Интересное о законе всемирного тяготения. История открытия закона всемирного тяготения. Ученые о силе всемирного тяготения


Все мы проходили закон всемирного тяготения в школе. Но что мы на самом деле знаем о гравитации, помимо информации, вложенной в наши головы школьными учителями? Давайте обновим наши познания...

Факт первый

Всем известна знаменитая притча о яблоке, которое упало на голову Ньютону. Но дело в том, что Ньютон не открывал закона всемирного тяготения, так как этот закон просто напросто отсутствует в его книге "Математические начала натуральной философии". В этом труде нет ни формулы, ни формулировки, в чём каждый желающий может убедиться сам. Более того, первое упоминание о гравитационной постоянной появляется только в 19-м веке и соответственно, формула, не могла появиться раньше. К слову сказать, коэффициент G, уменьшающий результат вычислений в 600 миллиардов раз не имеет никакого физического смысла, и введён для сокрытия противоречий.

Факт второй

Считается, что Кавендиш первый продемонстрировал гравитационное притяжение у лабораторных болваночек, использовав крутильные весы - горизонтальное коромысло с грузиками на концах, подвешенных на тонкой струне. Коромысло могло поворачиваться на тонкой проволоке. Согласно официальной версии, Кавендиш приблизил к грузикам коромысла пару болванок по 158 кг с противоположных сторон и коромысло повернулось на небольшой угол. Однако методика опыта была некорректной и результаты были сфальсифицированы, что убедительно доказано физиком Андреем Альбертовичем Гришаевым. Кавендиш долго переделывал и настраивал установку, чтобы результаты подходили под высказанную Ньютоном среднюю плотность земли. Методика самого опыта предусматривала движение болванок несколько раз, а причиной поворота коромысла служили микровибрации от движения болванок, которые передавались на подвес.

Это подтверждается тем, что такая простейшая установка 17 века в учебных целях должна была бы стоять если не в каждой школе, то хотя бы на физических факультетах ВУЗОВ, чтобы на практике показывать студентам результат действия закона Всемирного тяготения. Однако установка Кавендиша не используется в учебных программах, и школьники, и студенты верят на слово, что две болванки притягивают друг друга.

Факт третий

Если подставить в формулу закона всемирного тяготения справочные данные по Земле, Луне и Солнцу, то в момент, когда Луна пролетает между Землёй и Солнцем, например, в момент солнечного затмения, сила притяжения между Солнцем и Луной более чем в 2 раза выше, чем между Землёй и Луной!

Согласно формуле Луна должна была бы уйти с орбиты земли и начать вращаться вокруг Солнца.

Гравитационная постоянная – 6,6725×10−11 м³/(кг с²).

Масса Луны – 7,3477×1022 кг.

Масса Солнца – 1,9891×1030 кг.

Масса Земли – 5,9737×1024 кг.

Расстояние между Землёй и Луной = 380 000 000 м.

Расстояние между Луной и Солнцем = 149 000 000 000 м.

Земля и Луна:

6,6725×10-11 х 7,3477×1022 х 5,9737×1024 / 3800000002 = 2,028×10^20 H

Луна и Солнце :

6,6725×10-11 х 7,3477 1022 х 1,9891 1030 / 1490000000002 = 4,39×10^ 20 H

2,028×10^20 H << 4,39×10^20 H

Сила притяжения между Землёй и Луной << Сила притяжения между Луной и Солнцем

Эти вычисления можно критиковать тем, что луна - искусственное полое тело и справочная плотность этого небесного тела скорее всего определена не правильно.

Действительно, экспериментальные свидетельства говорят о том, что Луна представляет из себя не сплошное тело, а тонкостенную оболочку. Авторитетный журнал Сайенс описывает результаты работы сейсмодатчиков после удара о поверхность Луны третьей ступени ракеты, разгонявшей корабль «Аполлон-13»: «сейсмозвон детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут».

Сейсмические колебания, которые затухают так медленно, типичны для полого резонатора, а не для сплошного тела.

Но Луна помимо прочего не проявляет своих притягивающих свойств по отношению к Земле - пара Земля-Луна движется не вокруг общего центра масс , как это было бы по закону всемирного тяготения, и эллипсоидная орбита Земли вопреки этому закону не становится зигзагообразной.

Более того, параметры орбиты самой Луны не остаются постоянными, орбита по научной терминологии "эволюционирует", причём делает это вопреки закону всемирного тяготения.

Факт четвёртый

Как же так, возразят некоторые, ведь даже школьники знают про океанские приливы на Земле, которые происходят из-за притяжения воды к Солнцу и Луне.

По теории тяготение Луны формирует приливной эллипсоид в океане, с двумя приливными горбами, которые из-за суточного вращения перемещаются по поверхности Земли.

Однако практика показывает абсурдность этих теорий. Ведь согласно ним приливный горб высотой 1 метр за 6 часов должен через пролив Дрейка переместиться из Тихого океана в Атлантический. Поскольку вода несжимаема, то масса воды подняла бы уровень на высоту около 10 метров, чего не происходит на практике. На практике приливные явления происходят автономно в областях 1000-2000 км.

Ещё Лапласа изумлял парадокс: почему в морских портах Франции полная вода наступает последовательно, хотя по концепции приливного эллипсоида она должна наступать там одновременно.

Факт пятый

Принцип измерений гравитации прост - гравиметры измеряют вертикальные компоненты, а отклонение отвеса показывает горизонтальные компоненты.

Первая попытка проверки теории тяготения масс была предпринята англичанами в середине 18 века на берегу Индийского океана, где, с одной стороны находится высочайшая в мире каменная гряда Гималаев, а с другой – чаша океана, заполненная куда менее массивной водой. Но, увы, отвес в сторону Гималаев не отклоняется! Более того, сверхчувствительные приборы – гравиметры – не обнаруживают разницы в тяжести пробного тела на одинаковой высоте как над массивными горами, так и над менее плотными морями километровой глубины.

Чтобы спасти прижившуюся теорию, учёные придумали для неё подпорку: мол причиной тому «изостазия» – под морями располагаются более плотные породы, а под горами – рыхлые, причём плотность их точь-в-точь такая, чтоб подогнать всё под нужное значение.

Также опытным путём было установлено, что гравиметры в глубоких шахтах показывают, сила тяжести, не уменьшающуюся с глубиной. Она продолжает расти, будучи зависимой только от квадрата расстояния до центра земли.

Факт шестой

Согласно формуле закона всемирного тяготения, две массы, м1 и м2, размерами которых можно пренебречь по сравнению с расстояниями между ними, якобы притягиваются друг к другу силой, прямо пропорциональной произведению этим масс и обратно пропорционально квадрату расстояния между ними. Однако, фактически, неизвестно ни одного доказательства того, что вещество обладает гравитационным притягивающим действием. Практика показывает, что тяготение порождается не веществом и не массами, оно независимо от них и массивные тела лишь подчиняются тяготению.

Независимость тяготения от вещества подтверждается тем, что за редчайшим исключением, у малых тел солнечной системы гравитационная притягивающая способность отсутствует полностью. За исключением Луны и Титана у более чем шести десятков спутников планет признаков собственного тяготения не наблюдается. Это доказано как косвенными, так и прямыми измерениями, например, с 2004 года зонд Кассени в окрестностях Сатурна время от времени пролетает рядом с его спутниками, однако изменений скорости зонда не зафиксировано. С помощью того же Кассени был обнаружен гейзер на Энцеладе - шестом по размеру спутник Сатурна.

Какие физические процессы должны происходить на космическом куске льда, чтобы струи пара улетали в космос?

По той же причине у Титана, крупнейшего спутника Сатурна, наблюдается газовых хвост как следствие стока атмосферы.

Не найдено предсказанных теорией спутников у астероидов, несмотря на их огромное количество. А во всех сообщениях о двойных, или парных астероидах, которые якобы вращаются вокруг общего центра масс, свидетельств об обращении этих пар не было. Компаньоны случайно оказывались рядом, двигаясь по квазисинхронным орбитам вокруг солнца.

Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. В качестве примеров можно привести зонд NEAR, который подгоняли к астероиду Эрос американцы, или зонд ХАЯБУСА, который японцы отправили к астероиду Итокава.

Факт седьмой

В своё время Лагранж, пытаясь решить задачу трёх тел, получил устойчивое решения для частного случая. Он показал, что третье тело может двигаться по орбите второго, всё время находясь в одной из двух точек, одна из которых опережает второе тело на 60°, а вторая на столько же отстаёт.

Однако две группы компаньонов-астероидов, найденные позади и впереди на орбите Сатурна, и которые астрономы на радостях назвали Троянцами, вышли из прогнозируемых областей, и подтверждение закона всемирного тяготения обернулось проколом.

Факт восьмой

По современным представлениям скорость света конечна, в результате удалённые объекты мы видим не там, где они расположены в данный момент, а в той точке, откуда стартовал увиденный нами луч света. Но с какой скоростью распространяется тяготение? Проанализировав данные, накопленные ещё к тому времени, Лаплас установил, что «гравитация» распространяется быстрее света, как минимум, на семь порядков! Современные измерения по приёму импульсов пульсаров отодвинули скорость распространения гравитации ещё дальше – как минимум, на 10 порядков быстрей скорости света. Таким образом, эксперементальные исследования входят в противоречине с общей теорией относительности, на которую до сих пор опирается официальная наука, несмотря на её полную несостоятельность.

Факт девятый

Существуют природные аномалии гравитации, которые также не находят никакого внятного объяснения у официальной науки. Вот несколько примеров:

Факт десятый

Существует большое количество альтернативных исследований с впечатляющими результатами в области антигравитации, которые в корне опровергают теоретические выкладки официальной науки.

Некоторые исследователи анализируют вибрационную природу антигравитации. Этот эффект наглядно представлен в современном опыте, где капли за счёт акустической левитации висят в воздухе. Здесь мы видим, как с помощью звука определённой частоты удаётся уверенно удерживать капли жидкости в воздухе…

А вот эффект на первый взгляд объясняется принципом гироскопа, однако даже такой простой опыт по большей части противоречит гравитации в её современном понимании.

Мало кто знает, что Виктор Степанович Гребенников , сибирский энтомолог, занимавшийся изучением эффекта полостных структур у насекомых, в книге "Мой мир" описывал явления антигравитации у насекомых. Учёным давно известно, что, массивные насекомые, например майский жук, летают скорее вопреки законам гравитации, а не благодаря им.

Более того, на основе своих исследований Гребенников создал антигравитационную платформу .

Виктор Степанович умер при довольно странных обстоятельствах и его наработки частично были утеряны, однако некоторая часть прототипа анти-гравитационной платформы сохранилась и её можно увидеть в музее Гребенникова в Новосибирске.

Ещё одно практическое применение антигравитации можно наблюдать в городе Хоумстед во Флориде, где находится странная структура из коралловых монолитных глыб, которую в народе прозвали Коралловым замком . Он построен выходцем из Латвии - Эдвардом Лидскалнином в первой половине 20го века. У этого мужчины худощавого телосложения не было никаких инструментов, не было даже машины и вообще никакой техники.

Он совсем не использовался электричеством, также по причине его отсутствия, и тем не менее каким-то образом спускался к океану, где вытесывал многотонные каменные блоки и как-то доставлял их на свой участок. выкладывая с идеальной точностью

После смерти Эда ученые принялись тщательно изучать его творение. Ради эксперимента был пригнан мощнейший бульдозер, и предпринята попытка сдвинуть с места одну из 30-тонных глыб кораллового замка. Бульдозер ревел, буксовал, но так и не сдвинул огромный камень.

Внутри замка был найден странный прибор, который ученые назвали генератором постоянного тока. Это была массивная конструкция с множеством металлических деталей. По внешней стороне устройства были встроены 240 постоянных полосовых магнитов. Но как на самом деле Эдвард Лидскалнин заставлял двигаться многотонные блоки, до сих пор остаётся загадкой.

Известны исследования Джона Сёрла, в руках которого оживали, вращались и вырабатывали энергию необычные генераторы; диски диаметром от полуметра до 10 метров поднимались в воздух и совершали управляемые полеты из Лондона в Корнуолл и обратно.

Эксперименты профессора повторили в России, США и на Тайване. В России, например, в 1999 году под № 99122275/09 была зарегистрирована заявка на патент «устройства для выработки механической энергии». Владимир Витальевич Рощин и Сергей Михайлович Годин, по сути, воспроизвели SEG (Searl Effect Generator - генератор на Сёрл-эффекте) и провели ряд исследований с ним. Итогом стала констатация: можно получить без затрат 7 КВт электроэнергии; вращающийся генератор терял в весе до 40%.

Оборудование первой лаборатории Сёрла было вывезено в неизвестном направлении, пока сам он был в тюрьме. Установка Година и Рощина просто пропала; все публикации о ней, за исключением заявки на изобретение, исчезли.

Известен также Эффект Хатчисона, названный в честь канадского инженера-изобретателя. Эффект проявляется в левитации тяжелых объектов, сплаве разнородных материалов (например металл+дерево), аномальном разогревании металлов при отсутствии вблизи них горящих веществ. Вот видеозапись этих эффектов:

Чем бы не была гравитация на самом деле, следует признать, что официальная наука совершенно не способна внятно объяснить природу этого явления.

Ярослав Яргин

По материалам:

Бирюльки и фитюльки всемирного тяготения

Закон Всемирного Тяготения – очередной обман

Луна - искусственный спутник земли

Тайна Кораллового замка во Флориде

Антигравитационная платформа Гребенникова

Антигравитация - эффект Хатчисона

Структура поля силы тяжести никак не исходит из величины массы планеты. Наоборот, именно интенсивность этого гравитационного поля (как одного из вида гравитации), выраженная величиной полевого заряда (ускорения свободного падения), формирует массу планеты.

И это ещё раз подчёркивает абсурдность выражения силы тяжести формулой, называемой в традиционной физической теории формулой всемирной гравитации, через равенство: Fт. = m*g= G*(m*Mз)/R 2 , где «R» - радиус Земли плюс высота тела над поверхностью Земли, а Мз - масса Земли, но фактически обозначающая её вес (что опять абсурдно).

Обратите внимание на то, что кроме определения «массы» Земли из приведённого равенства, выражают из него и заряд поля силы тяжести (ускорение свободного падения) в виде «g=G*Mз/Rз. 2 », называя такую формулу неким самостоятельным выражением для ускорения свободного падения. При этом забывается о том, что ускорение свободного падения выражается, естественно, без всякого учёта масс, исходя из формулы пути падения тела «gt ²/2 » (и g о t ²/4 в физике различения) и - из формулы оборотного маятника (g о=4пи R 2).

На основе абсурдной формулы g=G*Mз/Rз. 2 была выведена соответственно также абсурдная формула Шварцшильда, утверждающая о стремлении звёзд к их сжатию и, в дальнейшем, - к некоему гравитационному коллапсу. Такое абсурдное утверждение привело и к абсурдной теории неких «чёрных дыр». И всё эти несуразности высказываются на фоне фактов уменьшения веса тел при приближении их к центру Земли и - независимости характера падения тел от их массы.

Несмотря на то, что Ньютон в силу его времени и не был знаком с фактом физических полей, он в действительности обозначил всемирную гравитационную структуру, как силовое или наружное проявление всей пространственно-временной космической структуры. Ведь он выявил зависимость величин пространственных зарядов вращения (называемых центростремительным вращательным ускорением для Луны и ускорением свободного падения для Земли) от квадрата радиуса между ними без всякого учёта масс.

Такая структурная пространственная зависимость, выражающая взаимно-центрическое наружно силовое взаимодействие полей и есть законом всемирной гравитации . Но, рассматривая взаимодействия тел, а не полей, обозначающих тела и отдельные заряды, И.Ньютон выразил и закон всемирной гравитации не вращательно и структурно, а линейно и математически: произведением гравитационных зарядов тел (заменённых затем массами).

Эти заряды в законе Кулона - уже электрические заряды, а в опыте Кавендиша - это наружно-молекулярные заряды тел. И вот дальнейшая замена гравитационных зарядов И.Ньютона, обозначающих наружную полевую или пространственную характеристику (в том числе и конкретного тела) на массы, характеризующие внутреннюю полевую характеристику уже исключительно тел, и привела к абсурду равенства «Fт. = m*g= G*(m*Mз)/R 2 ».

Ведь масса (не различаемая фактически в традиционной физике от силы тяжести) - это производное образование от внутреннего молекулярного заряда вещества тела. Т.о., на начальное искажение закона всемирной гравитации, выразившееся в линейном, а не во вращательно структурном рассмотрении силы было наложено искажение уже в виде подмены наружного понятия гравитационного заряда внутренним физическим понятием массы.

Этим и получилось двойное искажение закона всемирной гравитации. В связи с этим он и не имеет никакого отношения к образованию силы тяжести, поскольку, во-первых, всемирная гравитация или тяготение означает вращательно структурное, а не линейное рассмотрение силы. А, во-вторых, и линейное рассмотрение силы выражает не внутреннюю характеристику тел и внутреннее полевое взаимодействие, а - внешнее пространственно-полевое взаимодействие гравитационных зарядов (рассмотрением их вращательной полевой характеристикой, в размерности вращательного ускорения).

И, действительно, сила тяжести, действующая лишь на крупных космических телах, а не в космосе, никак не имеет отношения именно к всемирной или к всеобщей гравитации. Образование силы тяжести, естественно, относится к гравитации, но - уже опосредованно через массу.

При этом и образование силы тяжести, как и любой силы , исходя из сравнения вращательных полевых зарядов самим же Ньютоном, необходимо рассматривать не линейно или линейными векторами, а - вращательно структурно или спиральными векторами. О полевом или сферическом происхождении силы говорит и третий закон Ньютона, как о спиральных векторах действия и противодействия .

Да и сам путь падения тела, переходящий в вектор силы тяжести, - это длина развёрнутой окружности с радиусом, равным дуге полуокружности, описываемой средним радиусом Земли. Т.о., в рассмотрении закона всемирной гравитации, относящегося к окружному взаимно-центрическому полевому пространству и к вращательно-структурному выражению силы, допустили его объединение с линейным выражением силы (например, в законе Кулона и в подобном ему выражении силы наружно-молекулярного взаимодействия свинцовых шаров Г.Кавендишем).

А это выражение силы относится уже к предмассовому переходному пространству (занимающему около 20% от всего наблюдаемого космического объёма) и относится потому к проявлению всемирной гравитационной или наружно силовой структуры , но никак не к закону всемирной гравитации. И затем уже это линейное обозначение силы объединили с выражением силы тяжести (причём не в виде «F=m*g0», а в виде «F=m*g» без различения смысла ускорения свободного падения и смысла понятия массы). Сила же тяжести тем более не относится к закону всемирной гравитации, обозначая лишь непосредственно массовое пространство или пространство масс, занимающее лишь около 5% от всего наблюдаемого космического объёма.

И только в массовом пространстве всемирные сферические линии получают окружное, а затем и прямолинейное искривление. Потому и прямая линия, как это ни странно, означает наибольшее, но - именно пространственное искривление.

Также и И.Ньютон в силу его эпохи усматривал всемирную категорию или всеобщность, исходя лишь из земного окружения, как из указанных пяти процентов. В нынешнее же время космических исследований такое восприятие гравитации и всемирного закона гравитации уже не допустимо.

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

Не только самая загадочная из сил природы , но и самая могучая.

Человек на пути прогресса

Исторически получилось, что человек по мере своего движения вперед по пути прогресса овладевал все более могучими силами природы. Он начинал, когда у него ничего не было, кроме палки, зажатой в кулаке, и собственных физических сил.

Но он был мудр, и он привлек на службу себе физическую силу животных, сделав их домашними. Лошадь ускорила его бег, верблюд сделал проходимыми пустыни, слон - болотистые джунгли. Но физические силы даже самых сильных животных неизмеримо малы перед силами природы.

Первой человек подчинил себе стихию огня, но лишь в самых ослабленных его вариантах. Вначале - в течение многих веков - использовал он в качестве горючего только дерево - очень малоэнергоемкий вид топлива. Несколько позже этого источника энергии научился он использовать энергию ветра, человек поднял в воздух белое крыло паруса - и легкое судно птицей полетело по волнам.

Парусник на волнах

Он подставил порывам ветра лопасти ветряной мельницы - и завращались тяжелые камни жерновов, застучали песты крупорушек. Но каждому ясно, что энергия воздушных струй далеко не принадлежит к числу концентрированных. К тому же и парус, и ветряк боялись ударов ветра: шторм рвал паруса и топил корабли, буря ломала крылья и переворачивала мельницы.

Еще позже человек начал покорение текущей воды. Колесо - не только самое примитивное из устройств, способных превращать энергию воды во вращательное движение, но и самое маломощное по сравнению с разнообразными .

Человек шел все вперед по лестнице прогресса и нуждался все в больших количествах энергии.
Он начал использовать новые виды топлива - уже переход на сжигание каменного угля поднял энергоемкость килограмма горючего с 2500 ккал до 7000 ккал - почти в три раза. Потом пришла пора нефти и газа. Снова в полтора-два раза выросло энергосодержание каждого килограмма ископаемого топлива.

На смену паровым машинам пришли паровые турбины; мельничные колеса заменялись гидравлическими турбинами. Далее протянул человек руку к расщепляющемуся атому урана. Однако первое применение нового вида энергии имело трагические последствия - ядерное пламя Хиросимы 1945 года испепелило в течение считанных минут 70 тысяч человеческих сердец.

В 1954 году вступила в строй первая в мире советская атомная электростанция, превращавшая мощь урана в сияющую силу электрического тока. И надо отметить, что килограмм урана содержит в себе в два миллиона раз больше энергии, чем килограмм лучшей нефти.

Это был принципиально новый огонь, который можно было бы назвать физическим, ибо именно физики изучили процессы, приводящие к рождению столь баснословных количеств энергии.
Уран - не единственное ядерное горючее. Уже используется более могучий вид горючего - изотопы водорода.

К сожалению, человек еще не смог подчинить себе водородно-гелиевое ядерное пламя. Он умеет на мгновение зажигать его всесжигающий костер, поджигая реакцию в водородной бомбе вспышкой уранового взрыва. Но все ближе и ближе видится ученым и водородный реактор, который будет рождать электрический ток в результате слияния ядер изотопов водорода в ядра гелия.

Опять почти в десять раз возрастет количество энергии, которое сможет взять человек от каждого килограмма топлива. Но разве этот шаг будет последним в грядущей истории власти человечества над силами природы?

Нет! Впереди - овладение гравитационным видом энергии. Она еще более расчетливо упакована природой, чем даже энергия водородно-гелиевого синтеза. Сегодня это самый концентрированный вид энергии, о каком может хотя бы догадываться человек.

Ничего дальше пока не видно там, за передним краем науки. И хотя убежденно можно сказать, что будут работать для человека электростанции, перерабатывающие гравитационную энергию в электрический ток (а может быть, в струю газа, вылетающего из сопла реактивного двигателя, или же в запланированные превращения вездесущих атомов кремния и кислорода в атомы сверхредких металлов), мы ничего пока не можем сказать о деталях такой электростанции (ракетного двигателя, физического реактора).

Сила всемирного тяготения у истоков рождения Галактик

Сила всемирного тяготения стоит у истоков рождения Галактик из дозвездного вещества, как в том убежден академик В. А. Амбарцумян. Она же гасит звезды, отгоревшие свой срок, истратившие отпущенное им при рождении звездное горючее.

Да оглянитесь вокруг: и у нас на Земле все в значительной мере управляется этой силой.

Это она определяет слоистое строение нашей планеты - чередование литосферы, гидросферы и атмосферы. Это она удерживает толстый слой газов воздуха, на дне которого и благодаря которому существуем все мы.

Не будь тяготения, Земля тут же сорвалась бы со своей орбиты вокруг Солнца, и сам шар земной развалился бы на части, разорванный центробежными силами. Трудно найти что-нибудь, что не было бы в той или иной степени зависимо от силы всемирного тяготения.

Конечно, древние философы, люди очень наблюдательные, не могли не заметить, что брошенный вверх камень всегда возвращается обратно. Платон в IV веке до нашей эры объяснил это тем, что все вещества Вселенной стремятся туда, где сосредоточена большая часть аналогичных веществ: брошенный камень падает на землю или идет ко дну, пролитая вода просачивается в ближайший пруд или в речку, пробивающую себе путь к морю, дым костра устремляется к родственным ему облакам.

Ученик Платона, Аристотель, уточнил, что все тела обладают особыми свойствами тяжести и легкости. Тяжелые тела - камни, металлы - устремляются к центру Вселенной, легкие - огонь, дым, пары - к периферии. Эта гипотеза, объясняющая некоторые явления, связанные с силой всемирного тяготения, просуществовала более 2 тысяч лет.

Ученые о силе всемирного тяготения

Наверное, первым, поставившим вопрос о силе всемирного тяготения действительно научно, был гений Возрождения - Леонардо да Винчи. Леонардо провозгласил, что тяготение свойственно не только Земле, что центров тяготения множество. И он же высказал мысль, что сила тяготения зависит от расстояний до центра тяготения.

Работы Коперника, Галилея, Кеплера, Роберта Гука все ближе и ближе подводили к представлению о законе всемирного тяготения, но в окончательной своей формулировке этот закон навсегда связан с именем Исаака Ньютона.

Исаак Ньютон о силе всемирного тяготения

Родился 4 января 1643 года. Кончил Кембриджский университет, стал бакалавром, затем - магистром наук.


Исаак Ньютон

Все дальнейшее - бесконечное богатство научных работ. Но главный его труд - «Математические начала натуральной философии», изданный в 1687 году и обычно называемый просто «Начала». В них-то и сформулирован великий . Наверное, каждый помнит его еще из средней школы.

Все тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними…

Некоторые положения этой формулировки удавалось предвосхитить предшественникам Ньютона, но никому еще она не далась целиком. Нужен был гений Ньютона, чтобы собрать эти осколки в единое целое, чтобы распространить притяжение Земли до Луны, а Солнца - на всю планетную систему.

Из закона всемирного тяготения Ньютон вывел все законы движения Планет, открытые до того Кеплером. Они оказались просто его следствиями. Мало того, Ньютон показал, что не только законы Кеплера, но и отступления от этих законов (в мире трех и более тел) являются следствием всемирного тяготения… Это было великим триумфом науки.

Казалось, открыта наконец и математически описана главная сила природы, движущая мирами, сила, которой подвластны и молекулы воздуха, и яблоки, и Солнце. Гигантским, неизмеримо огромным был шаг, совершенный Ньютоном.

Первый популяризатор работ гениального ученого французский писатель Франсуа Мари Аруэ, всемирно известный под псевдонимом Вольтер, поведал, что Ньютон вдруг догадался о существовании закона, названного его именем, когда взглянул на падающее яблоко.

Сам Ньютон об этом яблоке никогда не упоминал. И вряд ли стоит сегодня терять время на опровержение этой красивой легенды. И, видимо, к постижению великой силы природы Ньютон пришел путем логического рассуждения. Вероятно, именно оно и вошло в соответствующую главу «Начал».

Сила всемирного тяготения воздействует на полет ядра

Предположим, что на очень высокой горе, такой высокой, что ее вершина находится уже вне атмосферы, мы установили гигантское артиллерийское орудие. Ствол его расположили строго параллельно поверхности земного шара и выстрелили. Описав дугу, ядро падает на Землю .

Увеличиваем заряд, улучшаем качество пороха, тем или иным способом заставляем ядро после следующего выстрела двигаться с большей скоростью. Дуга, описанная ядром, становится более пологой. Ядро падает значительно дальше от подножия нашей горы.

Еще увеличиваем заряд и стреляем. Ядро летит по такой пологой траектории, что она снижается параллельно поверхности земного шара. Ядро уже не может упасть на Землю: с той же скоростью, с какой оно снижается, убегает из-под него Земля. И, описав кольцо вокруг нашей планеты, ядро возвращается к точке вылета.

Орудие можно тем временем снять. Ведь полет ядра вокруг земного шара займет свыше часа. И тогда ядро стремительно пронесется над вершиной горы и отправится в новый облет Земли. Упасть, если, как мы условились, ядро не испытывает никакого сопротивления воздуха, оно не сможет никогда.

Скорость ядра для этого должна быть близкой к 8 км/сек. А если еще увеличить скорость полета ядра? Оно сначала полетит по дуге, более пологой, чем кривизна земной поверхности, и начнет удаляться от Земли. При этом скорость его под влиянием притяжения Земли будет уменьшаться.

И, наконец, повернувшись, оно начнет как бы падать обратно на Землю, но пролетит мимо нее и замкнет уже не круг, а эллипс. Ядро будет двигаться вокруг Земли точь-в-точь так же, как Земля движется вокруг Солнца, а именно по эллипсу, в одном из фокусов которого будет находиться центр нашей планеты.

Если еще увеличить начальную скорость ядра, эллипс получится более растянутый. Можно так растянуть этот эллипс, что ядро долетит до лунной орбиты или даже значительно дальше. Но до тех пор, пока начальная скорость этого ядра не превысит 11,2 км/сек, оно будет оставаться спутником Земли.

Ядро, получившее при выстреле скорость свыше 11,2 км/сек, навсегда улетит с Земли по параболической траектории. Если эллипс - замкнутая кривая, то парабола - кривая, имеющая две уходящие в бесконечность ветви. Двигаясь по эллипсу, каким бы вытянутым он ни был, мы неизбежно будем систематически возвращаться к исходной точке. Двигаясь же по параболе, в исходную точку мы никогда не вернемся.

Но, покинув Землю с этой скоростью, ядро еще не сможет улететь в бесконечность. Могучее тяготение Солнца изогнет траекторию ее полета, замкнет вокруг себя наподобие траектории планеты. Ядро станет сестрой Земли, самостоятельной крохотной планеткой в нашей семье планет.

Для того чтобы направить ядро за пределы планетной системы, преодолеть солнечное притяжение, надо сообщить ему скорость свыше 16,7 км/сек, да направить его так, чтобы к этой скорости приложилась скорость собственного движения Земли.

Скорость около 8 км/сек (эта скорость зависит от высоты горы, с которой стреляет наша пушка) называется круговой скоростью, скорости от 8 до 11,2 км/сек - эллиптическими, от 11,2 до 16,7 км/сек - параболическими, а свыше этого числа - освобождающими скоростями.

Здесь же следует добавить, что приведенные значения этих скоростей справедливы только для Земли. Если бы мы жили на Марсе, круговая скорость была бы для нас достижима значительно более легко - она там составляет всего около 3,6 км/сек, а параболическая скорость лишь незначительно превосходит 5 км/сек.

Зато отправить ядро в космический рейс с Юпитера было бы значительно труднее, чем с Земли: круговая скорость на этой планете равна 42,2 км/сек, а параболическая - даже 61,8 км/сек!

Наиболее трудно было бы покинуть свой мир жителям Солнца (если бы, конечно, таковые могли существовать). Круговая скорость этого гиганта должна составлять 437,6, а отрывная - 618,8 км/сек!

Так Ньютон в конце XVII века, за сто лет до первого полета наполненного теплым воздухом воздушного шара братьев Монгольфье, за двести лет до первых полетов аэроплана братьев Райт и почти за четверть тысячелетия до взлета первых жидкостных ракет, указал путь в небо спутникам и космическим кораблям.

Сила всемирного тяготения присуща в каждой сфере

С помощью закона всемирного тяготения были открыты неизвестные планеты, созданы космогонические гипотезы происхождения Солнечной системы. Открыта и математически описана та главная сила природы, которой подвластны и звезды, и планеты, и яблоки в саду, и молекулы газов в атмосфере.

Но нам неизвестен механизм всемирного тяготения. Ньютоновское тяготение не объясняет, а представляет наглядно современное состояние движения планет.

Нам неизвестно, чем, какими причинами вызывается взаимодействие всех тел Вселенной. И нельзя сказать, чтобы Ньютона не заинтересовала эта причина. На протяжении многих лет размышлял он над ее возможным механизмом.

