Газ считается идеальным если. Какой газ называется идеальным. Законы поведения идеального газа

На этом примере мы можем детально рассмотреть, как математические модели трансформируются в физические модели.

Прежде всего, идеальный газ - это математическая модель газа. И с математической точки зрения, идея очень проста: атомы (или молекулы) этого самого газа "не видят" друг друга. То есть каждая частица воспринимает сосуд как совершенно пустой. Такие частицы могут проходит друг сквозь друга. Из этого следует, например, что все частицы могут собраться в одной пространственной точке.

С другой стороны идеальный газ - это физический термин. А значит, нам надо понять, какая физика отвечает такой математической модели.

а) Итак, во-первых, чтобы атомы "не видели" друг друга надо чтобы между ними не было потенциальных сил взаимодействия, то есть сил зависящих от расстояния между частицами. В терминах энергии это требование звучит так: " потенциальная энергия взаимодействия частиц равна нулю". Такое строгое равенство нулю, это все еще математика, в физике мы можем смягчить это условие, сказав "потенциальная энергия взаимодействия частиц много меньше ...". Чего? Энергию можно сравнивать только с энергией, а системе движущихся частиц наибольший вклад дает кинетическая энергия. И вот наше первое условие:

1) Потенциальная энергия взаимодействия частиц газа много меньше их кинетической энергии.

б) В математической модели молекулы представляются математическими точками, то есть без размера. В реальном мире такого требовать мы не можем. Как же нам сформулировать это условие физически? Зачем нам безразмерные молекулы? Для того чтобы они не сталкивались друг с другом. Мы не можем запретить соударение частиц ненулевого размера без ввода в систему сил отталкивания. Но силы отталкивания мы исключили первым пунктом. Тогда нам придется разрешить столкновения в системе, но с наложением 3 условий: редко, быстро и без потерь энергии. И вот еще 3 пункта:

2) Средняя длина свободного пробега частиц (то есть расстояние проходимое между двумя последовательными столкновениями) много больше их размера.

3) Время столкновения пренебрежимо мало.

4) Все столеновения происходят без потерь энергии.

Пункты 3) и 4) мы распространим и на соударение со стенками сосуда. Если все четыре требования выполнены, то мы можем считать наш газ идеальным.

в) Еще одна интересная деталь. Кое-что наши столкновения в систему все же вносят. А именно, изменения скоростей. Причем модуля и направления. Так что какое бы распределение скоростей не было в самом начале, после множества столкновений они уже будут распределены по Максвеллу. По этому, строго говоря, нам надо потребовать, чтобы уже изначально распределение скоростей было таким. Тогда наши столкновения не будут влиять на изначальную физику системы:

5) Частицы в системе имеют случайные скорости, распределенные по закону Максвелла.

В неявном виде мы уже потребовали применимость закон Ньютона в системе (для закона сохранения импульса, например):

6) В системе действуют законы Ньютона.

Удовлетворяющий следующим условиям:

1) собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

2. Какими параметрами характеризуется состояние газа? Дайте молекулярно-кинетическое толкование параметров р,Т.

Состояние данной массы газа m характеризуют параметры: давление p, объём V, температура T.

3. Запишите формулу, связывающую температуры по шкале Кельвина и по шкале Цельсия? Каков физический смысл абсолютного нуля?

Связь между термодинамической температурой T и температурой по стоградусной шкале Цельсия имеет вид T = t + 273,15. При абсолютном нуле энергия молекул равна нулю.

4. Запишите уравнение состояния идеального газа.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона - Менделеева) - формула, устанавливающая зависимость между давлением , молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: , где p - давление, Vμ - молярный объём, T - абсолютная температура, R - универсальная газовая постоянная.

5. Какой процесс называется изотермическим? Запишите и сформулируйте закон Бойля-Мариотта и начертите график зависимости давления от объема.

Для данной массы газа при постоянной температуре произведение давления газа на его объём есть величина постоянная , при . Процесс, протекающий при постоянной температуре , называется изотермическим.

6. Какой процесс называется изохорическим? Запишите и сформулируйте закон Шарля. Начертите график зависимости давления от температуры.

Давление данной массы газа при постоянном объёме изменяется линейно с температурой , при .

Процесс, протекающий при постоянном объёме, называется изохорным.

7. Какой процесс называется изобарическим? Запишите и сформулируйте закон Гей-Люссака. Начертите график зависимости объема от температуры.

