\varphi(x_i)}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Эта таблица не является рядом распределения случайной величины Y , так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины Y можно определить по формуле

M[\varphi(X)]=\sum\limits_{i=1}^{n}\varphi(x_i)p_i,


так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции \varphi(X) , а содержит только закон распределения аргумента X . Таким образом, для определения математического ожидания функции Y=\varphi(X) вовсе не требуется знать закон распределения функции \varphi(X) , а достаточно знать закон распределения аргумента X .

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

M[\varphi(X)]=\int\limits_{-\infty}^{+\infty}\varphi(x)f(x)\,dx,


где f(x) - плотность распределения вероятностей случайной величины X .

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

M(X+Y)=M(X)+M(Y).

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

M(XY)=M(X)M(Y)+\mu_{xy}.

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Дисперсия функции случайных величин

По определению дисперсии имеем D[Y]=M[(Y-M(Y))^2]. . Следовательно,

D[\varphi(x)]=M[(\varphi(x)-M(\varphi(x)))^2] , где .

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента Y=\varphi(X) дисперсия выражается формулой

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}(\varphi(x)-M(\varphi(x)))^2f(x)\,dx,

где M(\varphi(x))=M[\varphi(X)] - математическое ожидание функции \varphi(X) ; f(x) - плотность распределения величины X .

Формулу (6.5) можно заменить на следующую:

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}\varphi^2(x)f(x)\,dx-M^2(X)

Рассмотрим теоремы о дисперсиях , которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D+2\sum\limits_{i

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D \mu_{y_1y_2}= M(Y_1Y_2)-M(Y_1)M(Y_2).

\mu_{y_1y_2}=M(\varphi_1(X)\varphi_2(X))-M(\varphi_1(X))M(\varphi_2(X)).


т. е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции .

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

|\mu_{xy}|\leqslant\sqrt{D[X]\cdot D[Y]}=\sigma_x\cdot \sigma_y,

Если каждой паре возможных значений случайных величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случайных аргументов X и Y:

Z = j (X, Y ).

Далее на примерах будет показано, как найти распределение функции Z = X + Y по известным распределениям слагаемых. Такая задача часто встречается на практике. Например, если X - погрешность показаний измерительного прибора (распределена нормально), Y - погрешность округления показаний до ближайшего деления шкалы (распределена равномерно), то возникает задача - найти закон распределения суммы погрешностей Z=X + Y.

1. Пусть X и Y -дискретные независимые случайные величины. Для того чтобы составить закон распределения функции Z = X + Y, надо найти все возможные значения Z и их вероятности.

Пример 1. Дискретные независимые случайные величины заданы распределениями:

X Y
p 0, 4 0, 6 p 0, 2 0, 8

Составить распределение случайной величины Z = X+Y.

Решение. Возможные значения Z есть суммы каждого возможного значения X со всеми возможными значениями Y:

z 1 = 1+ 3= 4; z 2 = 1+ 4= 5; z 3 = 2+ 3= 5; z 4 = 2+ 4= 6.

Найдем вероятности этих возможных значений. Для того чтобы Z = 4, достаточно, чтобы величина X приняла значение x 1 =1 и величина Y - значение y 1 = 3. Вероятности этих возможных значений, как следует из данных законов распределения, соответственно равны 0,4 и 0,2.

Аргументы X и Y независимы, поэтому события Х= Y = 3 независимы и, следовательно, вероятность их совместного наступления (т. е. вероятность события Z = 1+3 = 4) по теореме умножения равна 0,4*0,2 = 0,08.

Аналогично найдем:

P (Z= 1+ 4= 5) = 0, 4* 0, 8= 0, 32;

Р (Z = 2 + 3 = 5) = 0, 6* 0, 2 = 0, 12;

Р (Z = 2 + 4 = 6)= 0, 6* 0, 8 = 0, 48.

Напишем искомое распределение, сложив предварительно вероятности несовместных событий Z = z 2 , Z = z 3 (0,32+0,12 = 0,44):

Z
p 0, 08 0, 44 0, 48

Контроль: 0,08 + 0,44+0,48=1.

