Какими свойствами обладает перспективная проекция. Простейшая модель перспективной проекции. Геометрия двух изображений

В центральных проекциях грани отображаемого объекта, параллельные картинной плоскости, изображаются без искажения формы, но с искажением размера.

Рисунок 24 Центральные проекции куба: а) одноточечная, б) двухточечная, в) трехточечная.

Центральные проекции любой совокупности параллельных прямых, которые не параллельны картинной плоскости, будут сходиться в точке схода . Точка схода прямых, параллельных одной из координатных осей, называется главной точкой схода . Т.к. координатных осей три, то и главных точек схода не может быть больше трех.

В зависимости от расположения осей координат и картинной плоскости различают одно-, двух- и трехточечные центральные проекции.

Одноточечная проекция получается, когда картинная плоскость совпадает с одной из координатных плоскостей (или параллельна ей). Т.е., только одна ось координат не параллельна картинной плоскости и имеет главную точку схода.

Двухточечная проекция получается, когда только одна из координатных осей параллельна картинной плоскости. Две другие оси координат не параллельны картинной плоскости и имеют две главные точки схода. При изображении объектов, расположенных на поверхности земли, наиболее часто используется двухточечная проекция, при которой картинной плоскости параллельна вертикальная ось координат. Обе главные точки схода расположены на одной горизонтальной линии – линии горизонта (рис. 6.5). При трехточечной проекции все три координатные оси не параллельны картинной плоскости и, следовательно, имеются три главные точки схода.

Рассмотрим более подробно случай одноточечного проецирования точки Р на плоскость z= 0 с центром проецирования С , лежащим на оси z (рис.25).

Точка A проецируется на экран как A ¢. Расстояние от наблюдателя до проекционной плоскости равно k. Необходимо определить координаты точки A ¢ на экране. Обозначим их x э и y э. Из подобия треугольников A y A z N и y э ON находим, что

(x.9)

аналогично для x:

Рис. 25. Вывод формул центральной проекции.

Рис. 26. Другой способ вычисления координат точек в центральной перспективной проекции.

Напомним, что k -это расстояние, а наблюдатель находится в точке N = (0,0,-k ). Если точку наблюдения поместить в начало координат, а проекционную плоскость на расстояние a , как показано на рисунке 26, то формулы для x э и y э примут вид:

Формулы (x.10) более удобны при необходимости простым образом приближать или удалять наблюдателя от проекционной плоскости. Формулы (x.11) требуют меньше времени для вычислений за счет отсутствия операции сложения.

Рассмотрим точку трехмерного пространства (a,b,c ). Если представить эту точку как однородное представление точки двумерного пространства, то ее координаты будут (a/c,b/c ). Сравнивая эти координаты со вторым видом формул, выведенных для центральной перспективной проекции, легко заметить, что двумерное представление точки с координатами (a,b,c ) выглядит как ее проекция на плоскость z = 1, как показано на рис. 27.



Рис. 27. Проекция точки (a,b,c ) на плоскость z = 1.

Аналогично, рассматривая применение однородных координат для векторов трехмерного пространства, можно представить трехмерное пространство как проекцию четырехмерного пространства на гиперплоскость w = 1, если (x,y,z )®(wx,wy,wz,w ) = (x,y,z, 1). .

В однородных координатах преобразование центральной перспективы можно определить матричной операцией. Эта матрица записывается в виде:

Покажем, что эта матрица определяет преобразование точки объекта, заданной в однородных координатах, в точку перспективной проекции (также в однородных координатах). Пусть p = (x,y,z ) – точка в трехмерном пространстве. Ее однородное представление v = (wx,wy,wz,w ). Умножим v на P :

это в точности повторяет формулы (x.10), выведенные для центральной перспективы.

Из-за особенностей человеческого зрения к удаленным от наблюдателя объектам лучше применять перспективную проекцию, к достаточно близким (на расстоянии вытянутой руки) – ортографическую или аксонометрическую, а к еще более близким объектам – обратную перспективную проекцию.

Для создания стереоизображений используются две центральные проекции, центры которых совпадают с расположением глаз гипотетического наблюдателя, т.е. они расположены на некотором расстоянии друг от друга на прямой, параллельной картинной плоскости. После выполнения проецирования получают два изображения объекта – для левого и правого глаза. Устройство вывода должно обеспечивать подачу этих изображений к каждому глазу пользователя отдельно. Для этого может использоваться система цветных или поляризационных фильтров. Более сложные устройства вывода (например, шлемы) подают каждое из изображений на отдельные экраны для каждого глаза.