Объём данной массы газа при постоянном давлении изменяется линейно с температурой: , при . Процесс, протекающий при постоянном давлении, называется изобарным.

8. Какой процесс называется адиабатическим? Запишите уравнение Пуассона и представьте его графически. (см. приложение № 2)

Адиабатический процесс – это процесс, протекающий без теплообмена с окружающей средой , следовательно .

Работа в ходе адиабатического расширения осуществляется за счет убыли внутренней энергии.

Уравнение Пуассона , где - показатель адиабаты.

9. Запишите и сформулируйте первый закон термодинамики. Дайте понятие внутренней энергии , работы, количества тепла.

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа , которым осуществляется этот переход.

10. Запишите выражение для работы расширения газа. Как ее представить графически на рV диаграмме.

11. Примените первый закон термодинамики ко всем процессам, рассматриваемым в данной лабораторной работе и проанализируйте вытекающие из него следствия.
12. Дайте определение удельной и молярной теплоемкостей и запишите соотношение между ними.

Удельная теплоёмкость вещества – величина равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К .

С=сM.
13. Выведите уравнение Майера. Какая из теплоемкостей С P или C V больше и почему?

Связь между молярными и теплоёмкостями (уравнения Майера) .

Связь между удельными теплоёмкостями

14. Что понимают под числом степеней свободы? Запишите связь между γ и числом степеней свободы i.

Степеней свободы число в механике, число независимых между собой возможных перемещений механической системы. Число степеней свободы зависит от числа материальных частиц , образующих систему, и числа и характера наложенных на систему механических связей. Для свободной частицы число степеней свободы равно 3, для свободного твёрдого тела - 6, для тела, имеющего неподвижную ось вращения , число степеней свободы равно 1 и т.д. Для любой голономной системы (системы с геометрическими связями) число степеней свободы равно числу s независимых между собой координат, определяющих положение системы, и даётся равенством 5 = 3n - к, где n

16. Нарисуйте и поясните на рV диаграмме последовательно все процессы, происходящие с газом.

17. Какова причина изменения температуры воздуха в баллоне при накачивании воздуха в баллон и при выпуске его из баллона?

18. Выведите расчетную формулу для определения отношения теплоемкостей γ.

19. Расскажите порядок выполнения работы.

Простейшим объектом исследования идеальный газ. Идеальным газом называется газ, молекулы которого имеют пренебрежимо малый размер и не взаимодействуют на расстоянии. А при столкновениях взаимодействуют, как абсолютно упругие шары. Идеальный газ – абстракция. Но это понятие полезное, так как упрощает инженерные расчеты тепловых машин и процессов в них происходящих.

Основными параметрами газа, характеризующими его состояние являются объем, давление,, и температура,.

3. Атомная единица массы (а.Е.М.).

Массы молекул очень малы,
10 -27 кг. Поэтому для характеристики масс атомов и молекул применяют величины, получившие название атомной единицы массы элемента или молекулы,

1а.е.м. = 1,67 10 -27 кг =
.

Массы всех атомов и молекул измеряют в а.е.м.:

= 12 а.е.м.,
= 14 а.е.м.,
= 16 а.е.м.

Относительной молекулярной (
) или атомной () массой называется отношение массы молекулы или атома к (1/12) массы атома углерода
.

Как видно из определения
- безразмерные величины. Единица массы, равная (1/12) массы атома углерода
называется атомной единицей массы. (а.е.м.). Обозначим эту единицу (то есть а.е.м.), выраженную в килограммах через
. Тогда масса атома будет равна
, а масса молекулы -
.

Количество вещества, которое содержит число частиц (атомов или молекул), равное числу атомов в 0,012 кг изотопа
, называется молем.

Число частиц, содержащихся в моле вещества называется числом Авогадро,
= 6,022 10 23 моль -1 . Массу моля называют молярной массой,

(1)

В случае углерода

= 1,66 10 -27 кг.

Из (2) следует, что

= 0,001 кг/моль. (3)

Подставляя (3) в (1), имеем

= 0,001
кг/моль

=
г/моль.

Таким образом, масса моля, выраженная в граммах, численно равна относительной молекулярной массе.

= 12а.е.м.
= 12 г/моль,

= 16а.е.м.
= 16 г/моль,

= 32а.е.м.

= 32 г/моль.

4. Свойства идеального газа.

Размеры молекул порядка 1 А =10 -10 м.

Давление равно силе, действующей перпендикулярно на единичную площадку,
. Давление в СИ измеряется в Па (паскалях). Па = н/м 2 , 1 кг/см 2 = 1 атм = 9,8 10 4 Па, 1 мм рт.ст. = 133 Па.

5. Уравнение Менделеева-Клапейрона.

При небольших плотностях газы подчиняются уравнению

Уравнение состояния идеального газа Менделеева-Клапейрона, - число молей,= 8,31 Дж/моль К. Можно уравнению придать другой вид, если ввести величины

= 1,38 10 -23 Дж/К:

.

Если
- концентрация частиц, то

.

Если
, то

.

Это выражение используется в аэродинамике.

6. Основное уравнение кинетической теории газов (уравнение Клаузиуса).

Основное уравнение молекулярно кинетической теории связывает параметры состояния газа с характеристиками движения молекул.

Для вывода уравнения используется статистический метод, то есть зная характеристики отдельных молекул газа
(концентрация) можно найти- давление газа, характеристику всего газа.

Для вывода уравнения рассмотрим одноатомный идеальный газ. Молекулы движутся хаотически. Скорости молекул разные. Предположим, что число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, соударения молекул со стенками сосуда абсолютно упруги. Найдем давление на стенки сосуда, предположив, что газ находится в сосуде кубической формы с ребром . Давление ищем как усредненный результат ударов молекул газа о стенки сосуда.

1). По третьему закону Ньютона стенка получает импульс от каждой молекулы

2). За время
площадки
достигают только те молекулы, которые заключены в объеме

3). Число этих молекул в объеме
равно

.

4). Число ударов о площадку равно
.

5). При столкновении молекулы передают площадке импульс

Учитывая, что
- сила, а
- давление,

имеем для давления

(1)

Если в объеме газ содержит
молекул, которые движутся со скоростями
, то надо ввести понятие о среднеквадратичной скорости по формуле

. (2)

Тогда выражение (1) примет вид

=

Основное уравнение кинетической теории газов.

Это уравнение можно преобразовать, замечая, что

.

.

С другой стороны

.

.

Средняя кинетическая энергия хаотического движения молекул прямо пропорциональна температуре и не зависит от массы. При Т=0
= 0, движение молекул газа прекращается и давление равно нулю.

Абсолютная температура, Т – это мера средней кинетической энергии поступательного движения молекул идеального газа. Но это верно лишь при умеренных температурах, пока нет распада или ионизации молекул и атомов. Если число частиц в системе мало, то это тоже неверно, так как нельзя ввести понятие средней квадратичной скорости.

Из
и
следует

=.

ОПРЕДЕЛЕНИЕ

Идеальный газ - это наиболее простая модель системы, состоящей из большого количества частиц.

Это газ, который состоит из материальных точек, имеющих конечную массу, но не имеющих объема. Данные частицы не могут взаимодействовать на расстоянии. Столкновения частиц идеального газа описываются при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы.

Идеальный газ существует только в теории. В реальной жизни он не может существовать в принципе, так как точечные молекулы и отсутствие их взаимодействия на расстоянии аналогично их существованию вне пространства, то есть их не существованию. Ближе всех по своим свойствам к модели идеального газа приближаются газы при малом давлении (разреженные газы) и (или) высокой температуре. Модель идеального газа подходит для изучения методов исследования систем многих частиц, знакомства с соответствующими понятиями.

В промежутках между столкновениями молекулы идеального газа движется по прямым. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. Следовательно, если знать положения и скорости всех частиц идеального газа в какой-то момент времени, то можно найти их координаты и скорости в любой другой момент времени. Эта информация наиболее полно описывает состояние системы частиц. Однако количество частиц столь велико, что динамическое описание системы многих частиц непригодно для теории и бесполезно для практики. Это означает, что для изучения систем многих частиц информация должна быть обобщена, и ее относят не к отдельным частицам, а к их большим совокупностям.

Давление идеального газа

При помощи модели идеального газа удалось качественно и количественно объяснить давление газа на стенки сосуда, в котором он находится. Газ оказывает давление на стенки сосуда потому, что его молекулы взаимодействуют со стенками как упругие тела по законам классической механики. Количественно давление (p) идеального газа получили равным:

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда).

Законы идеальных газов

Идеальным называют газы, которые строго подчиняются законам Бойля - Мариотта и Гей - Люссака.

Закон Бойля - Мариотта. Для постоянной массы (m) идеального газа при постоянной температуре (T) произведение давления (p) газа на его объем (V) является постоянной величиной для любых состояний рассматриваемого вещества:

Закон Гей-Люссака. Для постоянной массы газа при неизменном давлении выполняется соотношение:

В поведении реальных газов наблюдают отступления от законов Бойля — Мариотта и Гей-Люссака, и эти отступления различны для разных газов.

Для идеального газа выполняется закон Шарля. Который говорит о том, что для постоянной массы газа, при постоянном объеме, отношение давления газа к температуре, не изменяется:

Для связи параметров идеального газа, часто используют уравнение состояния, которое носит имена двух ученых Клапейрона и Менделеева:

где — молярная масса газа; - универсальная газовая постоянная.

Закон Дальтона. Давление смеси идеальных газов (p) равно сумме парциальных давлений () рассматриваемых газов:

При этом уравнение состояния смеси идеальных газов имеет вид (2), как будто газ является химически однородным.

Примеры решения задач

ПРИМЕР 1

Задание Какие процессы в неизменной массе идеального газа представляют графики (рис.1)?

Решение Рассмотрим процесс изображенный графиком под номером 1. Мы видим, что произведение , по условию газ идеальный, масса газа постоянная, следовательно, это изотермический процесс.

Перейдем ко второму графику. Из графика мы можем сделать вывод о том, что:

где С - некоторая постоянна величина. Разделим правую и левую части выражения (1.1) имеем:

Мы получили, что давление постоянно. Так как , имеем изобарный процесс.

Ответ 1- изотермический процесс. 2- изобарный процесс.

ПРИМЕР 2

Задание Как будет изменяться давление идеального газа в процессе при котором масса газа постоянна, объем газа увеличивают, а температуру уменьшают?
Решение За основу решения задачи примем уравнение Клапейрона - Менделеева:

Основной объект молекулярно-кинетической теории газов – так называемый «идеальный газ». Под идеальным газом понимается разреженная среда из многих (очень большого числа) частиц, не взаимодействующих друг с другом иначе, как посредством редких столкновений. Каждая из частиц среды движется хаотически и независимо от других. Каждая из частиц обладает обычным для классической механики набором физических параметров, как то: массой и скоростью. А также производными от этих величин – энергией и импульсом. Размеры частиц считаются пренебрежимо малыми, по отношению к остальным характерным размерам рассматриваемой физической системы. Более точно идеальный газ характеризуется следующими свойствами, непосредственно вытекающими из данного определения:

  • Коль скоро частицы практически не взаимодействуют друг с другом, то их потенциальная энергия пренебрежимо мала по сравнению с их кинетической энергией. Это относится и к фундаментальным силам, наподобие сил гравитации, которые не включаются в рассмотрение.
  • Соударения частиц считаются упругими, т.е. такими же, как столкновения абсолютно твердых сфер, наподобие биллиардных шаров. При столкновении друг с другом частицы не «липнут» друг к другу. А это значит, что промежутком времени, занимаемым процессом столкновения, можно пренебречь.
  • Идеальный газ рассматривается вкупе с некоторым объемом им занимаемым. Совокупный объем частиц принимается пренебрежимо малым по сравнению с объемом ими занимаемым.

Итог: речь идет об очень разреженной среде без сопротивления и любых других внешних взаимодействий, состоящей из упругих частиц пренебрежимо малого размера (молекул, атомов).

Макроскопические характеристики идеального газа

Идеальный газ в сосуде, рассматриваемый в целом (то есть как макроскопический объект), обладает определенным набором макроскопических характеристик, не зависящих от поведения отдельных его частиц. Данные характеристики – производные от средних значений энергий отдельных частиц идеального газа. К числу таких показателей можно отнести температуру и давление идеального газа.

  • Температура идеального газа – есть мера средней кинетической энергии молекул идеального газа.
  • Давление идеального газа — есть мера средней кинетической энергии ударов по небольшой, абсолютно упругой площадке, помещенной в газ.

Уже из определения температуры и давления должно быть понятно, что эти параметры зависят друг от друга. Действительно, в случае, если стенкам сосуда дают возможность свободно расширяться, то имеет место закон пропорциональности: p~ T, где p – давление и T – температура.

Законы поведения идеального газа

В зависимости от условий, налагаемых на объем сосуда, величину давления или величину температуры – можно получить различные частные закономерности поведения идеального газа:

  • Закон Бойля-Мариотта (постоянной считается температура).
  • Закон Гей-Люссака (постоянным считается давление).
  • Закон Шарля (постоянен объем).

Имеются и другие соотношения. Соответствующие формулы можно посмотреть на картинке ниже: