История открытия закона всемирного тяготения - описание, особенности и интересные факты. Примерный круг проблем

П.Л. Капица

Старый Петергоф 1998 год

Выбирая тему для реферата, мне не столько хотелось описать историю какого-нибудь открытия или выдающиеся работы, проделанные определенным человеком, сколько «открыть» для себя и быть может для других знаменитую личность с человеческой стороны.

Конечно, прежде всего Капица (1894-1984) - великий физик и инженер.
Его работы по физике и технике низких температур и сильных магнитных полей, по сверхтекучести жидкого гелия - это классика. Однако Капица - больше, чем просто физик, больше чем классик науки.

Петр Леонидович Капица был необыкновенным человеком, - это отмечали все, кто хоть как-то был с ним знаком. Это был озорной, веселый (что немаловажно) и общительный человек. Он был гостеприимен и любил посмеяться.
Обычно после семинара у него в кабинете устраивалось чаепитие. И завсегдаи специально берегли для этого момента свежие анекдоты. Сам П.Л. был умелым рассказчиком с неподражаемым чувством юмора. По воспоминаниям, иногда случалось, что соль рассказанной им истории оставалась для кого-то непонятной либо из-за незнания русских обычаев, либо из-за специфичности его английского, однако его смех над собственной шуткой был настолько заразителен, что люди вокруг невольно присоединялись к нему, даже если не все поняли.

Несомненно он был оригинальной, непредсказуемой личностью (именно по этому его побаивался бюрократический аппарат). По своей натуре лидер, П.Л. не принимал и не желал идти проторенными путями, порой поражая окружающих гениальной простотой того или решения. Так было, например, в случае изобретения им установки турбинного типа для получения жидкого кислорода
(один такой агрегат давал более трети кислорода, получаемого в то время в
Москве) или метода получения электромагнитных полей колоссальной величины.
Именно поэтому в свой Институт Физических Проблем - ИФП, построенный специально для него, он отбирал людей самолично, при этом не имело значения чем будет заниматься человек, - будь то уборщица или научный работник. Ему особенно нравились и импонировали люди, обладающие способностью самостоятельно вести работу, и он всячески старался воспитывать подрастающие поколение ученых, чтобы они могли принимать такие решения.
Даже читая лекции, П.Л. искусственно создавал внутренне противоречия в материале, чтобы студенты могли сами в этом разобраться. Капица считал, что студенты с младших курсов должны допускаться к проводимой научной работе; настаивал на том, чтобы каждый сотрудник был в курсе всех работ, проводимых в институте, не желал делить коллектив на кафедры, лаборатории.
Любому сотруднику его института оказывалось всяческое содействие, если у него возникало желание глубже вникнуть в суть тех или иных работ. Аспирант, взятый на работу в институт, непременно испытывал на себе воспитательную работу, проводимую Капицей, и в итоге к окончанию аспирантуры имел возможность самостоятельно, без посторонней помощи вести исследования. ИФП
Капицы отличался от других своим здоровым внутренним миром, что в сталинские времена было абсолютной редкостью. При этом перед П.Л. все работники института, - будь то научные работники, техники или просто рабочий персонал, были абсолютно равноправны. Быть может поэтому его институт славился своими «золотыми руками»: токарями, стеклодувами и т.д., без которых построение сложных, оригинальных приборов обречено на провал.
Если кто-то из персонала заболевал или случалась еще какая-либо неприятность, то П.Л. всячески пытался помочь, - самолично искал хороших врачей, больницу, помогал с лекарствами. Капица предавал очень большое значение авторитету ученого в глазах общества. Он делал многое для того, чтобы наука воспринималась как часть общечеловеческой культуры, чтобы не было разобщенности между научными и художественными кругами, которые у нас принято называть творческой интеллигенцией. Институт физических проблем был настоящим культурным центром, куда по приглашению Петра Леонидовича с удовольствием приезжали знаменитые артисты и писатели. Здесь же устраивались выставки молодых художников, работавших в нетрадиционной манере. Для некоторых из них это стало шагом к известности.

Капица был исключительно деятельным человеком, - ведь ему пришлось практически несколько раз начинать все с нуля: первый раз, - после революции, когда заново поднималась научная работа. Второй раз в Англии, где он работал с магнитными полями, затем в ИФП, после того, как советское правительство запретило ему продолжить работы в Мондовской лаборатории.
Наконец в последний раз, когда после долгой опалы и изоляции в своем доме на Николиной Горе, он вновь был назначен директором ИФП. Какую силу воли надо было иметь, чтобы несмотря на все козни, интриги и «сюрпризы» вновь возвращаться к научной работе. Следует отметить, что даже находясь в политической опале, когда только самые близкие друзья осмеливались навещать
Капицу в его доме, он сумел создать свою домашнюю лабораторию, где разработал новый тип СВЧ-генераторов - планотрон и нигротрон. Также обнаруживает, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур.

Петр Леонидович, пожалуй, был единственный человек, который не боялся напрямую писать письма Сталину, в которых указал на недостатки организации развития науки в нашей стране. Были случаи, когда благодаря его быстрым действиям удалось освободить из тюрьмы и прекратить следственные на его коллег. Капица был единственный человек, который открыто заявлял о своем негативном отношении к тому, что Берия являлся одним из руководителей по созданию отечественного атомного оружия. Именно поэтому, его отстранили от руководства ИФП и такой возглавляемой им отрасли промышленности, как
ГлавКислород. Установки для получения жидкого кислорода, разработанные им лично, являлись новым словом в области техники получения низких температур.
КПД его машин был около 0,8, то время, как такие лучшие германские образцы давали 0,6-0,65. В дело в том, что Капица разработал новый, турбинный вариант, которые и дал возможность получения качественно новых характеристик. Первая его установка, давала такой объем жидкого кислорода, что её приходилось останавливать, за неимением емкостей для хранения. В то же время нашлось немало завистников и консервативно настроенных специалистов, для которых ввод новой методики означал бы крушение их промышленных институтов. В конце концов П.Л. Капицу отстранили от руководства ГлавКислородом и вернулись к классическим немецким образцам.
Таким образом наша промышленность в итоге потеряла лидирующее положение в этой области техники. Можно представить себе, что пришлось в очередной раз пережить Капице.

То, что П.Л. был явно незаурядной личностью подтверждает то, какого положения он достиг в английских научных кругах. Первоначально Резерфорд не обратил внимания на молодого Капицу, когда тот пытался устроиться у него в аспирантуру. Тогда П.Л. озадачил Резерфорда, спросив, к какой точности он стремиться в своих экспериментах. Услышав, ответ Резерфорда, что точности около 3% обычно хватает, Капица заметил, что при примерно 30 сотрудниках добавление еще одного скорее всего пройдет незамеченным, поскольку будет лежать в пределах экспериментальной погрешности! Находчивость (а возможно, и смелость) Капицы произвели на Резерфорда впечатление, и он в конце концов согласился взять его аспирантом. С приходом Капицы, английский эксперимент существенно преобразился, - если ранее это было просто классические опыты, то теперь они приобрели чудовищную масштабность. Так, например, специально для работ П.Л. в области сверхвысоких электромагнитных полей была построена
Мондовская лаборатория. Следует отметить, что до этого в Англии существовала лишь одна лаборатория Кавендиша, т.е. такой чести не удостаивался никто! Можно только представить себе, какими способностями необходимо обладать и каким незаурядны человеком надо быть, что завоевать расположение консервативно настроенного ко всему английского общества. За это время Капица стал близким другом и любимцем Резерфорда. В Кембридже
П.Л. оставил свой след в нескольких местах. Как я уже говорил, он был первым, кто начал переводить Кавендишскую лабораторию из века сургуча и веревочки в век машин. Он был зачинателем физики твердого тела и физики низких температур в Кембридже. Следует отметить, что он начал традицию живого неформального семинара, получившего название «Клуб Капицы», внесшего что-то от русского темперамента в более флегматичную английскую научную жизнь. Похоже Резерфорду Капица очень нравился за свою дерзость, - сам П.Л. любил рассказывать следующую поучительную и веселую историю о юношах, попросивших раввина посмотреть в священных книгах, можно ли им носить бороду. «Нельзя». - «Но ведь ты сам с бородой!» - «А я никого не спрашивал!». Хотелось бы отметить, что несмотря на то, что общей сложности
Капица провел в Англии 13 лет, он по-прежнему оставался гражданином Союза.

Кроме создания ИФП, Петр Леонидович принимал непосредственное участие в создании Московского Физико-Технического Института (МФТИ).
Непосредственно воспитывая молодые научные кадры у себя в институте, Капица на своем примере почувствовал отсутствие учебного заведения, способного вести подготовку людей, обладающих не только фундаментальными знаниями физики, но которые также имели бы сильное техническое образование. В результате, после многих усилий был сформирован физико-технический факультет ФТФ МГУ. С первых дней своего существования, этот факультет стал пользоваться особой популярностью у молодежи, желающей связать свою дальнейшую жизнь с физикой. При этом следует отметить, что поступить было чрезвычайно трудно, - это было единственное место, где даже человек, с отличием закончивший школы, сдавал экзамена наравне с другими. В итоге все кончилось тем, что новый факультет «обескровил» родной физический факультет
МГУ. Опять же, путем хитрых интриг данный факультет был ликвидирован и только спустя некоторое время личным указом Сталина был преобразован в нынешний МФТИ. Первым поколениям физтеховцев большие фундаментальные курсы по физике, математике, теоретической механике читали Б.Н.Делоне,
П.Л.Капица, М.А.Лаврентьев, Е.М.Лифшиц, И.Г.Петровский, С.М.Рытов,
Л.И.Седов, С.Л.Соболев - математики и физики с мировым именем. Также интересной оказалась попытка совместного чтения курса общей физики Капицей и Ландау - экспериментатором и теоретиком. Лекции Капицы были специально посвящены методам эксперимента, измерениям и экспериментальному обоснованию физических законов. Студенты на их лекции ходили толпами. Капица в своих лекциях пытался отойти от систематических курсов, пытаясь объяснить как делается настоящая наука: люди наблюдают разные явления, а потом выводят обобщения, - путь научной индукции, - вы из ряда фактов идете к большим обобщениям.

Было бы неправильным, если бы мы воспринимали Капицу как только известного физика, техника, инженера. Этот человек был всесторонне развит,
- он был прекрасный плотник, слесарь, играл на пианино. Его дом был обставлен мебелью собственного изготовления. Прекрасно ориентировался в мире литературы, театры, живописи. Стоит только сказать, что в гости к П.Л. приезжали писатели В.В.Иванов, А.Н.Толстой, М.М.Пришвин, В.Н.Тендряков,
И.Л.Андронников, Б.А.Можаев; артисты Б.Н.Ливанов, Л.П.Орлова, И.С.Савина,
В.С.Высоцкий с Мариной Влади, режиссеры С.М.Михоэлс, Ю.П.Любимов и многие другие. По складу своего характера Капица не любил, когда люди ноют. Он работал, действовал, добивался своего. И с уважением относился к тем, кто чего-то добился, чего-то достиг...

Напоследок, мне бы хотелось привести некоторые высказывания Петра
Леонидовича Капицы:

Наука должна быть веселая, увлекательная и простая. Таковыми же должны быть и ученые.

Счастливым можно научиться быть в любых обстоятельствах. Несчастный только тот, кто вступает в сделку со своей совестью

Не горюй и не печалься. Жизнь разрешает самые сложные проблемы, если ей дать достаточно времени.

Список литературы:
1. «Капица. Тамм. Семенов. В очерках и письмах.» Москва 1998
2. П.Л.Капица «Эксперимент.Теория.Практика.» Москва «Наука» 1981

Презентация на тему "Основоположники физики" по физике в формате powerpoint. В данной презентации для школьников 9 класса рассказывается о древних философах, внесших наибольший вклад в развитие физики, и основоположниках физики. Автор презентации: Кравченко Иван Иванович, учитель физики и информатики.

Фрагменты из презентации

Древние философы

Аристотель

Аристо́тель — древнегреческий философ. Дата рождения: 384 год до н. э Ученик Платона. С 343 до н. э. — воспитатель Александра Македонского. Натуралист классического периода. Наиболее влиятельный из диалектиков древности; основоположник формальной логики. Создал понятийный аппарат, который до сих пор пронизывает философский лексикон и сам стиль научного мышления. Первый мыслительм, создавший всестороннюю систему философии, охватившую все сферы человеческого развития: социологию, философию, политику, логику, физику.

Левкипп
  • Левкипп — древнегреческий философ. Один из основоположников атомистики, учитель Демокрита.
  • Точное место рождения неизвестно. О жизни Левкиппа известно очень мало, и не сохранилось никаких работ, которые можно было бы с уверенностью назвать произведениями Левкиппа. Не исключено, что Левкипп ограничивался лишь устным изложением своего учения. Невозможно определить, в каких областях Левкипп и Демокрит были несогласны друг с другом. Левкипп внёс вклад в развитие идей Демокрита
Демокрит Абдерский

Древнегреческий философ. Дата рождения: 460 год до н. э. предположительно ученик Левкиппа, один из основателей атомистики и материалистической философии. Главным достижением философии Демокрита считается развитие им учения Левкиппа об «атоме» — неделимой частице вещества, обладающей истинным бытием, не разрушающейся и не возникающей (атомистический материализм). Он описал мир как систему атомов в пустоте, отвергая бесконечную делимость материи, постулируя не только бесконечность числа атомов во Вселенной, но и бесконечность их форм

Клавдий Птолемей

Кла́вдий Птолеме́й - древнегреческий астроном, астролог, математик, оптик, теоретик музыки и географ. В период с 127 по 151 год жил в Александрии, где проводил астрономические наблюдения. В своём основном труде «Megale syntaxis» — «Великое построение», Птолемей изложил собрание астрономических знаний древней Греции и Вавилона. Он сформулировал (если не передал сформулированную Гиппархом) сложную геоцентрическую модель мира с эпициклами, которая была принята в западном и арабском мире до создания гелиоцентрической системы Николая Коперника. Книга также содержала каталог звёздного неба. Список из 48 созвездий не покрывал полностью небесной сферы: там были только те звёзды, которые Птолемей мог видеть, находясь в Александрии.

Основатели физики как науки

Николай Коперник

Дата рождения 19 февраля 1473 — польский астроном, математик, экономист. Наиболее известен как автор гелиоцентрической системы мира. Главное и почти единственное сочинение Коперника, плод более чем 40-летней его работы, — «О вращении небесных сфер». В 1616 году, при папе Павле V, католическая церковь официально запретила придерживаться и защищать теорию Коперника как гелиоцентрическую систему мира, поскольку такое истолкование противоречит Писанию. Коперник одним из первых высказал мысль о всемирном тяготении

Галилео Галилей

Дата рождения 15 февраля 1564,— итальянский физик, механик, астроном, философ и математик. Он первым использовал телескоп и сделал ряд выдающихся астрономических открытий. Галилей — онователь экспериментальной физики. Своими экспериментами он заложил фундамент классической механики. Активный сторонник гелиоцентрической системы мира. В своём рассмотрении Галилей приравнивает звёзды к Солнцу, указывает на колоссальное расстояние до них, говорит о бесконечности Вселенной.

Исаак Ньютон

Дата рождения 25 декабря 1642 года — английский физик,математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисление, теорию цвета и многие другие математические и физические теории.

Михаил Васильевич Ломоносов

Дата рождения 19 ноября 1711, первый русский учёный-естествоиспытатель, химик и физик; дал физической химии определение, близкое к современному; его молекулярно-кинетическая теория тепла предвосхитила современное представление о строении материи и многие фундаментальные законы, в том числе одно из начал термодинамики; Астроном, приборостроитель, географ, металлург, геолог, поэт. Открыл наличие атмосферы у Венера. Действительный член Академии наук и художеств, профессор химии.

«Подумай о той пользе, которую приносят нам благие примеры, и ты найдешь, что воспоминание о великих людях не менее полезно, чем их присутствие»

Механика - одна из самых древних наук. Она возникла и развивалась под влиянием запросов общественной практики , а также благодаря абстрагирующей деятельности человеческого мышления . Еще в доисторические времена люди создавали постройки и наблюдали движение различных тел. Многие законы механического движения и равновесия материальных тел познавались человечеством путем многократных повторений, чисто экспериментально . Этот общественно-исторический опыт, передаваемый от поколения к поколению, и был тем исходным материалом, на анализе которого развивалась механика как наука. Возникновение и развитие механики было тесно связано с производством , с потребностями человеческого общества. «На известной ступени развития земледелия, пишет Энгельс, - и в известных странах (поднимание воды для орошения в Египте), а в особенности вместе с возникновением городов, крупных построек и развитием ремесла, развивалась и механика . Вскоре она становится необходимой также для судоходства и военного дела».

Первые дошедшие до наших дней рукописи и научные сообщения в области механики принадлежат античным ученым Египта и Греции . Древнейшие папирусы и книги, в которых сохранились исследования некоторых простейших задач механики, относятся главным образом к различным задачам статики , т. е. учению о равновесии . В первую очередь здесь нужно назвать сочинения выдающегося философа древней Греции (384-322 гг. до нашей эры), который ввел в научную терминологию название механика для широкой области человеческого знания, в которой изучаются простейшие движения материальных тел, наблюдающиеся в природе и создаваемые человеком при его деятельности.

Аристотель родился в греческой колонии Стагира во Фракии. Отец его был врачом македонского царя. В 367 году Аристотель поселился в Афинах, где получил философское образование в Академии известного в Греции философа-идеалиста Платона . В 343 году Аристотель занял место воспитателя Александра Македонского (Александр Македонский говорил: «Я чту Аристотеля наравне со своим отцом, так как если я отцу обязан жизнью, то Аристотелю обязан всем, что дает ей цену» ), впоследствии знаменитого полководца древнего мира. Свою философскую школу, получившую название школы перипатетиков , Аристотель основал в 335 году в Афинах. Некоторые философские положения Аристотеля не утратили своего значения до настоящего времени. Ф. Энгельс писал; «Древние греческие философы были все прирожденными стихийными диалектиками, и Аристотель, самая универсальная голова среди них, исследовал уже все существенные формы диалектического мышления». Но в области механики эти широкие универсальные законы человеческого мышления не получили в работах Аристотеля плодотворного отражения.

Архимеду принадлежит большое число технических изобретений , в том числе простейшей водоподъемной машины (архимедова винта), которая нашла применение в Египте для осушения залитых водой культурных земель. Он проявил себя и как военный инженер при защите своего родного города Сиракузы (Сицилия). Архимед понимал могущество и великое значение для человечества точного и систематического научного исследования, и ему приписывают гордые слова: «Дайте мне место, на которое я мог бы встать, и я сдвину Землю».

Архимед погиб от меча римского солдата во время резни, устроенной римлянами при захвате Сиракуз. Предание гласит, что Архимед, погруженный в рассмотрение геометрических фигур, сказал подошедшему к нему солдату: «Не трогай моих чертежей». Солдат, усмотрев в этих словах оскорбление могущества победителей, отрубил ему голову, и кровь Архимеда обагрила его научный труд.

Известный астроном древности Птолемей (II век нашей эры- есть сведения, что Птолемей (Claudius Ptolemaeus) жил и работал в Александрии со 127 по 141 или 151 г. По арабским преданиям, умер в возрасте 78 лет.) в своей работе «Великое математическое построение астрономии в 13 книгах » разработал геоцентрическую систему мира, в которой видимые движения небесного свода и планет объяснялись исходя из предположения, что Земля неподвижна и находится в центре вселенной. Весь небесный свод делает полный оборот вокруг Земли за 24 часа, и звезды участвуют только в суточном движении, сохраняя свое относительное расположение неизменным; планеты, кроме того, движутся относительно небесной сферы, изменяя свое положение относительно звезд. Законы видимых движений планет были установлены Птолемеем настолько, что стало возможным предвычисление их положений относительно сферы неподвижных звезд.

Однако теория строения вселенной, созданная Птолемеем, была ошибочной; она привела к необычайно сложным и искусственным схемам движения планет и в ряде случаев не могла полностью объяснить их видимых перемещений относительно звезд. Особенно большие несоответствия вычислений и наблюдений получались при предсказаниях солнечных и лунных затмений, сделанных на много лет вперед.

Птолемей не придерживался строго методологии Аристотеля и проводил планомерные опыты над преломлением света. Физиологооптические наблюдения Птолемея не утратили своего интереса до настоящего времени. Найденные им углы преломления света при переходе из воздуха в воду, из воздуха в стекло и из воды в стекло были весьма точны для своего времени. Птолемей замечательно соединял в себе строгого математика и тонкого экспериментатора.

В эпоху средних веков развитие всех наук, а также механики сильно замедлилось . Более того, в эти годы были уничтожены и разрушены ценнейшие памятники науки, техники и искусства древних. Религиозные фанатики стирали с лица земли все завоевания науки и культуры. Большинство ученых этого периода слепо придерживалось схоластического метода Аристотеля в области механики, считая безусловно правильными все положения, содержащиеся в сочинениях этого ученого. Геоцентрическая система мира Птолемея была канонизирована. Выступления против этой системы мира и основных положений философии Аристотеля считались нарушением основ священного писания, и исследователи, решившиеся сделать это, объявлялись еретиками . «Поповщина убила в Аристотеле живое и увековечила мертвое», - писал Ленин. Мертвая, бессодержательная схоластика заполнила страницы многих трактатов. Ставились нелепые проблемы, а точное знание преследовалось и хирело. Большое число работ по механике в средневековье было посвящено отысканию «перпетуум мобиле », т. е. вечного двигателя , работающего без получения энергии извне. Эти работы в своем большинстве мало способствовали развитию механики (Идеологию средневековья хорошо выразил Магомет, говоря: «Если науки учат тому, что написано в коране, они излишни; если они учат другому, они безбожны и преступны»). «Христианское средневековье не оставило науке ничего», - говорит Ф. Энгельс в «Диалектике природы».

Интенсивное развитие механики началось в эпоху Возрождения с начала XV века в Италии, а затем и в других странах. В эту эпоху особенно большой прогресс в развитии механики был достигнут благодаря работам (1452- 1519), (1473-1543) и Галилея (1564-1642).

Знаменитый итальянский художник, математик, механик и инженер, Леонардо да Винчи занимался исследованиями по теории механизмов (им построен эллиптический токарный станок), изучал трение в машинах, исследовал движение воды в трубах и движение тел по наклонной плоскости. Он первый познал чрезвычайную важность нового понятия механики-момента силы относительно точки. Исследуя равновесие сил, действующих на блок, установил, что роль плеча силы играет длина перпендикуляра, опущенного из неподвижной точки блока на направление веревки, несущей груз. Равновесие блока возможно только в том случае, если произведения сил на длины соответствующих перпендикуляров будут равны; иначе говоря, равновесие блока возможно только при условии, что сумма статических моментов сил относительно точки привеса блока будет равна нулю.

Революционный переворот в воззрениях на строение вселенной был произведен польским ученым , который, как образно написано на его памятнике в Варшаве, «остановил Солнце и сдвинул Землю». Новая, гелиоцентрическая система мира объясняла движение планет, исходя из того, что Солнце является неподвижным центром, около которого по окружностям совершают движения все планеты. Вот подлинные слова Коперника, взятые из его бессмертного произведения: «То, что нам представляется как движение Солнца, происходит не от его движения, а от движения Земли и ее сферы, вместе с которой мы обращаемся вокруг Солнца, как любая другая планета. Так, Земля имеет больше, чем одно движение. Видимые простые и попятные движения планет происходят не в силу их движения, но движения Земли. Таким образом, одно движение Земли достаточно для объяснения и столь многих видимых неравенств на небе».

В работе Коперника была вскрыта главная особенность движения планет и даны расчеты, относящиеся к предсказаниям солнечных и лунных затмений. Объяснения возвратных видимых движений Меркурия, Венеры, Марса, Юпитера и Сатурна относительно сферы неподвижных звезд приобрели ясность, отчетливость и простоту. Коперник ясно понимал кинематику относительного движения тел в пространстве. Он пишет: «Всякое воспринимаемое изменение положения происходит вследствие движения либо наблюдаемого предмета, либо наблюдателя, либо вследствие движения того и другого, если, конечно, они различны между собой; ибо когда наблюдаемый предмет и наблюдатель движутся одинаковым образом и в одном направлении, то не замечается никакого движения между наблюдаемым предметом и наблюдателем».

Подлинно научная теория Коперника позволила получить ряд важных практических результатов: увеличить точность астрономических таблиц, провести реформу календаря (введение нового стиля) и более строго определить продолжительность года.

Работы гениального итальянского ученого Галилея имели фундаментальное значение для развития динамики .
Динамика как наука была основана Галилеем, который открыл многие весьма важные свойства равноускоренных и равнозамедленных движений. Основания этой новой науки были изложены Галилеем в книге под названием «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению». В главе III, посвященной динамике, Галилей пишет: «Мы создаем новую науку, предмет которой является чрезвычайно старым. В природе нет ничего древнее движения, но именно относительно него философами написано весьма мало значительного. Поэтому я многократно изучал на опыте его особенности, вполне этого заслуживающие, но до сего времени либо неизвестные, либо недоказанные. Так, например, говорят, что естественное движение падающего тела есть движение ускоренное. Однако в какой мере нарастает ускорение, до сих пор не было указано; насколько я знаю, никто еще не доказал, что пространства, проходимые падающим телом в одинаковые промежутки времени, относятся между собой как последовательные нечетные числа. Было замечено также, что бросаемые тела или снаряды описывают некоторую кривую линию, но того, что эта линия является параболой, никто не указал».

Галилео Галилей (1564—1642)

До Галилея силы, действующие на тела, рассматривали обычно в состоянии равновесия и измеряли действие сил только статическими методами (рычаг, весы). Галилей указал, что сила есть причина изменения скорости, и тем самым установил динамический метод сравнения действия сил. Исследования Галилея в области механики важны не только теми результатами, которые ему удалось получить, но и последовательным введением в механику экспериментального метода исследования движений.

Так, например, закон изохронности колебаний маятника при малых углах отклонения, закон движения точки по наклонной плоскости были исследованы Галилеем путем тщательно поставленных опытов.

Благодаря работам Галилея развитие механики прочно связывается с запросами техники, и научный эксперимент планомерно вводится как плодотворный метод исследования явлений механического движения. Галилей в своих беседах прямо говорит, что наблюдения над работой «первых» мастеров в венецианском арсенале и беседы с ними помогли ему разобраться в «причинах явлений не только изумительных, но и казавшихся сперва совершенно невероятными». Многие положения механики Аристотеля были Галилеем уточнены (как, например, закон о сложении движений) или весьма остроумно опровергнуты чисто логическими рассуждениями (опровержение путем постановки опытов считалась в то время недостаточным). Мы приведем здесь для характеристики стиля доказательство Галилея, опровергающее положение Аристотеля о том, что тяжелые тела на поверхности Земли падают быстрее, а легкие - медленнее. Рассуждения приводятся в форме беседы между последователем Галилея (Сальвиати) и Аристотеля (Симпличио):

«Сальвиати : ... Без дальнейших опытов путем краткого, но убедительного рассуждения мы можем ясно показать неправильность утверждения, будто тела более тяжелые движутся быстрее, нежели более легкие, подразумевая тела из одного и того же вещества, т. е. такие, о которых говорит Аристотель. В самом деле, скажите мне, Сеньор Симпличио, признаете ли Вы, что каждому падающему телу присуща от природы определенная скорость, увеличить или уменьшить которую возможно только путем введения новой силы или препятствия?
Симпличио: Я не сомневаюсь в том, что одно и то же тело в одной и той же среде имеет постоянную скорость, определенную природой, которая не может увеличиваться иначе, как от приложения новой силы, или уменьшаться иначе, как от препятствия, замедляющего движение.
Сальвиати : Таким образом, если мы имеем два падающих тела, естественные скорости которых различны, и соединим движущееся быстрее с движущимся медленнее, то ясно, что движение тела, падающего быстрее, несколько задержится, а движение другого несколько ускорится. Вы не возражаете против такого положения?
Симпличио: Думаю, что это вполне правильно.
Сальвиати : Но если это так и если вместе с тем верно, что большой камень движется, скажем, со скоростью в восемь локтей, тогда как другой, меньший - со скоростью в четыре локтя, то, соединяя их вместе, мы должны получить скорость, меньшую восьми локтей; однако два камня, соединенные вместе, составляют тело, большее первоначального, которое имело скорость в восемь локтей; следовательно, выходит, что более тяжелое тело движется с меньшей скоростью, чем более легкое, а это противно Вашему предположению. Вы видите теперь, как из положения, что более тяжелые тела движутся с большей скоростью, чем легкие, я мог вывести заключение, что более тяжелые тела движутся менее быстро».

Явления равноускоренного падения тела на Земле наблюдались многочисленными учеными до Галилея, но никто из них не смог открыть истинных причин и правильных законов, объясняющих эти повседневные явления. Лагранж замечает по этому поводу, что «нужен был необыкновенный гений, чтобы открыть законы природы в таких явлениях, которые всегда пребывали перед глазами, но объяснение которых тем не менее всегда ускользало от изысканий философов».

Итак, Галилей был зачинателем современной динамики . Законы инерции и независимого действия сил Галилей отчетливо понимал в их современной форме.

Галилей был выдающимся астрономом-наблюдателем и горячим сторонником гелиоцентрического мировоззрения. Радикально усовершенствовав телескоп, Галилей открыл фазы Венеры, спутников Юпитера, пятна на Солнце. Он вел настойчивую, последовательно материалистическую борьбу против схоластики Аристотеля, обветшалой системы Птолемея, антинаучных канонов католической церкви. Галилей относится к числу великих мужей науки, «которые умели ломать старое и создавать новое, несмотря ни на какие препятствия, вопреки всему».
Работы Галилея были продолжены и развиты (1629-1695), который разработал теорию колебаний физического маятника и установил законы действия центробежных сил. Гюйгенс распространил теорию ускоренных и замедленных движений одной точки (поступательного движения тела) на случай механической системы точек. Это было значительным шагом вперед, так как позволило изучать вращательные движения твердого тела. Гюйгенс ввел в механику понятие о моменте инерции тела относительно оси и определил так называемый «центр качаний» физического маятника. При определении центра качаний физического маятника Гюйгенс исходил из принципа, что «система весомых тел, движущихся под влиянием силы тяготения, не может двигаться так, чтобы общий центр тяжести тел поднялся выше первоначального положения». Гюйгенс проявил себя и как изобретатель. Он создал конструкцию маятниковых часов, изобрел балансир-регулятор хода карманных часов, построил лучшие астрономические трубы того времени и первый ясно увидел кольцо планеты Сатурн.

Где мой любимый ученый? Он на много опередил время! Знал то, что не знал даже ЭйнШтейн! Добавьте Тесла!

Нико́ла Те́сла (серб. Никола Тесла; 10 июля 1856, Смиляны, Австро-Венгрия, ныне в Хорватии - 7 января 1943, Нью-Йорк, США) - американский физик, инженер, изобретатель в области электротехники и радиотехники.

Широко известен благодаря своему научно-революционному вкладу в изучение свойств электричества и магнетизма в конце XIX - начале XX веков. Патенты и теоретические работы Теслы сформировали базис для современных устройств, работающих на переменном токе, многофазовых систем и электродвигателя, позволивших совершить второй этап промышленной революции.

Современники-биографы считали Теслу «человеком, который изобрёл XX век» и «„святым заступником“ современного электричества». После демонстрации радио и победы в «Войнах токов» Тесла получил повсеместное признание как выдающийся инженер-электрик Америки. Ранние работы Теслы проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение. В США по известности Тесла мог конкурировать с любым изобретателем или учёным в истории или популярной культуре.

Переменный ток

С 1889 года Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники - техники ВЧ.

В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм. Многие правила, впервые разработанные Теслой вошли в современные основы техники безопасности при работе с ВЧ токами. Он обнаружил, что при частоте тока свыше 700 периодов в секунду болевое воздействие на нервные окончания прекращает восприниматься. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире.

Эксперименты с высокочастотными токами большого напряжения (до 2 млн вольт) привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом возможно удалять мелкую сыпь, очищать поры и убивать микробы. Данный метод используется в современной электротерапии.

Теория полей

В 1888 году Тесла (независимо от Г. Феррариса и несколько ранее его) дал строгое научное описание сути явления вращающегося магнитного поля. В том же году Тесла получил свои основные патенты на изобретение многофазных электрических машин (в том числе асинхронного электродвигателя) и системы передачи электроэнергии посредством многофазного переменного тока. С использованием двухфазной системы, которую он считал наиболее экономичной, в США был пущен ряд промышленных электроустановок, в том числе Ниагарская ГЭС (1895), крупнейшая в те годы.

Тесла одним из первых запатентовал способ надежного получения токов, которые могут быть использованы в радиосвязи. Патент U.S. Patent 447920 (англ.), выданный в США 10 марта 1891 года описывал «Метод управления дуговыми лампами» («Method of Operating Arc-Lamps»), в котором генератор переменного тока производил высокочастотные (по меркам того времени) колебания тока порядка 10 000 Гц. Запатентованной инновацией стал метод подавления звука, производимого дуговой лампой под воздействием переменного или пульсирующего тока, для чего Тесла придумал использовать частоты, находящиеся за рамками восприятия человеческого слуха. По современной классификации генератор переменного тока работал в интервале очень низких радиочастот.

Тесла демонстрирует принципы радиосвязи, 1891 г.

В 1891 г. на публичной лекции описал и продемонстрировал принципы радиосвязи. В 1893 году вплотную занялся вопросами беспроволочной связи и изобрел мачтовую антенну.

Резонанс

Катушки Тесла до сих пор используются кое-где именно для получения искусственных молний. В 1998 году инженер из Стенфорда Грег Лей продемонстрировал публике эффект «молнии по заказу», стоя в металлической клетке под гигантским контуром Тесла и управляя молниями с помощью металлической «волшебной палочки». Недавно он развернул кампанию по сбору средств на строительство еще двух «башен Тесла» где-то на юго-западе США. Проект обойдется в 6 миллионов долларов. Однако укротитель молний надеется вернуть расходы, продав установку Федеральному управлению авиации. С помощью нее авиаторы смогут изучать, что происходит с самолетами, попавшими в грозу.

Беспроводная передача энергии