2. Пусть X и Y - непрерывные случайные величины. Доказано: если X и Y независимы, то плотность распределения g (z ) суммы Z = X + Y (при условии, что плотность хотя бы одного из аргументов задана на интервале() одной формулой) может быть найдена с помощью равенства

(*)

либо с помощью равносильного равенства

(**)

где f 1 , f 2 - плотности распределения аргументов.

Если возможные значения аргументов неотрицательны, то g (z )находят по формуле

(***)

либо по равносильной формуле

(****)

Плотность распределения суммы независимых случайных величин называют композицией.

Закон распределения вероятностей называют устойчивым, если композиция таких законов есть тот же закон (отличающийся, вообще говоря, параметрами). Нормальный закон обладает свойством устойчивости: композиция нормальных законов также имеет нормальное распределение (математическое ожидание и дисперсия этой композиции равны соответственно суммам математических ожиданий и дисперсий слагаемых). Например, если X и Y - независимые случайные величины, распределенные нормально с математическими ожиданиями и дисперсиями, соответственно равными а 1 = З, а 2 = 4, D 1 =1, D 2 = 0, 5, то композиция этих величин (т. е. плотность вероятности суммы Z = X + Y )также распределена нормально, причем математическое ожидание и дисперсия композиции соответственно равны а = 3 + 4 = 7; D =l +0,5=1,5.

Пример 2. Независимые случайные величины X и Y заданы плотностями распределений:

f (x )= ;

f (y )= .

Найти композицию этих законов, т. е. плотность распределения случайной величины Z = X+Y.

Решение. Возможные значения аргументов неотрицательны, Поэтому воспользуемся формулой (***)

Заметим, что здесь z 0, так как Z=X+Y и, по условию, возможные значения X и Y неотрицательны.

Распределение «хи квадрат»

Пусть X i (i = 1, 2, ..., п )- нормальные независимые случайные величины, причем математическое ожиданиекаждой из них равно нулю, а среднее квадратическоеотклонение-единице. Тогда сумма квадратов этих величин

распределена по закону («хи квадрат») с k = п степенями свободы; если же эти величины связаны одним линейным соотношением, например , то число степеней свободы k=n- 1.

Плотность этого распределения

где - гамма-функция; в частности,

(n+ 1)=n!.

Отсюда видно, что распределение «хи квадрат» определяется одним параметром - числом степеней свободы k.

С увеличением числа степеней свободы распределение медленно приближается к нормальному.

Распределение Стьюдента

Пусть Z -нормальная случайная величина, причем M (Z ) = 0, s(Z )= 1, a V -независимая от Z величина, которая распределена по закону с k степенями свободы. Тогда величина

имеет распределение, которое называют t- распределением или распределением Стьюдента (псевдоним английского статистика В. Госсета), с k степенями свободы.

Итак, отношение нормированной нормальной величины к квадратному корню из независимой случайной величины, распределенной по закону «хи квадрат» с k степенями свободы, деленной на k, распределено по закону Стьюдента с k степенями свободы.

С возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному. Дополнительные сведения об этом распределении приведены далее (см. гл. XVI, § 16).

§ 15. Распределение F Фишера - Снедекора

Если U и V -независимые случайные величины, распределенные по закону со степенями свободы k 1 и k 2 , то величина

имеет распределение, которое называют распределением F Фишера-Снедекора со степенями свободы k 1 и k 2 (иногда его обозначают через V 2).

Плотность этого распределения

Мы видим, что распределение F определяется двумя параметрами-числами степеней свободы. Дополнительные сведения об этом распределении приведены далее (см. гл. XIX, § 8).

Задачи

1. Найти математическое ожидание и дисперсию случайной величины X, зная ее плотность распределения:

а) при остальных значениях x;

б) f (x )= 1/ 2l при а - l x a+l , f (x )= 0при остальных значениях х.

Отв. a ) М (Х )= 0, D (X ) = l/2; б ) М (Х ) = а, D (X )= l 2 / 3.

2. Случайная величина X распределена нормально. Математическое ожидание и среднее квадратическое отклонение этой величины соответственно равны 6 и 2. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (4,8).

Отв. 0,6826.

3. Случайная величина распределена нормально. Среднее квадратическое отклонение этой величины равно 0,4. Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Отв. 0,5468.

4. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением s=1 мм и математическим ожиданием а = 0. Найти вероятность того, что из двух независимых наблюдений ошибка хотя бы одного из них не превзойдет по абсолютной величине 1,28 мм.

Отв. 0,96.

5. Валики, изготовляемые автоматом, считаются стандартными, если отклонение диаметра валика от проектного размера не превышает 2 мм. Случайные отклонения диаметра валиков подчиняются нормальному закону со средним квадратическим отклонением s = 1,6 мм и математическим ожиданием а = 0. Сколько процентов стандартных валиков изготовляет автомат?

Отв. Примерно 79%.

6. Дискретная случайная величина X задана законом распределения:

X
p 0, 2 0, 1 0, 7

Формула свертки. Устойчивость нормального распределения.

o Если каждой паре возможных значений случайных величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случайных аргументов X и Y:

Далее на примерах будет показано, как найти распределение функции по известным распределениям слагаемых. Такая задача часто встречается на практике. Например, если Х-погрешность показаний измерительного прибора (распределена равномерно), то возникает задача-найти закон распределения суммы погрешностей.

Случай 1. Пусть Х и Y-дискретные независимые случайные величины . Для того чтобы составить закон распределения функции Z=X+Y, надо найти все возможные значения Z и их вероятности. Иными словами, составляется ряд распределения случайной величины Z.

Пример 1. Дискретные независимые случайные величины Х и Y, заданы распределениями

Х
Р 0,4 0,6
Y
P 0,2 0,8

Составить распределение случайной величины Z=X+Y.

Возможные значения Z есть суммы каждого возможного значения Х со всеми возможными значениями Х.

Найдем вероятность этих возможных значений. Для того чтобы Z=4 достаточно, чтобы величина Х приняла значения х 1 =1 и величина Y-значение y 1 =3. Вероятности этих возможных значений, как следует из данных законов распределения, соответственно равно 0,4 и 0,2.

Поскольку случайные величины Х и Y независимы, то события Х=1 и Y=3 независимы и, следовательно, вероятность их совместного наступления (т.е вероятность события Z=1+3=4) по теореме умножения равна 0,4·0,2=0,08.

Аналогично найдем

Напишем искомое распределение, сложив предварительно вероятности несовместимых событий Z=z 2 и Z=z 3 . (0,32+0,12=0,44)

Z
P 0,08 0,44 0,48

Контроль: 0,08+0,44+0,48=1.

Рассмотрим общий случай:

Пусть Х и Y-независимые случайные величины, принимающие значения. Обозначим через, .

Z=X+Н. Обозначим через

Таким образом, -формула свертки.

Случай 2. Пусть Х и Y-непрерывные случайные величины.

Теорема. Если Х и Y-независимые непрерывные случайные величины, то случайная величина Z=X+Y-также непрерывна, причем плотность распределения случайной величины Z -формула свертки.

o Плотность распределения суммы независимых случайных величин называется композицией.

Замечание. Если возможные значения X и Y неотрицательны, то формула свертки .

o Закон распределения вероятностей называется устойчивым , если композиция таких законов есть тот же закон распределения (отличающийся, вообще говоря, параметрами). Нормальный закон обладает свойствами устойчивости, т.е. композиция нормальных законов также имеет нормальное распределение, причем математическое ожидание и дисперсия этой композиции равны соответственно суммам математических ожиданий и дисперсий слагаемых:

В частности, если Х~N(0,1) и Y~N(0,1), то Z=X+Y~N(0,2).

Пример 2. Пусть случайная величины Х 1 ,…,Х k -независимы и имеют показательное распределение с параметром λ>0, т.е. .

Найти плотность распределения.

Если x≤0, то.

Проводя аналогичные рассуждения, получим:

Числовые характеристики системы

Двух случайных величин.

Для описания системы двух случайных величин кроме математических ожиданий и дисперсий используют и другие характеристики. К их числу относятся ковариация и коэффициент коррекции.

o Ковариацией между случайными величинами Х и Y называется число, где.

Для непрерывных случайных величин X и Y используют формулу.

Покажем, что если случайные величины Х и Y независимы, то. Пусть Х и Y-непрерывные случайные величины

o Коэффициентом корреляции между случайными величинами Х и Y называется число.

Свойства корреляции.

Свойство 1. Абсолютная величина коэффициента корреляции не превосходит единицы, т.е. .

Свойство 2. Для того чтобы необходимо и достаточно, чтобы случайные величины Х и Y были связанны линейной зависимостью. Т.е. с вероятностью 1.

Свойство 3. Если случайные величины независимы, то они некоррелированы, т.е. r=0.

Пусть Х и Y-независимы, тогда по свойству математического ожидания

o Две случайные величины Х и Y называют коррелированными , если их коэффициент корреляции отличен от нуля.

o Случайные величины Х и Y называют некоррелированными если их коэффициент корреляции равен 0.

Замечание. Из коррелированности двух случайных величин следует их зависимость, но из зависимости еще не вытекает коррелированность. Из независимости двух случайных величин следует их некоррелированность, но из некоррелированности еще нельзя заключить о независимости этих величин.

Коэффициент корреляции характеризует тенденцию случайных величин к линейной зависимости. Чем больше по абсолютной величине коэффициент корреляции, тем больше тенденция к линейной зависимости.

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

функция двух случайных аргументов:Если каждой паре возможных значений случайных величин и соответствует одно возможное значение случайной величины, то называют функцией двух случайных аргументов и и пишут:

Если и - дискретные независимые случайные величины, то для того, чтобы найти распределение функции, надо найти все возможные значения, для чего достаточно сложить каждое возможное значение со всеми возможными значениями; вероятности же найденных значений равны произведениям вероятностей складываемых из значений и.

19. Закон больших чисел. теоремы закона больших чисел устанавливают зависимость между случайностью и необходимостью.

Закон больших чисел- это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным.

Неравенство Чебышева.

Лемма: Если случайная величина Х имеет конечные математическое ожидание М(Х) и дисперсию Д(Х), то для любого положительного eсправедливо неравенство

Теорема Чебышева: При достаточно большом числе независимых случайных величин Х 1 , Х 2 , Х 3 , ..., Х n , дисперсия каждой из которых не превышает одного и того же постоянного числа В, для произвольного сколько угодно малого числа e справедливо неравенство

Из теоремы следует, что среднее арифметичес­кое случайных величин при возрастании их числа проявляет свойство устойчивости, т. е. стремится по вероятности к неслучайной величине, которой является среднее арифметическое математических ожиданий этих величин, т.е. вероятность отклонения по абсолютной величине среднего арифметического случайных величин от среднего арифметического их математических ожиданий меньше чем на e при неограниченном возрастании n стремится к 1, т.е. становится практически достоверным событием.



частный случай теоремы Чебышева:Пусть при n испытаниях наблюдаются n значений случайной величины X, имеющей математическое ожидание M(X) и дисперсию D(X). Полученные значения можно рассматривать как случайные величины Х 1 , Х 2 , Х 3 , ..., Х n ,. Это следует понимать так. Серия из п испытаний проводится неоднократно. Поэтому в результате i-го испытания, i=l, 2, 3, ..., п, в каждой серии испытаний появится то или иное значение случайной величины X, не известное заранее. Следовательно, i-e значение x i случайной величины, полученное в i-м испытании, изменяется случайным образом, если переходить от одной серии испытаний к другой. Таким образом, каждое значение x i можно считать случайной величиной X i .

Теорема Бернулли. Теорема Бернулли: Если вероятность события А в каждом из п независимых испытаний постоянна и равна р, то при достаточно большом п для произвольного e >0 справедливо неравенство

Переходя к пределу, имеем Теорема Бернулли устанавливает связь между вероятностью появления события и его относительной частотой появления и позволяет при этом предсказать, какой примерно будет эта частота в п испытаниях. Из теоремы видно, что отношение т/п обладает свойством устойчивости при неограниченном росте числа испытаний.

Иногда (при решении практических задач) требуется оценить вероятность того, что отклонение числа т появления события в п испытаниях от ожидаемого результата пр не превысит определенного числа e. Для данной оценки неравенство переписывают в виде

20.Центра́льные преде́льные теоре́мы (Ц.П.Т.) - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.



Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.