Искать корни уравнения на промежутке. Записи с меткой "корни тригонометрического уравнения на промежутке". Различные способы отбора корней

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

По вашим просьбам!

13. Решите уравнение 3-4cos 2 x=0. Найдите сумму его корней, принадлежащих промежутку .

Понизим степень косинуса по формуле: 1+cos2α=2cos 2 α. Получаем равносильное уравнение:

3-2(1+cos2x)=0 ⇒ 3-2-2cos2x=0 ⇒ -2cos2x=-1. Делим обе части равенства на (-2) и получаем простейшее тригонометрическое уравнение:

14. Найдите b 5 геометрической прогрессии, если b 4 =25 и b 6 =16.

Каждый член геометрической прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

(b n) 2 =b n-1 ∙b n+1 . У нас (b 5) 2 =b 4 ∙b 6 ⇒ (b 5) 2 =25·16 ⇒ b 5 =±5·4 ⇒ b 5 =±20.

15. Найдите производную функции: f(x)=tgx-ctgx.

16. Найдите наибольшее и наименьшее значения функции y(x)=x 2 -12x+27

на отрезке .

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке , нужно найти значения этой функции на концах отрезка и в тех критических точках, которые принадлежат данному отрезку, а затем из всех полученных значений выбрать наибольшее и наименьшее.

Найдем значения функции при х=3 и при х=7, т.е. на концах отрезка.

y(3)=3 2 -12∙3+27 =9-36+27=0;

y(7)=7 2 -12∙7+27 =49-84+27=-84+76=-8.

Находим производную данной функции: y’(x)=(x 2 -12x+27)’ =2x-12=2(x-6); критическая точка х=6 принадлежит данному промежутку . Найдем значение функции при х=6.

y(6)=6 2 -12∙6+27 =36-72+27=-72+63=-9. А теперь выбираем из трех полученных значений: 0; -8 и -9 наибольшее и наименьшее: у наиб. =0; у наим. =-9.

17. Найдите общий вид первообразных для функции:

Данный промежуток – это область определения данной функции. Ответы должны начинаться с F(x), а не с f(x) – ведь мы ищем первообразную. По определению функция F(x) является первообразной для функции f(x), если выполняется равенство: F’(x)=f(x). Так что можно просто находить производные предложенных ответов, пока не получится данная функция. Строгое решение – это вычисление интеграла от данной функции. Применяем формулы:

19. Составьте уравнение прямой, содержащей медиану BD треугольника АВС, если его вершины А(-6; 2), В(6; 6) С(2; -6).

Для составления уравнения прямой нужно знать координаты 2-х точек этой прямой, а нам известны координаты только точки В. Так как медиана BD делит противолежащую сторону пополам, то точка D является серединой отрезка АС. Координаты середины отрезка есть полусуммы соответственных координат концов отрезка. Найдем координаты точки D.

20. Вычислить:

24. Площадь правильного треугольника, лежащего в основании прямой призмы, равна

Эта задача — обратная к задаче № 24 из варианта 0021.

25. Найдите закономерность и вставьте недостающее число: 1; 4; 9; 16; …

Очевидно, что это число 25 , так как нам дана последовательность квадратов натуральных чисел:

1 2 ; 2 2 ; 3 2 ; 4 2 ; 5 2 ; …

Всем удачи и успехов!

Обязательный минимум знаний

sin x = a, -1 a 1 (a 1)
x = arcsin a + 2 n, n Z
x = - arcsin a + 2 n, n Z
или
x = (- 1)k arcsin a + k, k Z
arcsin (- a) = - arcsin a
sin x = 1
x = /2 + 2 k, k Z
sin x = 0
x = k, k Z
sin x = - 1
x = - /2 + 2 k, k Z
y
y
x
y
x
x

Обязательный минимум знаний

cos x = a, -1 a 1 (a 1)
x = arccos a + 2 n, n Z
arccos (- a) = - arccos a
cos x = 1
x = 2 k, k Z
cos x = 0
x = /2 + k, k Z
y
y
x
cos x = - 1
x = + 2 k, k Z
y
x
x

Обязательный минимум знаний

tg x = a, a R
x = arctg a + n, n Z
ctg x = a, a R
x = arcctg a + n, n Z
arctg (- a) = - arctg a
arctg (- a) = - arctg a Свести уравнение к одной функции
Свести к одному аргументу
Некоторые методы решения
тригонометрических уравнений
Применение тригонометрических формул
Использование формул сокращённого умножения
Разложение на множители
Сведение к квадратному уравнению относительно sin x, cos x, tg x
Введением вспомогательного аргумента
Делением обеих частей однородного уравнения первой степени
(asin x +bcosx = 0) на cos x
Делением обеих частей однородного уравнения второй степени
(a sin2 x +bsin x cos x+ c cos2x =0) на cos2 x

Устные упражнения Вычислите

arcsin ½
arcsin (- √2/2)
arccos √3/2
arccos (-1/2)
arctg √3
arctg (-√3/3)
= /6
= - /4
= /6
= - arccos ½ = - /3 = 2 /3
= /3
= - /6


(с помощью тригонометрической окружности)
cos 2x = ½, x [- /2; 3 /2]
2x = ± arccos ½ + 2 n, n Z
2x = ± /3 + 2 n, n Z
x = ± /6 + n, n Z
Отберём корни с помощью тригонометрической окружности
Ответ: - /6; /6; 5 /6; 7 /6

Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
sin 3x = √3/2, x [- /2; /2]
3x = (– 1)k /3 + k, k Z
x = (– 1)k /9 + k/3, k Z
Отберём корни с помощью перебора значений k:
k = 0, x = /9 – принадлежит промежутку
k = 1, x = – /9 + /3 = 2 /9 – принадлежит промежутку
k = 2, x = /9 + 2 /3 = 7 /9 – не принадлежит промежутку
k = – 1, x = – /9 – /3 = – 4 /9 – принадлежит промежутку
k = – 2, x = /9 – 2 /3 = – 5 /9 – не принадлежит промежутку
Ответ: -4 /9; /9; 2 /9

Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
(с помощью неравенства)
tg 3x = – 1, x (- /2;)
3x = – /4 + n, n Z
x = – /12 + n/3, n Z
Отберём корни с помощью неравенства:
– /2 < – /12 + n/3 < ,
– 1/2 < – 1/12 + n/3 < 1,
– 1/2 + 1/12 < n/3 < 1+ 1/12,
– 5/12 < n/3 < 13/12,
– 5/4 < n < 13/4, n Z,
n = – 1; 0; 1; 2; 3
n = – 1, x = – /12 – /3 = – 5 /12
n = 0, x = – /12
n = 1, x = – /12 + /3 = /4
n = 2, x = – /12 + 2 /3 = 7 /12
n = 3, x = – /12 + = 11 /12
Ответ: – 5 /12; – /12; /4; 7 /12; 11 /12

10. Различные способы отбора корней

Найти корни уравнения, принадлежащие данному промежутку
(с помощью графика)
cos x = – √2/2, x [–4; 5 /4]
x = arccos (– √2/2) + 2 n, n Z
x = 3 /4 + 2 n, n Z
Отберём корни с помощью графика:
x = – /2 – /4 = – 3 /4; x = – – /4 = – 5 /4
Ответ: 5 /4; 3 /4

11. 1. Решить уравнение 72cosx = 49sin2x и указать его корни на отрезке [; 5/2]

1. Решить уравнение 72cosx = 49sin2x
и указать его корни на отрезке [ ; 5 /2]
Решим уравнение:
72cosx = 49sin2x,
72cosx = 72sin2x,
2cos x = 2sin 2x,
cos x – 2 sinx cosx = 0,
cos x (1 – 2sinx) = 0,
cos x = 0 ,
x = /2 + k, k Z
или
1 – 2sinx = 0,
sin x = ½,
x = (-1)n /6 + n, n Z
Проведём отбор корней с помощью
тригонометрической окружности:
x = 2 + /6 = 13 /6
Ответ:
а) /2 + k, k Z, (-1)n /6 + n, n Z
б) 3 /2; 5 /2; 13 /6

12. 2. Решить уравнение 4cos2 x + 8 cos (x – 3/2) +1 = 0 Найти его корни на отрезке

2. Решить уравнение 4cos2 x + 8 cos (x – 3 /2) +1 = 0
Найти его корни на отрезке
4cos2 x + 8 cos (x – 3 /2) +1 = 0
4cos2x + 8 cos (3 /2 – x) +1 = 0,
4cos2x – 8 sin x +1 = 0,
4 – 4sin2 x – 8 sin x +1 = 0,
4sin 2x + 8sin x – 5 = 0,
D/4 = 16 + 20 = 36,
sin x = – 2,5
или
sin x = ½
x = (-1)k /6 + k, k Z

13. Проведем отбор корней на отрезке (с помощью графиков)

Проведем отбор корней на отрезке
(с помощью графиков)
sin x = ½
Построим графики функций y = sin x и y = ½
x = 4 + /6 = 25 /6
Ответ: а) (-1)k /6 + k, k Z; б) 25 /6

14. 3. Решить уравнение Найти его корни на отрезке

4 – cos2 2x = 3 sin2 2x + 2 sin 4x
4 (sin2 2x + cos2 2x) – cos2 2x = 3 sin2 2x + 4 sin 2x cos 2x,
sin2 2x + 3 cos2 2x – 4 sin 2x cos 2x = 0
Если cos2 2x = 0, то sin2 2x = 0, что невозможно, поэтому
cos2 2x 0 и обе части уравнения можно разделить на cos2 2x.
tg22x + 3 – 4 tg 2x = 0,
tg22x – 4 tg 2x + 3= 0,
tg 2x = 1,
2x = /4 + n, n Z
x = /8 + n/2, n Z
или
tg 2x = 3,
2x = arctg 3 + k, k Z
x = ½ arctg 3 + k/2, k Z

15.

4 – cos2 2x = 3 sin2 2x + 2 sin 4x
x = /8 + n/2, n Z или x = ½ arctg 3 + k/2, k Z
Так как 0 < arctg 3< /2,
0 < ½ arctg 3< /4, то ½ arctg 3
является решением
Так как 0 < /8 < /4 < 1,значит /8
также является решением
Другие решения не попадут в
промежуток , так как они
получаются из чисел ½ arctg 3 и /8
прибавлением чисел, кратных /2.
Ответ: а) /8 + n/2, n Z ; ½ arctg 3 + k/2, k Z
б) /8; ½ arctg 3

16. 4. Решить уравнение log5(cos x – sin 2x + 25) = 2 Найти его корни на отрезке

4. Решить уравнение log5(cos x – sin 2x + 25) = 2
Найти его корни на отрезке
Решим уравнение:
log5(cos x – sin 2x + 25) = 2
ОДЗ: cos x – sin 2x + 25 > 0,
cos x – sin 2x + 25 = 25, 25 > 0,
cos x – 2sin x cos x = 0,
cos x (1 – 2sin x) = 0,
cos x = 0,
x = /2 + n, n Z
или
1 – 2sinx = 0,
sin x = 1/2
x = (-1)k /6 + k, k Z

17.

Проведём отбор корней на отрезке
Проведём отбор корней на отрезке :
1) x = /2 + n, n Z
2 /2 + n 7 /2, n Z
2 1/2 + n 7/2, n Z
2 – ½ n 7/2 – ½, n Z
1,5 n 3, n Z
n = 2; 3
x = /2 + 2 = 5 /2
x = /2 + 3 = 7 /2
2) sin x = 1/2
x = 2 + /6 = 13 /6
x = 3 – /6 = 17 /6
Ответ: а) /2 + n, n Z ; (-1)k /6 + k, k Z
б) 13 /6 ; 5 /2; 7 /2; 17 /6

18. 5. Решить уравнение 1/sin2x + 1/sin x = 2 Найти его корни на отрезке [-5/2; -3/2]

5. Решить уравнение 1/sin2x + 1/sin x = 2
Найти его корни на отрезке [-5 /2; -3 /2]
Решим уравнение:
1/sin2x + 1/sin x = 2
x k
Замена 1/sin x = t,
t2 + t = 2,
t2 + t – 2 = 0,
t1= – 2, t2 = 1
1/sin x = – 2,
sin x = – ½,
x = – /6 + 2 n, n Z
или
x = – 5 /6 + 2 n, n Z
1/sin x = 1,
sin x = 1,
x = /2 + 2 n, n Z
Исключается эта серия корней, т.к. -150º+ 360ºn выходит за пределы
заданного промежутка [-450º; -270º]

19.

Продолжим отбор корней на отрезке
Рассмотрим остальные серии корней и проведём отбор корней
на отрезке [-5 /2; -3 /2] ([-450º; -270º]):
1) x = - /6 + 2 n, n Z
2) x = /2 + 2 n, n Z
-5 /2 - /6 + 2 n -3 /2, n Z
-5 /2 /2 + 2 n -3 /2, n Z
-5/2 -1/6 + 2n -3/2, n Z
-5/2 1/2 + 2n -3/2, n Z
-5/2 +1/6 2n -3/2 + 1/6, n Z
-5/2 - 1/2 2n -3/2 - 1/2, n Z
– 7/3 2n -4/3, n Z
– 3 2n -2, n Z
-7/6 n -2/3, n Z
-1,5 n -1, n Z
n = -1
n = -1
x = - /6 - 2 = -13 /6 (-390º)
x = /2 - 2 = -3 /2 (-270º)
Ответ: а) /2 + 2 n, n Z ; (-1)k+1 /6 + k, k Z
б) -13 /6 ; -3 /2

20. 6. Решить уравнение |sin x|/sin x + 2 = 2cos x Найти его корни на отрезке [-1; 8]

Решим уравнение
|sin x|/sin x + 2 = 2cos x
1)Если sin x >0, то |sin x| =sin x
Уравнение примет вид:
2 cos x=3,
cos x =1,5 – не имеет корней
2) Если sin x <0, то |sin x| =-sin x
и уравнение примет вид
2cos x=1, cos x = 1/2,
x = ±π/3 +2πk, k Z
Учитывая, что sin x < 0, то
остаётся одна серия ответа
x = - π/3 +2πk, k Z
Произведём отбор корней на
отрезке [-1; 8]
k=0, x= - π/3 , - π < -3, - π/3 < -1,
-π/3 не принадлежит данному
отрезку
k=1, x = - π/3 +2π = 5π/3<8,
5 π/3 [-1; 8]
k=2, x= - π/3 + 4π = 11π/3 > 8,
11π/3 не принадлежит данному
отрезку.
Ответ: а) - π/3 +2πk, k Z
б) 5
π/3

21. 7. Решить уравнение 4sin3x=3cos(x- π/2) Найти его корни на промежутке

8. Решить уравнение √1-sin2x= sin x
Найти его корни на промежутке
Решим уравнение √1-sin2x= sin x.
sin x ≥ 0,
1- sin2x = sin2x;
sin x ≥ 0,
2sin2x = 1;
sin x≥0,
sin x =√2/2; sin x = - √2/2;
sin x =√2/2
x=(-1)k /4 + k, k Z
sin x =√2/2

25. Проведём отбор корней на отрезке

Проведём отбор корней на отрезке
x=(-1)k /4 + k, k Z
sin x =√2/2
у =sin x и у=√2/2
5 /2 + /4 = 11 /4
Ответ: а) (-1)k /4 + k, k Z ;б) 11 /4

26. 9. Решить уравнение (sin2x + 2 sin2x)/√-cos x =0 Найти его корни на промежутке [-5; -7/2]

9. Решить уравнение (sin2x + 2 sin2x)/√-cos x =0
Найти его корни на промежутке [-5 ; -7 /2]
Решим уравнение
(sin2x + 2 sin2x)/√-cos x =0.
1) ОДЗ: cos x <0 ,
/2 +2 n 2) sin2x + 2 sin2x =0,
2 sinx∙cos x + 2 sin2x =0,
sin x (cos x+ sin x) =0,
sin x=0, x= n, n Z
или
cos x+ sin х=0 | : cos x,
tg x= -1, x= - /4 + n, n Z
C учётом ОДЗ
x= n, n Z, x= +2 n, n Z;
x= - /4 + n, n Z,
x= 3 /4 + 2 n, n Z

27. Отберём корни на заданном отрезке

Отберём корни на заданном
отрезке [-5 ; -7 /2]
x= +2 n, n Z ;
-5 ≤ +2 n ≤ -7 /2,
-5-1 ≤ 2n ≤ -7/2-1,
-3≤ n ≤ -9/4, n Z
n = -3, x= -6 = -5
x= 3 /4 + 2 n, n Z
-5 ≤ 3 /4 + 2 n ≤ -7 /2
-23/8 ≤ n ≤ -17/8, нет такого
целого n.
Ответ: а) +2 n, n Z ;
3 /4 + 2 n, n Z ;
б) -5 .

28. 10. Решить уравнение 2sin2x =4cos x –sinx+1 Найти его корни на промежутке [/2; 3/2]

10. Решить уравнение 2sin2x =4cos x –sinx+1
Найти его корни на промежутке [ /2; 3 /2]
Решим уравнение
2sin2x = 4cos x – sinx+1
2sin2x = 4cos x – sinx+1,
4 sinx∙cos x – 4cos x + sin x -1 = 0,
4cos x(sin x – 1) + (sin x – 1) = 0,
(sin x – 1)(4cos x +1)=0,
sin x – 1= 0, sin x = 1, x = /2+2 n, n Z
или
4cos x +1= 0, cos x = -0,25
x = ± (-arccos (0,25)) + 2 n, n Z
Запишем корни этого уравнения иначе
x = - arccos(0,25) + 2 n,
x = -(- arccos(0,25)) + 2 n, n Z

29. Отберём корни с помощью окружности

x = /2+2 n, n Z, х = /2;
x = -arccos(0,25)+2 n,
х=-(-arccos(0,25)) +2 n, n Z,
x = - arccos(0,25),
x = + arccos(0,25)
Ответ: а) /2+2 n,
-arccos(0,25)+2 n,
-(-arccos(0,25)) +2 n, n Z;
б) /2;
-arccos(0,25); +arccos(0,25)