Все рассмотренные выше проекции относятся к классу плоских геометрических проекций, т.к. проецирование производится на плоскость (а не искривленную поверхность) и с помощью пучка прямых линий (а не кривых). Этот класс проекций наиболее часто используются в компьютерной графике. В отличие от нее, в картографии часто используются неплоские или негеометрические проекции.

В настоящее время наиболее распространены устройства отображения, кото­рые синтезируют изображения на плоскости - экране дисплея или бумаге. Устройства, которые создают истинно объемные изображения, пока доста­точно редки. Но все чаще появляются сведения о таких разработках, напри­мер, об объемных дисплеях или даже о трехмерных принтерах .

При использовании любых графических устройств обычно используют про­екции. Проекция задает способ отображения объектов на графическом уст­ройстве. Мы будем рассматривать только проекции на плоскость.

Мировые и экранные координаты

При отображении пространственных объектов на экране или на листе бумаги с помощью принтера необходимо знать координаты объектов. Мы рассмот­рим две системы координат. Первая - мировые координаты, которые опи­сывают истинное положение объектов в пространстве с заданной точностью. Другая - система координат устройства изображения, в котором осуществ­ляется вывод изображения объектов в заданной проекции.

Пусть мировые координаты будут трехмерными декартовыми координатами. Где должен размещаться центр координат, и какими будут единицы измерения вдоль каждой оси, пока для нас не очень важно. Важно то, что для изображения мы будем знать какие-то числовые значения координат отображаемых объектов.

Для получения изображения в определенной проекции необходимо рассчитать координаты проекции. Из них можно получить координаты для графического устройства- назовем их экранными координатами. Для синтеза изображения на плоскости достаточно двумерной системы координат. Одна­ко в некоторых алгоритмах визуализации используются трехмерные экранные координаты, например, в алгоритме Z-буфера.

Основные типы проекций

В компьютерной графике наиболее распространены параллельная и цент­ральная проекции (рис. 2.15).

Для центральной проекции (также называемой перспективной) лучи проеци­рования исходят из одной точки, размещенной на конечном расстоянии от объектов и плоскости проецирования. Для параллельной проекции лучи про­ецирования параллельны.

Аксонометрическая проекция

Аксонометрическая проекция - разновидность параллельной проекции. Для нее все лучи проецирования располагаются под прямым углом к плоскости проецирования (рис. 2.16).

[Зададим положения плоскости проецирования с помощью двух углов - α и β, Расположим камеру так, чтобы проекция оси z на плоскости проецирова|ния Х0Y была бы вертикальной линией (параллельной оси ОУ).

Рис. 2.16. Аксонометрическая проекция

Для того чтобы найти соотношения между координатами (х, у, z ) и (X , Y , Z ) для любой точки в трехмерном пространстве, рассмотрим преобразования системы координат (х , у, z ) в систему (X , Y , Z). Зададим такое преобразование двумя шагами.

1-й шаг. Поворот системы координат относительно оси z на угол α. Такой поворот осей описывается матрицей

2-й шаг. Поворачиваем систему координат (x , у", z ") относительно оси х" на угол β - получаем координаты (X , Y , Z ). Матрица поворота

Преобразования координат выражаем произведением матриц В * А:

Запишем
преобразование для координат проекции в виде формул:

Как вы считаете, будет ли получена та же проекция, если описывать преобра­зования координат теми же двумя шагами, но в другой последовательности - сначала поворот системы координат относительно оси х на угол β, а потом поворот системы координат относительно оси z " на угол α? И будут ли вер­тикальные линии в системе координат (x , y , z ) рисоваться также вертикалями в системе координат (X , У, Z)? Иначе говоря, выполняется ли А*В - В*А? Обратное преобразование координат аксонометрической проекции. Для того, чтобы координаты проекции (X , Y , Z ) преобразовать в мировые коорди­наты (х, у, z ), нужно проделать обратную последовательность поворотов. Вначале выполнить поворот на угол -β а затем - поворот на угол - α. Запи­шем обратное преобразование в матричном виде

Матрицы поворотов:

Перемножив матрицы А -1 и В -1 , получим матрицу обратного преобразования:

Запишем обратное преобразование также и в виде формул

Перспективная проекция

Перспективную проекцию (рис. 2.17) сначала рассмотрим при вертикальном расположении камеры, когда а=β = 0. Такую проекцию можно себе пред­ставить как изображение на стекле, через которое смотрит наблюдатель, рас­положенный сверху в точке (х, у, z ) = (0, 0, z k). Здесь плоскость проецирова­ния параллельна плоскости (хОу).

Исходя из подобия треугольников, запишем такие пропорции:

Учитывая также координату Z:

В матричной форме преобразования координат можно записать так:

Рис. 2.17. Перспективная проекция

Обратите внимание на то, что здесь коэффициенты матрицы зависят от коор­динаты z (в знаменателе дробей). Это означает, что преобразование коор­динат является нелинейным (а точнее, дробно-линейным), оно относится к классу проективных преобразований.

Теперь рассмотрим общий случай - для произвольных углов наклона каме­ры и р) так же, как и для параллельной аксонометрической проекции. Пусть (х", у", z 1 ) - координаты для системы координат, повернутой относи­тельно начальной системы (х, у, z ) на углы α и β.

Запишем преобразования координат перспективной проекции в виде:

Последовательность преобразования координат можно описать так:

Преобразование в целом нелинейное. Его нельзя описать одной матрицей коэффициентов-констант для всех объектов сцены (хотя для преобразования координат можно использовать и матричную форму).

Для такой перспективной проекции плоскость проецирования перпендику­лярна лучу, исходящему из центра (х, у, z )= (0, 0, 0) и наклоненному под углом α, β. Если камеру отдалять от центра координат, то центральная проек­ция видоизменяется. Когда камера в бесконечности, центральная проекция вырождается в параллельную проекцию.

Укажем основные свойства перспективного преобразования. В центральной

проекции:

□ не сохраняется отношение длин и площадей;

□ прямые линии изображаются прямыми линиями;

□ параллельные прямые изображаются сходящимися в одной точке.

Последнее свойство широко используется в начертательной геометрии для ручного рисования на бумаге. Проиллюстрируем это на примере каркаса до­мика (рис. 2.18).

Существуют и другие перспективные проекции, которые различаются поло­жением плоскости проецирования и местом точки схождения лучей проеци­рования. Кроме того, проецирование может осуществляться не на плоскость, а, например, на сферическую или цилиндрическую поверхность.

Рассмотрим косоугольную проекцию, для которой лучи проецирования не перпендикулярны плоскости проецирования. Основная идея такой проекции - камера поднята на высоту h с сохранением вертикального положения плоскости проектирования (рис. 2.19).

Рис. 2.18. Параллельные линии изображаются в центральной проекции сходящимися в одной точке

Рис. 2.19. Косоугольная проекция

Получить такую проекцию можно следующим способом:

1. Выполняем поворот вокруг оси z на угол а.

2. Заменяем z " на -у", а.у" на z".

3. Выполняем сдвиг системы координат вверх на высоту камеры h

4. В плоскости (х", у", 0) строим перспективную проекцию уже рассмотрен­ным выше способом (точка схода лучей на оси z ).

Преобразование координат может быть описано таким образом. Сначала оп­ределяются (x", у", z ).

А потом выполняется перспективное преобразование

Преимущество такой проекции заключается в сохранении параллельности вертикальных линий, что иногда полезно при изображении домов в архитек­турных компьютерных системах.

Примеры изображений в различных проекциях. Приведем примеры изо­бражений одинаковых объектов в различных проекциях. В качестве объектов будут кубы одинакового размера. Положение камеры определим углами на­клона α = 27°, β = 70°.

Пример аксонометрической проекции приведен на рис. 2.20.

Рис. 2.20. Аксонометрическая проекция

Теперь рассмотрим примеры для перспективной проекции. В отличие от параллельной проекции, изображение в перспективной проекции существенно зависит от положения плоскости проецирования и расстояния до камеры.

В оптических системах известно понятие фокусного расстояния. Чем больше фокусное расстояние объектива, тем меньше восприятие перспективы (рис. 2.21" и наоборот, для короткофокусных объективов перспектива наибольший (рис. 2.22). Данный эффект вы, наверное, уже замечали, если занимались съемками видеокамерой или фотоаппаратом. В наших примерах можно наблюдать некоторое соответствие величины расстояния от камеры до плоскости проецирования { z k z пл ) и фокусного расстояния объектива. Это соответствие, однако, условно, аналогия с оптическими системами здесь неполная.

Для приведенных Ниже примеров (рис. 2.21, 2.22) z пл = 700. Углы наклона камеры α = 27°, β = 70°.

Рис. 2.21. Перспективная проекция для длиннофокусной камеры ( z K = 2000)

Рис. 2.22. Перспективная проекция для короткофокусной камеры ( z K = 1200)

В случае короткофокусной камеры (z K = 1200) восприятие перспективы наиболее заметно для кубов, которые расположены ближе всего к камере. Вертикальные линии объектов не являются вертикалями на проекции (объекты разваливаются").

Усмотрим примеры косоугольной проекции (рис. 2.23, 2.24). Для нее вер­тикальные линии объектов сохраняют вертикальное расположение на проекции. Положение камеры (точки схождения лучей проецирования) описывается углом поворота α = 27° и высотой подъема h = 500. Плоскость проециро­вания параллельна плоскости (х"Оу") и располагается на расстоянии z пл = 700.

Рис. 2.23. Косоугольная перспективная проекция для длиннофокусной камеры ( z K = 2000)

Рис. 2.24. Косоугольная перспективная проекция для короткофокусной камеры ( z K = 1200)

Рассмотрим еще один пример изображения в центральной проекции - тега в стиле фильма "Звездные войны":

Отображение в окне

Как мы уже рассмотрели выше, отображение на плоскость проецирования соответствует некоторому преобразованию координат. Это преобразование координат различно для разных типов проекции, но, так или иначе, осущест­вляется переход к новой системе координат - координатам проецирования. Координаты проецирования могут быть использованы для формирования изображения с помощью устройства графического вывода. Однако при этом могут понадобиться дополнительные преобразования, поскольку система ко­ординат в плоскости проецирования может не совпадать с системой коорди­нат устройства отображения. Например, должны отображаться объекты, из­меряемые в километрах, а в растровом дисплее единицей измерения является пиксел. Как выразить километры в пикселах?

Кроме того, вы, наверное, видели, что на экране компьютера можно показы­вать увеличенное, уменьшенное изображение объектов, а также их переме­щать. Как это делается?

Введем обозначения. Пусть (Хэ, Уэ, Z э) - это экранные координаты объектов в графическом устройстве отображения. Заметим, что не следует восприни­мать слово "экранные" так, будто речь идет только о дисплеях - все ниже­следующее можно отнести и к любым другим устройствам, использующим декартову систему координат. Координаты проецирования обозначим здесь как (X, Y, Z).

Назовем окном прямоугольную область вывода с экранными координатами

X э min Уэтп) - (Хэтах Уэтах)- Обычно Приходится Отображать В Окно ИЛИ ВСЮ

сцену, или отдельную ее часть (рис. 2.25).

Рис. 2.25. Отображение проекции сцены

а - границы сцены в координатах проекции; б - в окне часть сцены, в - вся сцена с сохранением пропорций вписана в окно

Преобразование координат проекции в экранные координаты можно задать как растяжение/сжатие и сдвиг:

Х Э = КХ + dx , ; Y Э = KY + dy ; Z э = KZ .

Такое преобразование сохраняет пропорции объектов благодаря одинаково­му коэффициенту растяжения/сжатия (К) для всех координат. Заметим, что для плоского отображения можно отбросить координату Z. Рассмотрим, как можно вычислить К, dx и dy . Например, необходимо впи­сать все изображение сцены в окно заданных размеров. Условие вписывания можно определить так:

Если прибавить (1) к (3), то получим:

Из неравенств (2) и (4) следует:

Решением системы (1)-(4) для K будет: К min {Кх, Ку} = К min .

Если значение К х или значение K Y равно бесконечности, то его необходим отбросить. Если оба - то значение К min можно задать равным единице. Дга| того чтобы изображение в окне имело наибольший размер, выберем К = К min Теперь можно найти dx . Из неравенства (1):

Из неравенства (3): I

Поскольку dx 1 < dx 2, то величину dx можно выбрать из интервала I dx 1 dx dx 2. Выберем центральное расположение в окне: I

Аналогично найдем dy:

При таких значениях dx и dy центр сцены будет в центре окна.

В других случаях, когда в окне необходимо показывать с соответствующим масштабом лишь часть сцены, можно прямо задавать числовые значения масштаба (К) и координаты сдвига (dx , dy ). При проектировании интерфейса графической системы желательно ограничить выбор К, dx , dy диапазоном допустимых значений.

графических системах используются разнообразные способы задания масйаба отображения и определения границ сцены для показа в окне просмотра. Например, для сдвига часто используют ползунки скроллинга. Также "южно указывать курсором точку на сцене, и затем эта точка становится центральной точкой окна. Или можно очертить прямоугольник, выделяя грани­цы фрагмента сцены, - тогда этот фрагмент затем будет вписан в окно. Й так далее. Все эти способы отображения основываются на растяжении и сжатии (масштабировании), а также сдвиге, и описываются аффинным преобразованием координат.

Для детального описания методов отслеживания точечных особенностей, калибровки камеры и реконструкции трехмерных объектов необходимо ввести модель перспективной проектирования и описать геометрические свойства этого преобразования. Точки нескольких изображений, полученных с помощью перспективной проекции, находятся в особых отношениях друг с другом, которые описываются эпиполярной геометрией. Модели этих отношений должны быть подробно рассмотрены, т.к. практически все методы трехмерной реконструкции требуют оценки соответствующих моделей и опираются на их свойства.

Необходимо отметить отдельно предположение, что на всех исходных изображениях запечатлена одна и та же сцена, т.е. каждое изображение является видом сцены с какой-то определенной камеры. Поэтому для удобства описания вводится понятие вида, как изображение с ассоциированной с ним моделью камеры, с которой оно было получено.

Перспективная проекция

Модель перспективной проекции соответствует идеальной камере-обскуре. Эта модель довольно точно соответствует процессу построения изображения в большинстве современных фото- и видеокамер. Однако из-за ограничений современной оптики реальный процесс несколько отличается от модели камеры-обскуры. Отличия реального процесса от модели называются искажениями и моделируются отдельно.

Модель простейшей камеры-обскуры удобна тем, что она полностью описывается центром проекции и положением плоскости изображения. Поэтому проекция любой точки сцены на изображении может быть найдена как пересечение луча, соединяющего центр проекции и точку сцены, с плоскостью изображения.

Простейшая модель перспективной проекции

Рассмотрим простейший случай, когда центр проекции камеры (фокус) помещен в начало системы координат, и плоскость изображения совпадает с плоскостью Z=1. Пусть (X,Y,Z) - координаты точки в 3-х мерном пространстве, а (x,y) - проекция этой точки на изображение I. Перспективная проекция в этом случае описывается следующими уравнениями:

В матричной форме с использованием однородных координат эти уравнения переписываются в следующем виде:

(2.2)

Плоскость, расположенная на расстоянии 1 от центра проекции, и перпендикулярная оптической оси называется идеальной плоскостью изображения. Оптическая ось пересекает идеальную плоскость изображения в точке с, называемой принципиальной точкой. Иллюстрация простейшего случая перспективной проекции приведена на рис. 1.

Внутренняя калибровка камеры

Простейший случай перспективной проекции практически всегда не соответствует реальной камере. Расстояние от центра проекции до плоскости изображения, т.е. фокусное расстояние, обозначаемое f, обычно не равно 1. Также координаты точки в плоскости изображения могут не совпадать с абсолютными координатами. При использовании цифровой камеры, соотношение между координатами точки в изображении и абсолютными координатами точки на идеальной плоскости, определяется формой и размерами пикселов матрицы.

Обозначим размеры пиксела матрицы цифровой камеры за p x , p y , угол наклона пиксела за α, а принципиальную точку за , рис.2. Тогда координаты точки (x,y) в изображении, соответствующей точке (x R , y R) на идеальной плоскости, определяются выражением:

(2.3)

Если за f x ,f y обозначить фокусное расстояние f, измеренное в ширинах и высотах пикселей, а tan(α)*f/p y обозначить как s, то формула 2.3 преобразуется в:

(2.4)

Матрица K называется матрицей внутренней калибровки камеры. В большинстве случаев у реальных цифровых камер угол наклона пикселей близок к прямому, т.е. параметр s=0, а ширина и высота пикселя равны. Принципиальная точка обычно располагается в центре изображения. Поэтому матрица K может быть записана в виде:

(2.5)

Это предположение о виде матрицы K широко используются для упрощения алгоритмов определения внутренней калибровки камеры, а также при синтетическом моделировании изображений, необходимых для оценки качества и эффективности методов трехмерной реконструкции.

Внешняя калибровка камеры

Пусть M - точка сцены в 3-х мерном пространстве. Любое движение является евклидовым преобразованием пространства, поэтому в однородных координатах оно выражается как:

(2.6)

где R - матрица вращения, T= T - вектор переноса.

Движение камеры относительно сцены эквивалентно обратному движению точек сцены относительно камеры, поэтому равно:

(2.7)

где R, T - матрица вращения и вектор перемещения камеры относительно сцены. Матрица С называется матрицей внешней калибровки камеры. Матрица C -1 называется матрицей движения камеры . Таким образом, матрица внешней калибровки камеры переводит координаты точек сцены из системы координат сцены в систему координат, связанную с камерой.

Полная модель перспективной проекции

Из выражений 2.1, 2.4, 2.7 можно вывести выражение произвольной перспективной проекции для любой камеры с произвольной ориентацией и положением в пространстве:

В более краткой форме с учетом предыдущих обозначений эта формула может быть записана как:

Матрица P называется матрицей проекции камеры.

По аналогии с общим перспективным преобразованием рассмотрим вначале простейший случай перспективного преобразования плоскости. Пусть плоскость p совпадает с плоскостью Z=0, тогда однородные трехмерные координаты любой ее точки M=. Для любой камеры с матрицей проекции P, перспективное преобразование плоскости описывается матрицей размерности 3*3:


Поскольку любую плоскость в 3-х мерном пространстве можно перевести в плоскость Z = 0 евклидовым преобразованием поворота и переноса, что эквивалентно домножению матрицы камеры P на матрицу преобразования L, то перспективное отображение произвольной плоскости в пространстве описывается линейным преобразованием с матрицей размерности 3*3.

Перспективное преобразование плоскости также называется гомографией . В матричной форме перспективное преобразование плоскости записывается как m=HM .

Геометрия двух изображений

Запечатленная на всех исходных изображениях сцена считается неподвижной, поэтому взаимное расположение проекций точек сцены на разных кадрах не может меняться произвольным образом. Ограничения, накладываемые на расположение проекций точек, очевидно зависят от параметров камер и их положения друг относительно друга. Поэтому определение моделей таких ограничений дает часть информации о взаимном расположении камер, с которых были получены изображения.

Перспективное преобразование плоскости

Если центры двух камер совпадают, то точки на плоскостях изображения обеих камер переводятся друг в друга перспективным преобразованием плоскости. В этом случае, преобразование точек между изображениями не зависит от формы 3-х мерной сцены, а зависит только от взаимного положения плоскостей изображений.

Если вся сцена или ее часть представляет собой плоскость, то ее изображения на разных видах с несовпадающими центрами камер, можно перевести друг в друга преобразованием гомографии. Пусть p - наблюдаемая плоскость, H 1 - преобразование гомографии между плоскостью p и изображением I 1 , H 2 - преобразование гомографии между плоскостью p и изображением I 2 . Тогда преобразование гомографии H 12 между изображениями I 1 и I 2 можно вывести следующим образом:

H 12 не зависит от параметризации плоскости p, а значит не зависит и от системы координаты в пространстве

Большинство методов определения координат 3х мерных точек по их проекциям и методов реконструкции 3-х мерной сцены, опираются на предположение о движении центра камеры между видами. Поэтому при совпадении центров камер нескольких видов эти методы будут давать некорректные результаты. Такие конфигурации камер должны обнаруживаться и обрабатываться специальным образом.

Поскольку преобразование гомографии записано в однородных координатах, то матрица H определена с точностью до масштаба. Она имеет 8 степеней свободы, и параметризируется 8 переменными. Каждое известная пара соответствующих точек m 1 и m 2 на первом и втором изображении соответственно дает 2 линейных уравнения от элементов матрицы H. Поэтому 4-х известных пар соответствующих точек достаточно для составления системы линейных уравнений из 8 уравнений с 8 неизвестными. По этой системе гомография H может быть однозначно определена, если никакие три из точек не лежат на одной прямой.

Фундаментальная матрица

Рассмотрим случай, когда центры камер двух видов не совпадают. Пусть C 1 и C 2 - центры двух камер, M - 3-х мерная точка сцены, m 1 и m 2 - проекции точки M на первое и второе изображение соответственно. Пусть П - плоскость, проходящая через точку M и центры камер C 1 и C 2 . Плоскость П пересекает плоскости изображений первого и второго видан по прямым l 1 и l 2 . Поскольку лучи C 1 M и C 2 M лежат в плоскости П, то очевидно, что точки m 1 и m 2 лежат на прямых l 1 и l 2 соответственно. Можно дать более общее утверждение, что проекции любой точки M", лежащей в плоскости П, на оба изображения должны лежать на прямых l 1 и l 2 . Эти прямые называются эпиполярными линиями. Плоскость П называются эпиполярной плоскостью.

Два вида одной и той же сцены называются стереопарой, а отрезок C 1 C 2 , соединяющий центры камер, называется базой стереопары (baseline) или стереобазой. Любая эпиполярная плоскость проходит через отрезок C 1 C 2 . Пусть C 1 C 2 пересекает первое и второе изображение в точках e 1 и e 2 соответственно. Точки e 1 и e 2 называются эпиполярными точками или эпиполями. Все эпиполярные линии пересекаются в точках e 1 и e 2 на первом и втором изображении соответственно. Множество эпиполярных плоскостей представляет собой пучок, пересекающийся по стереобазе C 1 C 2 . Множество эпиполярных линий на обоих изображений также представляют собой пучки прямых, пересекающихся в e 1 и e 2 .

Точки m 1 и m 2 называются соответствующими, если они являются проекциями одной и той же точки сцены M. Эпиполярные линии l 1 и l 2 называются соответствующими, если они лежат в одной и той же эпиполярной плоскости П. Если эпиполярная плоскость П проходит через точку m 1 , тогда эпиполярные линии l 1 и l 2 , лежащие в ней, называются соответствующими точке m 1 .

Ограничение на положение соответствующих точек m 1 и m 2 , вытекающей из эпиполярной геометрии, можно сформулировать следующим образом: точка m 2 , соответствующая m 1 , должна лежать на эпиполярной линии l 2 , соответствующей m 1 . Это условие называется эпиполярным ограничением. В однородных координатах условие того, что точка m лежит на линии l записывается как l T m=0 . Эпиполярная линия проходит также через эпиполярную точку. Уравнение прямой, проходящей через точки m 1 и e 1 можно записать как:

l 1 ∼ x m 1 ,

где x - антисимметричная матрица размерности 3*3 такая что, x m 1 - векторное произведение m 1 и e 1 .

Для соответствующих эпиполярные линий l 1 и l 2 верно:

где P + - псевдоинверсия матрицы P.

Матрица F называется фундаментальной матрицей. Она представляет собой линейный оператор, сопоставляющей каждой точке m 1 соответствующую ей эпиполярную линию l 2 . Для каждой пары соответствующих точек m 1 и m 2 верно

m T 2 Fm 1 =0

Это формулировка эпиполярного ограничения через фундаментальную матрицу.

Фундаментальная матрица имеет 7 степеней свободы. Каждая пара соответствующих точек m 1 и m 2 задает одно линейное уравнение на элементы матрицы, поэтому она может быть вычислена по известным 7 парам соответствующих точек.

Эпиполярное ограничение справедливо для любых пар соответствующих точек, расположенных на идеальных плоскостях двух видов. Если известны матрицы внутренней калибровки K 1 и K 2 камер обоих видов, то эпиполярное ограничение для соответствующих точек на идеальных плоскостях записывается как:

Матрица E называется существенной матрицей. Можно показать, что существенная матрица также может быть получена из взаимного расположения камер.

Пусть P 1 =(I|0) и P 2 =(R|-RT) - две матрицы проектирования с калибровкой K = I. Тогда уравнения проектирования на идеальную плоскость обеих камер записываются в виде:

Найдем эпиполярную линию на втором виде, соответствующую точке m" 1 на первом. Для этого достаточно спроектировать на второй вид две точки, лежащие на луче (C 1 ,m" 1) на второй вид, например центр первой камеры (0,0,0,1) T и точку на плоскости бесконечности (x" 1 ,y" 1 ,z" 1 ,0) T . Проекциями этих точек будут являться соответственно -RT, и R(x" 1 ,y" 1 ,z" 1 ,0) T . Уравнение эпиполярной линии l 2 , проходящей через обе этих точки задается как векторное произведение:

l 2 =RT×R(x" 1 ,y" 1 ,z" 1) T =R(T×(x" 1 ,y" 1 ,z" 1) T)

В матричной форме векторне произведение T×(x" 1 ,y" 1 ,z" 1) T можно записать с помощью матрицы S:

Тогда эпиполярное ограничение на точки в идеальной плоскости записывается как:

Выражение существенной матрицы через параметры внешней калибровки двух камер используется для вычисления относительного положения камер.

Геометрические свойства трех и более изображений

Пусть C 1 ,C 2 и C 3 - центры трех видов одной и той же трехмерной сцены. В этом случае, эпиполярные ограничения накладываются на соответствующие точки любой пары видов. Если известны проекции двух точек m 1 и m 2 на первый и второй вид, то положение проекции на третье изображение может быть найдено как пересечение двух эпиполярных видов, соответствующих точкам m 1 и m 2 .

По двум известным проекциям m 1 и m 2 на два изображения с известной калибровкой можно определить положение точки M в пространстве. Поэтому если известна калибровка третьего изображения, то проекция точки M на третий вид может быть определена простой проекцией.

Ограничения, накладываемые на положение соответствующих точек более двух изображений, также можно записать в линейной форме. Для трех видов эти ограничения записываются в виде трифокального тензора, для четырех видов - в форме квадрифокального тензора. Однако вычисление этих ограничений эквивалентно вычислению калибровки всех трех или четырех видов в проективном пространстве. В этой работе эти виды ограничений не используются, поэтому более подробно не рассматриваются.

Произведения годов. Волошин Максимилиан. ДОБЛЕСТЬ ПОЭТА. 1. Править поэму, как текст заокеанской депеши: Сухость, ясность, нажим - начеку каждое слово.

Букву за буквой врубать на твердом и тесном камне: Чем скупее слова, тем напряженней их сила. Мысли заряд волевой равен замолчанным строфам.

Вытравить из словаря слова «Красота», «Вдохновенье» - Подлый жаргон рифмачей Поэту - понятья: Правда, конструкция, план, равносильность, cжатость и точность. В трезвом, тугом ремесле - вдохновенье и честь поэта: В глухонемом веществе заострять запредельную зоркость. Волошин М.А. Библиотека: Орловская областная научная универсальная публичная библиотека им. И.А. Бунина. - М., ; Избранные произведения: В 2-х т.

М., ; Красный дым: Повести. - М., ; Гладышев из разведроты: Повести. - М., ; Эшелон; Неизбежность: Романы. Много занимался переводами марийских и удмуртских поэтов. Время от времени пробовал свои силы также в прозе. Соч. Максимилиан Александрович Волошин () - один из крупнейших поэтов первой трети XX века. Это талантливый художник, многогранный лирик, прошедший путь от символистских, эзотерических стихотворений к гражданско-публицистической и научно-философской поэзии, через антропософские пристрастия - к «идеалу Града Божия».

Предлагаемое издание дает возможность читателю ознакомиться не только с лучшими поэтическими произведениями Волошина, но также - с его наиболее интересными работами по эстетике, мемуарной прозой, публицистикой и письмами, имеющими отношение к драматическим событиям в жизни стран. Автор. Волошин Максимилиан. Все стихи автора. Произведение. Доблесть поэта. 2. Звёзды. Создавать избранные коллекции авторов и стихов!

Общаться с единомышленниками! Писать отзывы, участвовать в поэтических дуэлях и конкурсах! Присоединяйтесь к лучшему! Спасибо, что присоединились к Поэмбук! На вашу почту отправлено письмо с данными доступа к аккаунту!

Необходимо авторизоваться в течение 24 часов. В противном случае аккаунт будет удален! Зарегистрированные пользователи получают массу преимуществ: Публиковать стихи - реализовать свой талант! Создавать избранные коллекции авторов и стихов! Общаться с единомышленниками! Писать отзывы, участвовать в поэтических дуэлях и конкурсах!. Максимилиан Волошин. Описание. Максимилиан Александрович Волошин - один из крупнейших поэтов первой трети XX века.

Это талантливый художник, многогранный лирик, прошедший путь от символистских, эзотерических стихотворений к гражданско-публицистической и научно-философской поэзии, через антропософские пристрастия - к "идеалу Града Божия". Предлагаемое издание дает возможность читателю ознакомиться не только с лучшими поэтическими произведениями Волошина, но также - с его наиболее интересными работами по эстетике, мемуарной прозой, публицистикой и письмами, имеющими отношение к драмати.

Избранные произведения и письма. М. А. Волошин. Цена. руб. Максимилиан Александрович Волошин - один из крупнейших поэтов первой трети XX века. Это талантливый художник, многогранный лирик, прошедший путь от символистских, эзотерических стихотворений к гражданско-публицистической и научно-философской поэзии, через антропософские пристрастия - к "идеалу Града Божия".

Волошин М.А., Доблесть поэта: Избранные произведения и письма. серия: Новая библиотека русской классики: обязательный экземпляр Парад, г., стр., Описание книги. Максимилиан Александрович Волошин () - один из крупнейших поэтов первой трети XX века. Это талантливый художник, многогранный лирик, прошедший путь от символистских, эзотерических стихотворений к гражданско-публицистической и научно-философской поэзии, через антропософские пристрастия - к «идеалу Града Божия».

Categories Post navigation