Кстати, это действительно чрезвычайно таинственная сила. Сила, проявляющая себя через сотни миллионов километров пространства, лишенного на первый взгляд каких-либо материальных образований, с помощью которых можно было бы объяснить передачу взаимодействия.

Гипотезы Ньютона

И Ньютон прибегнул к гипотезе о существовании некоего эфира, заполняющего якобы всю Вселенную. В 1675 году он объяснил притяжение к Земле тем, что заполняющий всю Вселенную эфир непрерывными потоками устремляется к центру Земли, захватывая в этом движении все предметы и создавая силу тяготения. Такой же поток эфира устремляется к Солнцу и, увлекая за собой планеты, кометы, обеспечивает их эллиптические траектории…

Это была не очень убедительная, хотя и абсолютно математически логичная гипотеза. Но вот, в 1679 году Ньютон создал новую гипотезу, объясняющую механизм тяготения. На этот раз он наделяет эфир свойством иметь различную концентрацию вблизи планет и вдали от них. Чем дальше от центра планеты, тем якобы плотнее эфир. И есть у него свойство выдавливать все материальные тела из своих более плотных слоев в менее плотные. И выдавливаются все тела на поверхность Земли.

В 1706 году Ньютон резко отрицает само существование эфира. В 1717 году он вновь возвращается к гипотезе выдавливающего эфира.

Гениальный мозг Ньютона бился над разгадкой великой тайны и не находил ее. Этим и объясняются столь резкие метания из стороны в сторону. Ньютон любил повторять:

Гипотез я не строю.

И хотя, как мы только смогли убедиться, это не совсем истинно, точно можно констатировать другое: Ньютон умел четко отграничивать вещи бесспорные от зыбких и спорных гипотез. И в «Началах» есть формула великого закона, но нет никаких попыток объяснить его механизм.
Великий физик завещал эту загадку человеку будущего. Умер он в 1727 году.
Она не разгадана и сегодня.

Два века заняла дискуссия о физической сущности закона Ньютона. И может быть, эта дискуссия не касалась бы самой сущности закона, если бы отвечал он точно на все задаваемые ему вопросы.

Но в том-то и дело, что со временем оказалось, что закон этот не универсален. Что есть случаи, когда он не может объяснить того или иного явления. Приведем примеры.

Сила всемирного тяготения в расчетах Зеелигера

Первый из них - парадокс Зеелигера. Считая Вселенную бесконечной и равномерно заполненной веществом, Зеелигер попробовал рассчитать по закону Ньютона силу всемирного тяготения, создаваемую всей бесконечно большой массой бесконечной Вселенной в какой-нибудь ее точке.

Это была непростая с точки зрения чистой математики задача. Преодолев все трудности сложнейших преобразований, Зеелигер установил, что искомая сила всемирного тяготения пропорциональна радиусу Вселенной. А раз этот радиус равен бесконечности, то и сила тяготения должна быть бесконечно большой. Однако практически мы этого не наблюдаем. Значит, закон всемирного тяготения не приложим ко всей Вселенной.

Впрочем, возможны и другие объяснения парадокса. Например, можно считать, что вещество не равномерно заполняет всю Вселенную, а плотность его постепенно убывает и, наконец, где-то очень далеко материи нет совсем. Но представить такую картину - значит допустить возможности существования пространства без материи, что вообще абсурдно.

Можно считать, что сила всемирного тяготения ослабевает быстрее, чем растет квадрат расстояния. Но это ставит под сомнение удивительную стройность закона Ньютона. Нет, и это объяснение не удовлетворило ученых. Парадокс оставался парадоксом.

Наблюдения за движением Меркурия

Другой факт, действия силы всемирного тяготения, не объяснимый законом Ньютона, принесли наблюдения за движением Меркурия - ближайшей к планеты. Точные вычисления по закону Ньютона показали, что перегелий - наиболее близкая к Солнцу точка эллипса, по которому движется Меркурий,- должен смещаться на 531 угловую секунду за 100 лет.

А астрономы установили, что это смещение равно 573 угловым секундам. Вот этот избыток - 42 угловых секунды - тоже не могли объяснить ученые, пользуясь только формулами, вытекающими из закона Ньютона.

Объяснил и парадокс Зеелигера, и смещение перегелия Меркурия, и многие другие парадоксальные явления и необъяснимые факты Альберт Эйнштейн , один из самых великих, если не самый великий физик всех времен и народов. К числу досадных мелочей относился и вопрос об эфирном ветре .

Опыты Альберта Майкельсона

Казалось, вопрос этот прямо проблемы тяготения не касается. Относился он к оптике, к свету. Точнее, к определению его скорости.

Впервые скорость света определил датский астроном Олаф Ремер , наблюдая затмение спутников Юпитера. Это произошло еще в 1675 году.

Американский физик Альберт Майкельсон в конце XVIII века провел серию определений скорости света в земных условиях, пользуясь сконструированными им аппаратами.

В 1927 году он дал для скорости света значение 299796 + 4 км/сек - это была отличная по тем временам точность. Но суть дела в другом. В 1880 году он решил исследовать эфирный ветер. Он хотел наконец установить существование того самого эфира, наличием которого пытались объяснить и передачу гравитационного взаимодействия, и передачу световых волн.

Майкельсон был, вероятно, самым замечательным экспериментатором своего времени. Он располагал великолепной аппаратурой. И был почти уверен в успехе.

Суть опыта

Опыт был задуман такой. Земля движется по своей орбите со скоростью около 30 км/сек . Движется через эфир. Значит, скорость света от источника, стоящего впереди приемника относительно движения Земли, должна быть большей, чем от источника, стоящего с другой стороны. В первом случае к скорости света должна прибавиться скорость эфирного ветра, во втором случае скорость света должна уменьшиться на эту величину.


Конечно, скорость движения Земли по орбите вокруг Солнца составляет всего одну десятитысячную скорости света. Обнаружить столь небольшое слагаемое очень нелегко, однако не зря называли Майкельсона королем точности. Он применил хитроумный способ, чтобы уловить «неуловимую» разницу в скоростях лучей света.

Он расщепил луч на два равных потока и направил их во взаимно перпендикулярных направлениях: вдоль меридиана и по параллели. Отразившись от зеркал, лучи возвращались. В случае если бы идущий по параллели луч испытал влияние эфирного ветра, при сложении его с меридиональным лучом должны бы были возникнуть интерференционные полосы, волны двух лучей оказались бы сдвинутыми по фазе.

Впрочем, Майкельсону было трудно со столь большой точностью отмерить пути обоих лучей, чтобы они были абсолютно одинаковыми. Поэтому он построил аппарат так, что интерференционных полос не было, а затем повернул его на 90 градусов.

Меридиональный луч стал широтным и наоборот. Если есть эфирный ветер, должны будут появиться черные и светлые полоски под окуляром! Но их не было. Возможно, при повороте аппарата ученый сдвинул его.

Он настроил его в полдень и закрепил. Ведь кроме того, что , она еще вращается вокруг оси. И поэтому в разное время суток широтный луч занимает различное положение относительно встречного эфирного ветра. Вот теперь-то, когда прибор строго неподвижен, можно быть убежденным в точности опыта.

Интерференционных полос снова не оказалось. Опыт был проведен много раз, и Майкельсон, а вместе с ним и все физики того времени были поражены. Эфирного ветра не обнаружилось! Свет во все стороны двигался с одной и той же скоростью!

Объяснить этого никто не сумел. Майкельсон еще и еще повторил опыт, совершенствовал аппаратуру и, наконец, добился почти невероятной точности измерений, на порядок большей, чем необходимо было для успеха опыта. И снова ничего!

Опыты Альберта Эйнштейна

Следующий большой шаг в познании силы всемирного тяготения сделал Альберт Эйнштейн .
Однажды у Альберта Эйнштейна спросили:

Как вы пришли к вашей специальной теории относительности? При каких обстоятельствах осенила вас гениальная догадка? Ученый ответил: - Мне всегда представлялось, что дело обстоит именно так.

Может быть, ему не хотелось откровенничать, может быть, он хотел отделаться от докучного собеседника. Но трудно себе представить, чтобы открытое Эйнштейном представление о связях времени, пространства и скорости было врожденным.

Нет, конечно, сначала мелькнула догадка, яркая, как молния. Потом началось развитие ее. Нет, противоречий с известными явлениями нет. А затем уже появились те пять страниц, насыщенных формулами, которые были опубликованы в физическом журнале. Страницы, открывшие новую эру в физике.

Представьте себе летящий в пространстве звездолет. Сразу предупредим: звездолет очень своеобразный, такой, о каком вы и в фантастических рассказах не читали. Длина его - 300 тысяч километров, а скорость - ну, скажем, 240 тысяч км/сек. И пролетает этот звездолет мимо одной из промежуточных в космосе платформ, не останавливаясь у нее. На полной скорости.

На палубе звездолета стоит с часами один из его пассажиров. А мы с вами, читатель, стоим на платформе - ее длина должна соответствовать величине звездолета, т. е. 300 тысячам километров, ибо иначе он не сможет пристать к ней. И в руках у нас тоже часы.

Мы замечаем: в тот миг, когда нос звездолета поравнялся с задней границей нашей платформы, на нем вспыхнул фонарь, осветивший окружающее его пространство. Через секунду луч света достиг передней границы нашей платформы. Мы не сомневаемся в этом, ибо знаем скорость света, и нам удалось точно засечь по часам соответствующий момент. А на звездолете…

Но навстречу лучу света летел и звездолет. И мы совершенно определенно видели, что свет озарил его корму в тот момент, когда она была где-то вблизи середины платформы. Мы определенно видели, что луч света преодолел не 300 тысяч километров от носа до кормы корабля.

Но пассажиры на палубе звездолета уверены в другом. Они уверены, что их луч преодолел все расстояние от носа до кормы в 300 тысяч километров. Ведь он потратил на это целую секунду. Они тоже абсолютно точно засекли это по своим часам. Да и как может быть иначе: ведь скорость света не зависит от скорости движения источника…

Как же так? Нам с неподвижной платформы представляется одно, а им на палубе звездолета другое? В чем дело?

Теория относительности Эйнштейна

Надо заметить сразу: теория относительности Эйнштейна на первый взгляд абсолютно противоречит нашим установившимся представлением о строении мира. Можно сказать, что она противоречит и здравому смыслу, как мы привыкли его представлять. Такое не раз случалось в истории науки.

Но и открытие шарообразности Земли противоречило здравому смыслу. Как это могут жить на противоположной стороне люди и не падать в бездну?

Для нас шарообразность Земли факт несомненный, и с точки зрения здравого смысла всякое иное предположение бессмысленно и дико. Но оторвитесь от своего времени, представьте первое появление этой идеи, и станет понятно, как трудно было бы ее принять.

Ну а разве легче было признать, что Земля не неподвижна, а летит по своей траектории в десятки раз быстрее пушечного ядра?

Все это были крушения здравого смысла. Поэтому современные физики никогда не ссылаются на него.

А теперь вернемся к специальной теории относительности. Мир узнал ее впервые в 1905 году из статьи, подписанной мало кому известным именем - Альберт Эйнштейн. И было ему в то время всего 26 лет.

Эйнштейн сделал из этого парадокса очень простое и логичное предположение: с точки зрения наблюдателя, находящегося на платформе, в движущемся вагоне прошло меньше времени, чем отмерили ваши наручные часы. В вагоне ход времени замедлился по сравнению с временем на неподвижной платформе.

Из этого предположения логически проистекали совершенно удивительные вещи. Оказывалось, что человек, едущий на работу в трамвае, по сравнению с идущим тем же путем пешеходом не только экономит время за счет скорости, но и идет оно для него медленнее.

Впрочем, не пытайтесь сохранить этим способом вечную молодость: если даже вы станете вагоновожатым и треть жизни проведете в трамвае, за 30 лет вы выгадаете едва ли больше миллионой доли секунды. Чтобы выигрыш времени стал заметным, надо двигаться со скоростью, близкой к скорости света.

Оказывается, повышение скорости тел отражается и на их массе. Чем ближе скорость тела к скорости света, тем больше его масса. При скорости тела, равной скорости света, масса его равна бесконечности, т. е. она больше массы Земли, Солнца, Галактики, всей нашей Вселенной… Вот какую массу можно сосредоточить в простом булыжнике, разогнав его до скорости
света!

Это и накладывает ограничение, не дающее возможности ни одному материальному телу развить скорость, равную скорости света. Ведь по мере того как растёт масса, все труднее и труднее разгонять ее. А бесконечную массу не сдвинет с места никакая сила.

Впрочем, природа сделала очень важное исключение из этого закона для целого класса частиц. Например, для фотонов. Они могут двигаться со скоростью света. Точнее, они не могут двигаться ни с какой иной скоростью. Немыслимо представить себе неподвижный фотон.

В неподвижном состоянии он не имеет массы. Также не имеют массы покоя нейтрино, и они тоже осуждены на вечный безудержный полет сквозь пространство с предельно возможной в нашей Вселенной скоростью, не обгоняя свет и не отставая от него.

Не правда ли, каждое из перечисленных нами следствий специальной теории относительности удивительно, парадоксально! И каждое, конечно же, противоречит «здравому смыслу»!

Но вот что интересно: не в конкретной своей форме, а как широкое философское положение все эти удивительные следствия были предсказаны еще основоположниками диалектического материализма. О чем говорят эти следствия? О связях, которые соединяют взаимо зависимостями энергию и массу, массу и скорость, скорость и время, скорость и длину движущегося предмета…

Открытие Эйнштейном взаимозависимости, подобно цементу, (подробнее: ), соединяющему воедино арматуру, или камни фундамента, соединило воедино казавшиеся до этого независимыми друг от друга вещи и явления и создало ту основу, на которой впервые в истории науки представилось возможным выстроить стройное здание. Это здание - представление о том, как устроена наша Вселенная.

Но прежде хотя бы несколько слов об общей теории относительности, также созданной Альбертом Эйнштейном.

Альберт Эйнштейн

Это название - общая теория относительности - не вполне соответствует содержанию теории, о которой пойдет речь. Она устанавливает взаимозависимость между пространством и материей. По-видимому, более правильно было бы назвать ее теорией пространства - времени , или теорией гравитации .

Но это название так срослось с теорией Эйнштейна, что даже ставить сейчас вопрос о его замене многим ученым представляется неприличным.

Общая теория относительности установила взаимозависимость между материей и временем, и пространством, содержащими ее. Оказалось, что пространство и время не только невозможно представить существующими отдельно от материи, но и свойства их зависят от наполняющей их материи.

Отправной пункт рассуждений

Поэтому можно указать лишь отправной пункт рассуждений и привести некоторые важные выводы.

В начале космического путешествия неожиданная катастрофа разрушила библиотеку, фильмофонд и другие хранилища разума, памяти летящих сквозь пространства людей. И забыта в смене веков природа родной планеты. Забыт даже закон всемирного тяготения, ибо ракета летит в межгалактическом пространстве, где оно почти не ощущается.

Однако великолепно работают двигатели корабля, практически неограничен запас энергии в аккумуляторах. Большую Часть времени корабль движется по инерции, и жители его привыкли к невесомости. Но иногда включают двигатели и замедляют или ускоряют движение корабля. Когда реактивные сопла полыхают в пустоту бесцветным пламенем и корабль Движется ускоренно, жители ощущают, что тела их становятся весомыми, они вынуждены ходить по кораблю, а не перелетать по коридорам.

И вот близок к завершению полет. Корабль подлетает к одной из звезд и ложится на орбиты наиболее подходящей планеты. Звездолетчики выходят наружу, идут по покрытой свежей зеленью почве, непрерывно испытывая то же самое ощущение тяжести, знакомое по тому времени, когда корабль двигался ускоренно.

Но ведь планета движется равномерно. Не может же она лететь им навстречу с постоянным ускорением з 9,8 м/сек2! И у них возникает первое предположение, что гравитационное поле (сила притяжения) и ускорение дают один и тот же эффект, а может быть, имеют и общую природу.

Никто из наших современников-землян не был в таком длительном полете, но явление «утяжеления» и «облегчения» своего тела ощущали многие. Уже обыкновенный лифт, когда он движется ускоренно, создает это ощущение. При спуске вы чувствуете внезапную потерю веса, при подъеме, наоборот, пол с большей, чем обычно, силой давит вам на ноги.

Но одно ощущение еще ничего не доказывает. Ведь ощущения пытаются убедить нас в том, что Солнце движется по небу вокруг неподвижной Земли, что все звезды и планеты находятся от нас на одинаковом расстоянии, на небесном своде и т. д.

Ученые подвергли ощущения опытной проверке. Еще Ньютон задумался над странной тождественностью двух явлений. Он попытался дать им численные характеристики. Измерив гравитационную и , он убедился, что величины их всегда строго равны друг другу.

Из каких только материалов ни делал он маятники опытной установки: из серебра, свинца, стекла, соли, дерева, воды, золота, песка, пшеницы. Результат был один и тот же.

Принцип эквивалентности , о котором мы говорим, и лежит в основе общей теории относительности, хотя современная интерпретация теории уже в этом принципе и не нуждается. Опуская математические выводы, вытекающие из этого принципа, перейдем прямо к некоторым следствиям общей теории относительности.

Наличие больших масс материи сильно влияет на окружающее пространство. Оно приводит к таким изменениям в нем, которые можно определить как неоднородности пространства. Эти неоднородности направляют движение каких бы то ни было масс, которые оказываются вблизи притягивающего тела.

Обычно прибегают к такой аналогии. Представьте себе туго натянутый на раму параллельно земной поверхности холст. Положите на него тяжелую гирю. Это будет наша большая притягивающая масса. Она, конечно, прогнет холст и окажется в некотором углублении. Теперь катните по этому холсту шарик таким образом, чтобы часть его пути пролегла рядом с притягивающей массой. В зависимости от того, как будет пущен шарик, возможны три варианта.

  1. Шарик пролетит достаточно далеко от созданного прогибом полотна углубления и не изменит своего движения.
  2. Шарик заденет углубление, и линии его движения изогнутся в сторону притягивающей массы.
  3. Шарик попадет в эту лунку, не сможет из нее выбраться и совершит один-два оборота вокруг тяготеющей массы.

Не правда ли, третий вариант очень красиво моделирует захват звездой или планетой неосторожно залетевшего в поле их притяжения постороннего тела?

А второй случай - изгиб траектории тела, летящего со скоростью, большей, чем возможная скорость захвата! Первый же случай аналогичен пролету вне практической досягаемости поля тяготения. Да, именно практической, ибо теоретически поле тяготения безгранично.

Конечно, это очень отдаленная аналогия, в первую очередь потому, что никто не может себе реально представить прогиба нашего трехмерного пространства. В чем физический смысл этого прогиба, или кривизны, как чаще говорят, никто не знает.

Из общей теории относительности следует, что любое материальное тело может двигаться в поле тяготения только по кривым линиям. Лишь в частных, особых случаях кривая превращается в прямую.

Этому правилу подчиняется и луч света. Ведь он состоит из фотонов, имеющих в полете определенную массу. И на нее оказывает свое действие поле тяготения, как и на молекулу, астероид или планету.

Другой важный вывод состоит в том, что поле тяготения изменяет и ход времени. Вблизи большой притягивающей массы, в сильном создаваемом ею гравитационном поле, ход времени должен быть более медленным, чем вдали от нее.

Видите, и общая теория относительности чревата парадоксальными выводами, способными еще и еще раз перевернуть наши представления «здравого смысла»!

Гравитационный коллапс

Расскажем об удивительном явлении, имеющем космический характер,- о гравитационном коллапсе (катастрофическом сжатии). Явление это происходит в гигантских скоплениях материи, где силы тяготения достигают столь огромных величин, что никакие другие существующие в природе силы не могут оказать им сопротивления.

Вспомните знаменитую формулу Ньютона: силы тяготения тем больше, чем меньше квадрат расстояния между тяготеющими телами. Таким образом, чем плотнее становится материальное образование, чем меньше его размер, тем стремительнее возрастают силы тяготения, тем неотвратимее их губящее объятие.

Есть хитрый прием, с помощью которого природа борется с, казалось бы, беспредельным сжатием материи. Для этого она останавливает в сфере действия сверхгигантских сил тяготения самый ход времени, и скованные массы вещества как бы выключаются из нашей Вселенной, застывают в странном летаргическом сне.

Первую из таких «черных дыр» космоса, вероятно, уже удалось обнаружить. По предположению советских ученых О. X. Гусейнова и А. Ш. Новрузовой, ею является дельта Близнецов - двойная звезда с одной невидимой компонентой.

Видимая компонента имеет массу 1,8 солнечной, а ее невидимая «напарница» должна быть по расчетам в четыре раза массивнее видимой. Но никаких следов ее нет: увидеть удивительнейшее создание природы, «черную дыру», невозможно.

Советский ученый профессор К. П. Станюкович, как принято говорить, «на кончике пера», путем чисто теоретических построений показал, что частицы «застывшей материи» могут быть весьма разнообразны по величине.

  • Возможны ее гигантские образования, подобные квазарам, непрерывно излучающим столько же энергии, сколько ее излучают все 100 миллиардов звезд нашей Галактики.
  • Возможны значительно более скромные сгустки, равные всего нескольким солнечным массам. И те и другие объекты могут возникать сами из обыкновенной, не «спящей» материи.
  • И возможны образования совсем другого класса, соизмеримые по массе с элементарными частицами.

Чтобы они возникли, надо составляющую их материю сначала подвергнуть гигантскому давлению и вогнать ее в пределы сферы Шварцшильда - сферы, где время для внешнего наблюдателя останавливается совершенно. И если после этого давление даже будет снято, частицы, для которых время остановилось, останутся существовать независимо от нашей Вселенной.

Планкеоны

Планкеоны - совершенно особый класс частиц. Они обладают, по мнению К. П. Станюковича, крайне интересным свойством: несут в себе материю в неизменном виде, такой, какой она была миллионы и миллиарды лет назад. Взглянув внутрь планкеона, мы смогли бы увидеть материю такой, какой она была в момент рождения нашей Вселенной. По теоретическим расчетам, во Вселенной имеется около 10 80 планкеонов, примерно один планкеон в кубике пространства со стороной 10 сантиметров. Кстати, одновременно со Станюковичем и (независимо от него гипотеза о планкеонах была выдвинута академиком М. А. Марковым. Только Марков дал им другое название - максимоны.

Особыми свойствами планкеонов можно попытаться объяснить и парадоксальные подчас превращения элементарных частиц. Известно, что при столкновении двух частиц никогда не образуется осколков, а возникают другие элементарные частицы. Это поистине удивительно: в обычном мире, разбив вазу, мы никогда не получим целых чашек или хотя бы розеток. Но предположим, что в недрах каждой элементарной частицы скрыт планкеон, один или несколько, а иногда и много планкеонов.

В момент столкновения частиц туго завязанный «мешок» планкеона приоткрывается, какие-то частицы будут «провалиться» в него, а взамен «выскочат» те, которые мы считаем возникшими при столкновении. При этом планкеон, как рачительный бухгалтер, обеспечит все «законы сохранения», принятые в мире элементарных частиц.
Ну а при чем здесь механизм всемирного тяготения?

«Ответственными» за тяготение, по гипотезе К. П. Станюковича, являются крохотные частицы, так называемые гравитоны, непрерывно излучаемые элементарными частицами. Гравитоны на столько же меньше последних, на сколько пылинка, пляшущая в солнечном луче, меньше земного шара.

Излучение гравитонов подчиняется ряду закономерностей. В частности, они легче вылетают в ту область пространства. Которая содержит меньше гравитонов. Значит, если в пространстве находятся два небесных тела, оба будут излучать гравитоны преимущественно «наружу», в направлениях, противоположных относительно друг друга. Тем самым создается импульс, заставляющий тела сближаться, притягиваться друг к другу.

Как гооворил персонаж из советской киноклассики - «Не пора ли, друзья мои, нам замахнуться на Вильяма Исаака, понимаете ли, м-м, нашего Шекспир а Ньютона?»

Думаю, самая пора.

Ньютона считают одним из величайших научных умов за всю историю человечества. Именно «Математические начала натуральной философии» заложили основу "научного мировоззрения", которое плавно переросло в воинствуюищй материализм, который стал основой научной парадигмы на целые столетия.

Право на единственность истины аргументировалась "точным знаиием" о явлениях окружающего мира. Фундаментом этих самых "неороивержимых, точных знаний" стал Закон Всемирного Тяготения имени Исаака Ньютона. Вот именно по фундаменту мы и вдарим! - Покажем, что никакго закона тяготения в природе, на самом деле не существует, а все здание современной физики построено даже не на песке, а на болотной хляби.

Для того, чтобы продемонстрировать несостоятельность гипотезы Ньютона о взаимном притяжении материи, достаточно одного-единственного исключения. Мы приведем несколько, и начнем с наиболее наглядного и легко проверяемого - с движения Луны по своей орбите. Формулы, известные каждому из курса средней школы, и расчет доступен пятикласснику. Данные для расчета можно взять хоть из "Википедии", а потом проверить по научным справочникам.

Согласно Закону, движение небесных тел по орбитам обусловлено силой притяжения между массами тел и скоростью тел относительно друг друга. Так вот, посмотрим куда направлена равндействующая сил притяжения от Земли и Солнца, действующая на Луну в момент, когда Луна пролетает между Землей и Солнцем (хотя бы в момент солнечного затмения).

Сила притяжения, как известно, определяется формулой:

G - гравитационная постоянная

m, M - массы тел

R - расстояние между телами

Возьмем из справочников:

гравитационная постоянная, равная примерно 6,6725×10 −11 м³/(кг·с²).

масса Луны - 7,3477×10 22 кг

масса Солнца - 1,9891×10 30 кг

масса Земли - 5,9737×10 24 кг

расстояние между Землей и Луной = 380 000 000 м

расстояние между Луной и Солнцем = 149 000 000 000 м

подставив в формулу эти данные получим:

Сила притяжения между Землей и Луной = 6,6725×10 - 11 х 7,3477×10 22 х 5,9737×10 24 / 380000000 2 = 2,028×10 20 H

Сила притяжения между Луной и Солнцем = 6,6725×10 - 11 х 7,3477·10 22 х 1,9891·10 30 / 149000000000 2 = 4,39×10 20 H

Таким образом, согласно строгим научным данныим и расчетам, сила притяжения между Солнцем и Луной, в момент прохождения Луны между Землей и Солнцем, более чем в два раза выше, чем между Землей и Луной. И далее Луна должна продолжить свой путь по орбите вокруг Солнца, если б был справедлив тот самый закон всемирного тяготения. То есть, писаный Ньютоном закон для Луны не указ.

Также отметим, что и Луна не проявляет своих притягивающих свойств по отношению к Земле: еще во времена Лапласа ученых ставило в тупик поведение морских приливов, которые никак не зависят от Луны.

Еще один факт. Луна, двигаясь вокруг Земли, должна была бы воздействовать на траекторию последней - таская Землю из стороны в сторону своим тяготением, в результате траектория Земли должна быть зигзагообразной, строго по эллипсу должен двигаться центр масс системы Луна-Земля:

Но, увы, ничего подобного не обнаружено, хотя современные методы позволяют это смещение в сторонру Солнца и обратно, со скоростью около 12 метров в секунду надежно установить. Если б оно существовало на самом деле.

Не обнаружено и уменьшения веса тел при погружении в сверхглубокие шахты.

Первая попытка проверки теории тяготения масс была предпринята на берегу Индийского океана, где с одной стороны находится высочайшая в мире каменная гряда Гималаев, а с другой - чаша океана, заполненная куда менее массивной водой. Но, увы. отвес в сторону Гималаев не отклоняется!

Более того, сверхчувствительеные приборы - гравиметры, не обнаруживают разницы в тяжести пробного тела на одинаковой высоте над горами или над морями - хоть там будь глубина несколько километров. И тогда ученый мир, чтоб спасти прижившуюся теорию придумал для нее подпорку - мол причиной тому "изостазия" - мол под морями располагаются более плотные породы, а под горами - рыхлые, причем плотность их аккурат такая, чтоб подогнать все под нужный ученым ответ. Это просто песня!

Но если б это в научном мире был единственный пример подгонки окружающей реальности под представления о ней высоколобых мужей. Можно еще привести вопиющий пример придуманной "элементаеной частицы" - нейтрино, которое было выдумано для объяснения "дефекта масс" в ядерной физике. Еще раньше придумли "скрытыю теплоту кристаллизации" в теплотехнике.

Но мы отвлеклись от "всемирного тяготения". Еще пример того, где предсказания этой теории никак не могут обнаружить - отсутствие надежно установленных спутников у астероидов. Астероидов по небу летают тучи, а вот спутников ни у единого из них нет! Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. Первая попытка - зонд NEAR подгоняли к астероиду Эрос американцы. Впустую. Вторая попытка - зонд ХАЯБУСА («Сокол»), японцы отправили к астероиду Итокава, и тоже ничего не вышло.

Подобных примеров можно привести еще массу, но не будем перегружать ими текст. Обратимся к другой проблеме научного знания: а всегда ли есть возможность установить истину в принципе - хоть когда либо вообще.

Нет, не всегда. Приведем пример на основе все того же "всемирного тяготения". Как известно, скорость света конечна, в результате удаленные объекты мы видим не там, где они расположены в данный момент, а видим их в той точке, откуда стартовал увиденный нами луч света. Многих звезд, возможно вообще нет, идет только их свет - избитая тема. А вот тяготение - оно с какой скоростью распространяется? Еще Лапласу удалось установить, что тяготение от Солнца исходит не оттуда, где мы его видим, а из другой точки. Проанализировав данные, накопленные к тому времени, Лаплас установил, что "гравитация" распространяется быстрее света, как минимум, на семь порядков! Современные измерения отодвинули скорость распространения гравитации еще дальше - как минимум, на 11 порядков быстрей скорости света.

Есть большие подозрения, что "гравитация" распространяется вообще мгновенно. Но если это на самом деле имеет место быть, то как это установить - ведь любые измерения теоретически невозможны без какой-либо погрешности. Так что мы никогда не узнаем - конечна ли эта скорость, или бесконечна. А мир, в котором она имеет предел и мир в котором она беспредельна - это "две большие разницы", и мы никогда не будем знать в каком же мы мире живем! Вот он предел, который положен научному знанию. Принять ту или иную точку зрения - это длео веры, совершенно иррациональной, не поддающейся никакой логике. Как не поддается никакой логике вера в "научную картину мира", которая базируется на "законе всемирного тяготения", который существует лишь в зомбированных головах, и который никак не обраруживается в окружающем мире...

Сейчас оставим ньютоновский закон, а в заключение приведем нагляднейший пример того, что законы, открытые на Земле, вовсе не универсальны для остальной Вселенной.

Взглянем на ту же Луну. Желательно в полнолуние. Почему Луна выглядит как диск - скорее блин, чем колобок, форму которого она имеет.

Ведь она - шар, а шар, если освещен со стороны фотографа, выглядит примерно так: в центре - блик, далее освещенность падет, к краям диска изображение темнее.

У луны же на небе освещенность равномерная - что в центре, что по краям, достаточно взглянуть на небо. Можно воспользоваться хорошим биноклем или фотоаппаратом с сильным оптическим "зумом", пример такой фотографии приведен в начале статьи. Снято было с 16-ти кратным приближением. Это изображение можно обработать в любом графическом редакторе, усилив контрастность, чтоб убедиться - все так и есть. более того, якркость по краям диска вверху и внизу даже чуть выше, чем в центре, где она по теории дожна быть максимальной.

Здесь мы имее пример того, что законы оптики на Луне и на Земле совершенно разные! Луна почему-то весь пдающий свет отражает в сторону Земли. У нас нет никаких оснований распространять закономерности, выявленные в услових Земли, на всю Вселенную. Не факт, что физические "константы" являются константами на самом деле и не изменяются со временем.

Все выше сказанное показывает, что "теории" "черных дыр, "бозоны хиггса" и многое прочее - это даже не научная фантастика, а просто бред, больший чем теория о том, что земля покоится на черепахах, слонах и китах...