Как строить график функции огэ 23 задание. Функции и их графики на огэ

Разбор типовых вариантов заданий №23 ОГЭ по математике

Первый вариант задания

Постройте график функции

Алгоритм решения:
  1. Записываем ответ.
Решение:

1. Преобразуем функцию в зависимости от знака переменной х.

2. График функции заданных значениях х - часть параболы, ветви которой направлены вниз.

Вершина расположена в точке с координатами:

Найдем нули функции: График проходит через начало координат и точку (-2;-7).

Графиком второй функции является парабола, ветви которой направлены вверх.

Вершина ее находится в точке:

Определим нули параболы

3. Изображаем график функции на координатной плоскости:

4. Из построения легко видно, что прямая y = m имеет с графиком ровно две точки, когда проходит через вершину одной из парабол, образующих график данной функции.

Значит, две общие точки функция и прямая имеют при m = -2,25 или m = 12,25.

Ответ: -2,25; 12,25.

Второй вариант задания

Постройте график функции

Определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Алгоритм решения:
  1. Преобразуем формулу, которая задает функцию.
  2. Определяем вид и характерные точки функции на каждом промежутке.
  3. Изображаем график на координатной плоскости.
  4. Делаем вывод относительно количества точек пересечения.
  5. Записываем ответ.
Решение:

1. Преобразуем формулу в зависимости от знака переменной х:

2. Графиком функции является парабола, ветви которой направлены вниз.

Вершина ее находится в точке:

Найдем нули функции: График проходит через начало координат и точку (0;4).

Графиком второй функции является парабола, ветви которой направлены вверх.

Вершина ее находится в точке:

Определим нули параболы

3. Изображаем график на координатной плоскости:

Из изображения видно, что прямая y= m имеет с графиком только две общих точки, когда m=-9 или m=4. На графике прямая изображена красной линией при каждом значении m.

Ответ: -9; 4.

Третий вариант задания

Постройте график функции

Определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

Алгоритм решения:
  1. Преобразуем формулу, которая задает функцию.
  2. Определяем вид и характерные точки функции на каждом промежутке.
  3. Изображаем график на координатной плоскости.
  4. Делаем вывод относительно количества точек пересечения.
  5. Записываем ответ.
Решение:

1. Преобразуем формулу функции в зависимости от знака переменной

2. Определяем вид функции и находим дополнительные точки для каждого участка графика.

График при - часть парабола, ветви которой направлены вниз. Потому как коэффициент а =-1 – отрицательный.

Определим вершину параболы и .

Вершина находится в точке (-3; 9).

Парабола проходит еще через точки (0;0) и (0;6).

Если , ветви параболы направлены вверх. Найдем вершину:

, (2; -4).

График проходит также через точки (0;0) и (0;4).

3. Строим искомый график:

Из построения видно, что прямая y=m имеет только 2 общие точки с графиком функции в случаях, когда m=-4 или m=9. На рисунке прямые изображены красным цветом.

Ответ: -4; 9.

Четвертый вариант задания

Постройте график функции

Определите, при каких значениях k прямая у = kx не имеет с графиком общих точек.

Алгоритм решения:
  1. Строим график.
  2. Записываем ответ.
Решение:

1. Если x < 0, то

Дробь, получившаяся в результате, определена . График представляет собой часть гиперболы.

Точки для построения графика:

3. Построим график заданной функции:

4. Прямая y=kx не имеет общих точек с графиком, при k=-1; 0 и 1, потому как тогда прямая проходит через точки, не входящие в область определения заданной функции.

На графике прямые для k=-1; 1изображены красным.

Ответ: -1; 0; 1.

Пятый вариант задания

Постройте график функции

Определите, при каких значениях k прямая y = kx не имеет с графиком общих точек.

Алгоритм решения:
  1. Раскрываем модуль и преобразовываем формул функции.
  2. Определяем вид функции на каждом промежутке и находим дополнительные точки графика.
  3. Строим график.
  4. Определяем искомые значения k.
  5. Записываем ответ.

Дробно-рациональная функция - это функция вида , где f(x) и g(x) - некоторые функции.
График дробно-рациональной функции представляет собой гиперболу.
Функция имеет две асимптоты - вертикальную и горизонтальную.
Определение. Прямая линия называется асимптотой графика функции, если график функции неограниченно сближается с этой прямой при удалении точки графика в бесконечность:
x=a уравнение вертикальной асимптоты
y=b уравнение горизонтальной асимптоты
y=kx+b уравнение наклонной асимптоты

Дробно-линейная функция представляет собой частный случай дробно-рациональной функции.
Дробно-линейная функция – это такая алгебраическая дробь , у которой числитель и знаменатель представляют собой линейные функции.
Во всякой дробно-линейной функции можно выделить целую часть.
Построим график функции y=1/x:
D(y): х≠0
E(y): у≠0
y = k/x - нечетная



Построим график функции y=k/x:
При k=2 y=-2/x:
ООФ: х≠0
МЗФ: у≠0
y=k/x – нечетная


Пример1 . Построим график функции
, т.е. представим ее в виде
: выделим целую часть дроби, разделив числитель на знаменатель, мы получим:

Итак,
. Мы видим, что график этой функции может быть получен из графика функции у=5/х с помощью двух последовательных сдвигов: сдвига гиперболы у=5/х вправо на 3 единицы, а затем сдвига полученной гиперболы
вверх на 2 единицы.

При этих сдвигах асимптоты гиперболы у=5/х также переместятся: ось х на 2 единицы вверх, а ось у на 3 единицы вправо.

Для построения графика проведем в координатной плоскости пунктиром асимптоты: прямую у=2 и прямую х=3. Так как гипербола состоит из двух ветвей, то для построения каждой из них составим две таблицы: одну для х3 (т. е. первую слева от точки пересечения асимптот, а вторую справа от нее):

Отметив в координатной плоскости точки, координаты которых указаны в первой таблице, и соединив их плавной линией, получим одну ветвь гиперболы. Аналогично (используя вторую таблицу) получим вторую ветвь гиперболы. График функции
изображен на рисунке 3.

Любую дробь
можно записать аналогичным образом, выделив ее целую часть. Следовательно, графики всех дробно-линейных функций являются гиперболами, различным образом сдвинутыми параллельно координатным осям и растянутыми по оси Оу.

Пример 2.

Построим график функции
.

Поскольку мы знаем, что график есть гипербола, достаточно найти прямые, к которым приближаются ее ветви (асимптоты), и еще несколько точек.

Найдем сначала вертикальную асимптоту. Функция не определена там, где 2х+2=0, т.е. при х=-1. Стало быть, вертикальной асимптотой служит прямая х=-1.

Чтобы найти горизонтальную асимптоту, надо посмотреть, к чему приближаются значения функций, когда аргумент возрастает (по абсолютной величине), вторые слагаемые в числителе и знаменателе дроби
относительно малы. Поэтому

.

Стало быть, горизонтальная асимптота – прямая у=3/2.

Определим точки пересечения нашей гиперболы с осями координат. При х=0 имеем у=5/2. Функция равна нулю, когда 3х+5=0, т.е. при х=-5/3.

Отметив на чертеже точки (-5/3;0) и (0;5/2) и проведя найденные горизонтальную и вертикальную асимптоты, построим график (рис.4).

Вообще, чтобы найти горизонтальную асимптоту, надо разделить числитель на знаменатель, тогда y=3/2+1/(x+1), y=3/2 – горизонтальная асимптота.

Алгоритм построения графика дробно-рациональной функции, содержащей квадратный трехчлен .

    Найти область определения функции.

    Разложить на множители квадратный трехчлен.

    Сократить дробь.

    Построить график (параболу, гиперболу, кубическую параболу).

    Исключить из графика точки, не входящие в область определения («выколотые» точки).

    Найти значение функции в «выколотых» точках.

    Определить, при каких значениях b прямая y=b имеет с графиком ровно одну общую точку.

ЗАДАНИЕ

Построить график функции (D (y ), на графике – выколотые точки):

Графики? - Легко! (ОГЭ: задание 23) .
Довольно часто встречаются ученики, пасующие перед второй частью, и, особенно перед 23-м заданием, где нужно построить график и ответить на вопрос по нему.
Некоторые мотивируют нежелание рассматривать это задание тем, что в школе (имея ввиду обычную, не математическую) такие задания не рассматриваются вовсе - зачастую школьные учителя из второй части рассмотрениют только задание 21. Другие считают, что раз даже на "пятёрку" решать это задание не требуется (как известно, на оценку "отлично" достаточно решить правильно 21 задание - такие требования предъявляются, например, на экзаменах 2018 года), то вообще непонятно, зачем оно даётся. Третьи испытывают скорее психологический страх, полагая, что все задания второй части такие сложные, что и готовить их к успешной сдаче экзамена не следует.
Между тем, задания на построение графиков с модулями и выколотыми точками не такие уж и сложные. И, как показывает опыт, научиться строить такие графики, при его на то желании может не только ученик, претендующий на "пятёрку", но также и любой хорошист. Для этого нужно только желание научиться строить такие графики.
Действительно, задания 23 из года в год предлагаются примерно одинаковые. Существует не более десятка (в действительности несколько меньше) типовых заданий, отличающихся друг от друга только числами. Опыт показывает, что освоить эти задания может любой достаточно мотивированный ученик за 3-4 занятия с репетитором. Исходя из моего многолетнего опыта подготовки учеников к экзамену ОГЭ (ГИА), многие из них, понимая, что решать эти задания можно легко научиться, после занятий со мной успешно решают это задание и на экзамене.
Ниже приведены два примера заданий 23. Конечно, это далеко не все типы этого задания. Все типы заданий № 23 я рассматриваю на занятиях со своими учениками.

Областью определения функции являются все значения кроме x = 0.
Решим неравенства и методом интервалов определим промежутки, при которых выполняется первое условие и при которых выполняется второе условие: На участках [ - 2 ; 0) и [ 2 ; + ∞) выполняется первое условие системы, а на участках
(- ∞ ; -2] и (0 ; 2 ] выполняется второе условие системы. Значит, записать функцию можно в следующем виде: Строим график:


Прямая y = m - это прямая, параллельная оси OX. Такая прямая имеет одну обшую точку с графиком при m 1 = -1 или m 2 = 1 Запишем функцию в следующем виде:
значит, Таким образом, график функции делится на два участка, причём на каждом участке базовым графиком будут параболы. Найдём вершины каждой по формуле
Прямая y = m - это прямая или параллельная оси абсцисс, или совпадающая с ней. По графику получаются два варианта. Если прямая y = m совпадает с осью OX, то m 1 = 0. Рассмотрим случай, когда прямая проходит через точку, абсцесса которой равна -0,5 (на графике эта прямая изображена пунктиром). Для определения значени m 2 нужно найти ординату точки, абсцисса которой равна -0,5. Для этого подставим это значение в формулу функции: