Латеральное коленчатое тело является структурой. Наружное коленчатое тело. Строение наружного коленчатого тела. Функциональные слои ЛКТ

В июле команда физиков из Гарвардского университета заявила о создании 51-кубитного квантового компьютера. Уже понятно, что он принесет не только новые возможности, но и новые опасности. Есть ли шанс защититься?

Фото: фото из архива пресс-службы Российского квантового центра

Кубиты — тип битов, которыми оперируют квантовые компьютеры, и до июля самым сложным был компьютер производства IBM на 17 кубитах. Пока ученые спорят о том, способен ли новый компьютер решать задачи, которые недоступны обычным компьютерам, стоит подумать, какие опасности он может представлять?

Одна из них — квантовый компьютер сможет расшифровать любые данные, которые закодированы с помощью сложных математических алгоритмов, и обычные методы криптографии здесь не помогут. Защиту способны обеспечить только устройства, основанные на принципах той же квантовой физики. В России вывод на рынок устройств квантовой криптографии готовят три команды — Российского квантового центра (РКЦ), Московского государственного университета и совместная группа Университета ИТМО и Казанского квантового центра. Команда РКЦ обещает сделать это первой — уже в 2018 году.

Квантовые ключи

Когда два года назад директор РКЦ Руслан Юнусов пообещал инвестору центра, Газпромбанку, первым в России выпустить на рынок коммерческий продукт в сфере квантовой защиты информации, в положительный исход с трудом верил даже лидер проекта физик Юрий Курочкин, посвятивший теме квантового шифрования без малого десять лет. Сейчас 30 физиков, инженеров и программистов посменно дорабатывают «квантовый криптограф», чтобы успеть запустить его в серию в следующему году.

Большинство современных систем защиты информации основано на крайней сложности применяемых в них математических алгоритмов. Один из самых популярных сегодня методов предполагает использование криптографии с открытым ключом. Ключ — секретная информация, с помощью которой зашифровано сообщение, передается по открытому, незащищенному каналу, отсюда и название. Создать ключ довольно просто, а вот взлом сообщения, которое с его помощью зашифровано, — очень сложная математическая задача, решить которую с существующими компьютерными мощностями практически невозможно, поскольку на это потребуется очень много времени, объясняет научный сотрудник РКЦ и один из руководителей проекта квантовой криптографии Алексей Федоров.


Ситуация может в одночасье измениться: в следующие пять—десять лет в мире может появиться квантовый компьютер, мощностей которого окажется достаточно для расшифровки сообщений, зашифрованных криптографией с открытым ключом, и против которого сегодняшние методы этой криптографии будут бесполезны. Решение проблемы нашлось там же, где и ее причина: на смену математической криптографии приходит квантовая, базирующаяся на физических законах.

Технологии квантовой криптографии точнее будет назвать технологиями квантового распределения ключа, и решают они как раз главную проблему классической криптографии — безопасного распределения ключей. «Вы можете выработать ключ, с помощью которого зашифруете сообщение так, что никто не сможет его прочесть. Но передать этот ключ получателю сообщения так, чтобы быть абсолютно уверенным, что он не был прочитан третьей, нежелательной стороной, вы не можете», — объясняет Федоров.

Квантовое распределение ключей решает эту проблему: ключ генерируется и передается с помощью фотонов, приведенных в определенное квантовое состояние. Перехватить передачу этих элементарных частиц, оставшись незамеченным, невозможно: это противоречит законам физики. Нельзя клонировать неизвестное квантовое состояние — это закон физики, сформулированный Уильямом Вуттерсом, Войцехом Зуреком и Деннисом Диэксом в 1982 году. «Если информация закодирована элементарными квантовыми состояниями, то попытка ее «подслушать» внесет в передаваемые данные ошибки, которые очень легко заметить и измерить. Если ошибок много, информацию могли пытаться узнать посторонние. Тогда ключ просто выкидывается и подбирается новый, и так пока не найдется вариант, при передаче которого не будет превышен допустимый уровень ошибок», — объясняет Вадим Макаров, эксперт по квантовой связи и руководитель лаборатории квантового взлома в Институте квантовых вычислений Университета Ватерлоо (Канада).

Для безопасного коннекта у обеих сторон соединения должно быть два устройства: лазер, источник фотонов, с одной стороны, и детектор, «считыватель» фотонов — с другой. Они соединены оптоволоконным кабелем, по которому передается ключ. Скопировать квантовый ключ нельзя. Таким образом, система дает абсолютную защиту пересылаемым данным. Но сейчас у квантовой коммуникации есть заметная слабость: передавать ключи с помощью фотонов можно только на расстояния 50-100 км. На более длинных дистанциях оптоволокно поглощает фотоны, что кратно снижает скорость передачи информации и делает систему непригодной для практического использования, рассказывает Макаров.
Чтобы создать защищенную линию, например между Москвой и Санкт-Петербургом, понадобится примерно десять раз воспроизвести систему «защищенные — источник-детектор одиночных фотонов», каждый раз устанавливая приемно-передающие станции с защищенным узлом, доступ к которым будет только у доверенных лиц. Пока не проложены магистральные «квантовые» каналы связи, использовать которые смогут одновременно многие пользователи, потребителями технологии, скорее всего, будут компании, которым необходима защищенная линия внутри одного города.

«Фотон как курица»

Проект РКЦ самый молодой: разработку коммерческого устройства ученые центра начали около двух лет назад, тогда как университетские команды работают над своими проектами уже по восемь—десять лет. «Под проект получили инвестиции от Газпромбанка и изначально начинали разработку с прицелом максимально быстрого выхода на рынок. Возможности работать в «университетском» формате и тратить на разработку многие годы у нас не было», — говорит Курочкин. В 2015 году Газпромбанк вложил в эту и другие разработки РКЦ 230 млн руб. Сократить срок разработки команде РКЦ помогло и то, что в проекте использовались разработанные предшественниками из других научных организаций инженерные решения, а также алгоритм генерации ключа, известные всем научным группам, ведущим исследования в этой области.


Фото: Артем Голощапов для РБК

Другое устройство, которое разрабатывает команда Университета ИТМО, проходит испытания в Петербурге, Казани и Самаре. Оно появится в ближайшие год-два, обещают в вузе. Разработчики придумали свой способ передачи фотонов, который, по словам участников команды проекта, поможет улучшить технические характеристики. Обычно в устройствах такого типа квантовый сигнал формируется непосредственно источником и передается сначала в одну сторону, затем отражается и идет обратно: это нужно для компенсации воздействия внешней среды на линию связи, говорит лидер проекта, физик Артур Глейм.

«Мы придумали другой способ: идея в том, чтобы поместить квантовый сигнал на боковой частоте сильного классического оптического сигнала, отправлять сильный импульс, а рядом с ним с отстройкой по частоте квантовый сигнал. Кодирование происходит относительно центральной (опорной) частоты. Благодаря этому ему не нужно проходить путь дважды, увеличиваются скорость и расстояние», — объясняет Глейм.

Все три проекта российских институтов примерно равнозначны по своим характеристикам, очевидного лидера среди них нет, считает Вадим Макаров. «Фотон как курица. Каждый «ресторан» готовит его по-своему, но отличие только в этом, а принцип работы остается одним и тем же». На мировом рынке уже есть работающие устройства для квантовой криптографии. Швейцарская ID Quantique сделала первую коммерческую систему больше десяти лет назад. Выпускают такие устройства компании из Японии (Toshiba), Великобритании (QinetiQ), Австрии (Austrian Institute of Technology) и Китая — правда, купить на открытом рынке можно только швейцарские и австрийские устройства.

Конкурировать с зарубежными производителями, по мнению Макарова, российским компаниям будет довольно сложно: все они уже не первый год рынке, новичкам же только предстоит пройти этот путь. Но информационная безопасность — очень болезненная тема, и по крайней мере один рынок, российский, останется полностью в распоряжении местных производителей, говорит ученый. «У российских устройств есть и экспортный потенциал: в конце концов, для России экспорт оружия — одна из существенных статей дохода, не вижу причин, почему не найдутся покупатели и на устройства квантового шифрования», — добавляет Макаров.

Спрос и предложение

Комплект устройства квантовой криптографии от швейцарской ID Quantique обойдется в $200 тыс. Устройство от РКЦ должно стоить меньше — около $150 тыс., говорят в РКЦ. Выводить на рынок разработку, представляющую черную коробку размером примерно с системный блок компьютера, будет отдельный стартап РКЦ — компания QRate.

Основными покупателями новых систем, считает Макаров, станут правительство, банки и крупный бизнес — те структуры, у которых бюджеты на информационную безопасность достаточно велики, чтобы дополнительные траты не внесли в них радикальных изменений. В РКЦ ориентируются прежде всего на банки. Кроме Газпромбанка команда лаборатории договорилась о сотрудничестве в сфере квантовых технологий с ВЭБом. Когда угроза современным методам шифрования станет вполне реальной, квантовая связь должна уже быть налажена, заявил журналу РБК старший вице-президент банка Глеб Юн. Всего ВЭБу могут потребоваться десятки таких устройств, на внедрение которых может понадобиться несколько лет, говорит он. Газпромбанк не ответил на вопросы журнала РБК.

$1 млрд — приблизительно такой объем у рынка квантовой криптографии на сегодняшний день

50-100 км — примерно на таком расстоянии сегодня могут работать устройства квантовой криптографии

$200 тыс. — ориентировочная стоимость комплекта устройств квантовой криптографии от швейцарской компании ID Quantique, лидирующей на рынке квантовой связи

ЛЕКЦИЯ 17. Квантовая криптография

17.1. Проблема распределения ключа в классической криптографии и пути ее решения.

17.2. Физические основы квантового распределения ключа: теорема о запрете копирования и неразличимость неортогональных состояний. Общая схема протокола КРК.

17.3. Основные свойства поляризованных фотонов. Некоторые сведения из теории квантовых измерений. Сопряженные базисы. Три сопряженных базиса для поляризованных фотонов.

17.4. Протокол ВВ84. Сырой и просеянный ключ. Коррекция ошибок и усиление секретности - на примере протокола BB84. Подслушивание в протоколе ВВ84. Стратегия перехватчик-ретранслятор. Стратегия “задержанного выбора”. Активный подслушиватель и схема аутентификации Вегмана-Картера. Недостатки протокола ВВ84.

17.5. Протокол ВВ92. Его преимущества и недостатки по сравнению с ВВ84.

17.6. ЭПР протокол (протокол А.Экерта) - если есть время.

На предыдущей лекции были сформулированы две проблемы современной классической криптографии: распределение ключей и аутентификация. Вторая проблема, похоже, имеет разрешение (абсолютно защищенное) лишь при личной встрече владельцев ключа. Первая проблема – распределение ключа в классической криптографии решается с помощью криптографии с открытым ключом или двухключевых (асимметричных) протоколов. Такое ее решение назовем математическим , поскольку используется некий алгоритм, основанный на односторонних функциях с секретом, когда вычисление функции в одну сторону оказывается простым, а нахождение обратной функции занимает огромное количество вычислительных ресурсов. В частности, стойкость криптографических систем RSA и Эль-Гамаля основываются на том, что факторизация больших чисел требует экпоненциального по числу знаков факторизуемого числа N операций. Это значит, что при увеличении разряда числа на один (прибавление еще одной цифры к факторизуемому числу) умножает время, необходимое для факторизации на фиксированный множитель. При увеличении числа, задача быстро становится вычислительно не решаемой. Таким образом, в настоящий момент, защищенность двухключевых криптосистем основывается на медленности технического прогресса.

В одной из следующих лекций мы будем рассматривать алгоритм факторизации чисел, предложенный П.Шором. Этот алгоритм основан на параллельном методе вычислений, который можно осуществить в квантовом компьютере. Такой алгоритм позволяет принципиально изменить скорость факторизации – теперь она определяется полиномиальными по числу N временными затратами.

Другой путь решения проблемы распределения ключа основан на физических закономерностях. Он реализуется в квантовой криптографии. Основные аргументы в таком методе криптографии восходят к двум утверждениям:

Неизвестное квантовое состояние невозможно копировать;

Без возмущения невозможно извлечь информацию о неортогональных квантовых состояниях.

Последнее утверждение можно перефразировать: в общем случае любое измерение, выполняемое подслушивателем, приведет к изменению состояния носителя информации.

Далее будут рассмотрены основные протоколы квантовой криптографии. Строго говоря, речь будет идти не о новом типе криптографии в целом, а лишь о новом методе распределения ключа. Этот метод, вообще говоря, должен быть дополнен надлежащим протоколом аутентификации – абоненты должны идентифицировать друг друга до начала общения – об этом не следует забывать, говоря о преимуществах квантовой криптографии! На сегодняшний день единственный способ решения проблемы аутентификации состоит в обмене коротким секретным ключом при встрече абонентов. Квантовая криптография дает физический способ распределения ключа большого размера , который затем можно использовать в симметричных (одноключевых) протоколах. Поэтому, будучи до конца последовательным, следует говорить о квантовой криптографии как о протоколе увеличения секретного ключа (Quantum Secret Growing protocol ) .

Итак, общая схема квантового распределения ключа следующая.

Алиса посылает квантовое состояние, реализованное, например, в виде кванта света, Бобу. Подслушивание, как физический процесс, представляет собой серию экспериментов, выполняемых злоумышленником над перехваченными квантами. Поскольку акт подслушивания изменяет квантовое состояние носителя информации, то Алиса и Боб могут это установить с помощью определенных процедур уже по открытому каналу связи. Итак, протокол квантового распределения ключа должен включать в себя:

Установление синхронизации;

По крайней мере двух пользователей – Алису и Боба;

Канал для обмена квантовыми состояниями или квантовый канал связи ;

Открытый канал связи, который используется для проверки искажения посылаемых состояний.

Если после обмена сообщениями по открытому каналу пользователи убеждаются, что квантовые состояния не возмущены, то они включают хорошо известный протокол одноразового блокнота (код Вернама) используя распределенный секретный ключ. Если обнаруживается возмущение квантовых состояний, то сеанс связи либо прерывается, либо начинается заново.

Замечание. Открытый канал рассматривается как такой канал связи, который доступен любому желающему. Единственное ограничение, которые мы пока введем на открытый канал – чтобы подслушиватель был пассивным . В случае активного подслушивателя пользователи могут осуществлять распределение ключа, но при условии, что изначально они владели некоторой секретной информацией, распределенной между ними и если подслушиватель не настолько активен, чтобы перехватывать всю посланную информацию (атака раздельных миров или с человеком посередине).

Идея, впервые высказанная Визнером, Беннетом и Брассардом состоит в том, что пассивный подслушиватель не может достоверно различить неортогональные состояния (назовем их ), если он не знает базиса, в котором те были приготовлены. Предположим, что Ева настраивает свой измеряющий прибор в неком исходном состоянии . Ее цель – отличить состояния не возмущая их. Ее действия будут описываться следующими унитарными преобразованиями над входными состояниями (см. лекцию 6);

(17.1)

(17.2)

Унитарность сохраняет скалярное произведение, поэтому

откуда следует, что

Это означает, что конечное состояние измерительного прибора Евы одно и то же. Ева не возмутила квантовых состояний, но она и не получила никакой информации о них, в силу (17.4).

Мы рассматривали и более общее измерение, когда Ева возмущает исходные состояния:

. (17.5)

Тогда в результате действий подслушивателя:

, (17.6)

. (17.7)

И опять, в силу унитарности, получаем:

(17.8)

Наилучшая ситуация с точки зрения Евы возникает, когда скалярное произведение принимает минимальное значение. Это происходит при

(поскольку ). При этом она получает максимальную возможность различить два состояния своего прибора, но два исходно неортогональные состояния становятся неразличимыми (17.9).

Квантовое кодирование информации впервые было предложено в работах Стефана Визнера, а также Чарльза Беннета и Жиля Брассарда. С.Визнер рассматривал т.н. «квантовые деньги», т.е. деньги, которые в принципе невозможно подделать. Кроме того, он предложил способ распределения двух или трех сообщений, при котором чтение одного из них уничтожало бы информацию, содержащуюся в других. Ч.Беннет и Ж.Брассард предложили реалистичный протокол распределения ключа. Также они обсуждали криптографические схемы типа протокола жеребьевки.

ПРОТОКОЛ BB 84 [ 5 ]

Этот протокол был предложен Ч.Беннетом и Ж.Брассаром в 1984 г. Для распределения ключа они рассматривали неортогональные состояния фотонов.

В оригинальной работе Ч.Беннет и Ж.Брассард рассматривали поляризационные состояния света в качестве квантовых систем, лежащих в основе протокола распределения ключа.

Основные свойства поляризованных фотонов.

Приготовить поляризованный свет можно, пропуская пучок света через какое-нибудь поляризационное устройство, например, призму Глана-Томсона. Ослабляя затем этот свет, можно в принципе, с некоторой вероятностью получить состояния типа смеси вакуумного и однофотонного фоковского:

(17.10)

где , а m и n представляют числа фотонов в двух ортогональных поляризационных модах. Хотя поляризация является непрерывно меняющейся величиной, принцип неопределенности запрещает извлечение более одного бита информации при измерении единичного фотона. Так, если свет, поляризованный вдоль оси a, направляется на поляризационный фильтр, ориентированный вдоль оси b, то отдельные фотоны проявляют дихотомность свойств и ведут себя вероятностным образом, поскольку могут быть либо пропущены с вероятностью , либо поглощены с сопряженной вероятностью . Детерминированность свойств отдельных фотонов, согласно такой интерпретации, возникает, лишь когда две оси параллельны (достоверное пропускание), либо скрещены (достоверное поглощение). Если же оси не перпендикулярны, так что некоторые фотоны пропускаются, то казалось бы, что можно извлечь дополнительную информацию об угле a, поместив поляроид в прошедший пучок под неким третьим углом. Однако это не так, поскольку прошедшие сквозь первый поляроид фотоны имеют определенную поляризацию b, т.е. они полностью утратили информацию о начальной поляризации a. Другой путь извлечения более одного бита информации из отдельного фотона состоит в приготовлении копий такого состояния и последующего их измерения. Однако такой путь запрещен no-cloning теоремой.

Напоминание из теории измерения (см.Лекцию 8)

Формально квантовая механика описывает внутреннее состояние системы с помощью вектора состояния y, имеющего единичную длину в линейном пространстве Н , определенном на поле комплексных чисел (гильбертово пространство). В этом пространстве определено скалярное произведение векторов:

, (17.11)

где символ «*» означает комплексное сопряжение. Каждое физическое измерение М , которое может быть выполнено над системой, соответствует разложению гильбертова пространства на ортогональные подпространства, причем на каждое подпространство приходится по одному результату измерений. Таким образом, число возможных исходов измерений ограничено размерностью d гильбертова пространства. Соответственно при наиболее полных измерениях гильбертово пространство раскладывается на d одномерных подпространств.

Пусть M k является проекционным оператором в k -ое подпространство измерения М . Тогда тождественный оператор I есть просто сумма проекционных операторов:

Из определения вектора состояния известно, что если система, находящаяся в состоянии y, подвергается измерению М , ее поведение становится вероятностным: исход к-ого измерения описывается вероятностью , которая на векторном языке означает квадрат длины проекции вектора состояния в подпространство M k . После измерения система переходит в новое состояние (постулат фон Неймана) , которое является просто единичным вектором в направлении проекции старого вектора состояния в подпространство M k . Согласно этому постулату, измерение оставляет вектор состояния неизменным, (т.е. результат измерения является предопределенным, детерминированным) лишь, когда начальный вектор состояния лежал целиком в одном из ортогональных подпространств, характеризующих измерение.

Гильбертово пространство отдельного поляризованного фотона является двухмерным пространством (d = 2). Следовательно, поляризационное состояние фотона полностью может быть описано с помощью линейной комбинации, скажем, двух единичных векторов и . Например, линейно поляризованный фотон под углом a к горизонтальному направлению, описывается вектором . Измеряя такой фотон в вертикально-горизонтальном (лабораторном базисе) получим горизонтально поляризованный фотон с вероятностью и вертикально поляризованный фотон с вероятностью . В этом смысле два вектора и представляют собой разложение двухмерного гильбертова пространства в два ортогональных одномерных пространства. Эти два вектора будем назвать линейным прямоугольным базисом .

Альтернативным базисом того же гильбертова пространства является т.н. диагональный базис, образованный векторами и .

Определение. Вообще, два (рассмотренных) базиса называются сопряженными ( conjugated , mutually unbiased ) , если каждый вектор одного базиса имеет проекции одинаковой длины на все вектора другого базиса. Это означает, что система, приготовленная в некоем состоянии, представленном векторами одного базиса, будет вести себя совершенно случайным образом (потеряет всю запасенную информацию) будучи измеренной в сопряженном базисе. Математически это требование записывается как

Вообще же, в знаменателе выражения (*) должна стоять размерность гильбертова пространства.

Говоря о двухмерном гильбертовом пространстве, необходимо отметить, что существует третий базис, сопряженный линейному и диагональному – т.н. циркулярный базис, образованный право- и лево-циркулярно поляризациями:

, . Однако для описание протокола распределения ключа нам потребуются лишь первые два базиса.

Описание протокола распределение ключа.

В традиционных протоколах с открытым ключом используются односторонние функции с секретом (повторное дискретное возведение в степень) без предварительного распределения секретной информации между пользователями. В квантовом протоколе квантовый канал используется для передачи некоторого массива случайных битов квантовых информации (кубитов), открытый канал – для обсуждения, см. табл.1.

Вводится синхронизация между действиями Алисы и Боба, т.е. каждый из них знает наверняка, в какой момент времени посылается состояние;

Алиса выбирает случайный массив битов (чередование 0 или 1 в моменты, оговоренные синхронизационным протоколом);

Алиса выбирает случайную последовательность (поляризационных) базисов – чередование либо линейного, либо диагонального (L, D);

Алиса посылает Бобу последовательность фотонов, кодируя поляризацию каждого фотона, исходя из массива битов и поляризационного базиса: каждый фотон имеет определенную поляризацию и описывается одним из четырех базисных векторов . Будем полагать, что значение бита «0» отвечает за состояния , а «1» – за состояния ;

Боб принимает (измеряет) посланные Алисой фотоны в одном из двух базисов. Причем выбор базиса – случаен. Боб интерпретирует результаты своих измерений в бинарном представлении, т.е. пользуясь тем же правилом, что и Алиса: «0» и «1» . Заметим, что как следует из теории измерений, Боб полностью теряет информацию о состоянии фотона, поляризованного в лабораторном базисе (H-V ), измеряя его в диагональном базисе (+45-45) и наоборот. Следовательно, Боб получает достоверную информацию о состоянии фотонов только в половине всех случаев – когда выбранный им базис совпал с базисом Алисы, т.е. когда измерение дает детерминированный результат. Если подслушивания не было, то в оставшейся половине случаев Алиса и Боб имеют некоррелировынные результаты. Следовательно, в среднем, Боб получает массив битов с 25%-ым содержанием ошибок. Этот массив называется сырым ключом . Кроме того, будем учитывать тот факт, что часть фотонов теряется при передаче. Практически, уровень технических ошибок в квантовых протоколах на сегодняшний день составляет несколько процентов (в отличие от уровня , достижимого в современных оптотелекоммуникационных линиях связи). Этот уровень называется Quantum Bit Error Rate (QBER).

Происходит обсуждение результатов измерений по открытому каналу связи, причем и Алиса и Боб предполагают, что их могут подслушать, но не перехватить или изменить результаты. Сперва, они определяют, какие из фотонов были зарегистрированы Бобом. Затем, определяют, в каких случаях Боб угадал базис. Боб сообщает базис, в котором производилось измерение, но не сообщает сам результат. При этом теряется 50% информации – когда Боб неверно угадал базис. Если сообщение не подслушивалось, то Алиса и Боб делают вывод, что биты, закодированные этими фотонами, переданы правильно . Заметим, что по открытому каналу информация о случайной последовательности битов, посылаемых Алисой, не передается – вывод делается только на основе теории квантовых измерений! Каждый из переданных таким образом фотонов в правильном базисе несет один бит информации, а именно был ли он поляризован вертикально или горизонтально в лабораторном базисе или под углами плюс-минус 45 град. - в диагональном базисе. В итоге у Боба остается более короткий массив битов, который называется просеянным ключом .

Затем, Алиса и Боб проверяют, были ли попытки подслушивания во время распределения ключа. Для этого они сравнивают некоторые биты, которые, как они считают, были распределены правильно, по открытому каналу связи. Позиции битов по шкале синхронизационного протокола, должны выбираться случайно, скажем, сравнивая каждый третий бит. В этом случае обнаружение подслушивания имеет высокую вероятность и состоит в том, что Алиса и Боб имеют разные биты. Если сравнение не обнаруживает разницы, то Алиса и Боб делают вывод, что распределение ключа произошло с высокой степенью надежности (все же имеется вероятность не обнаружить подслушивания, но при этом, у подслушивателя окажется мало информации).

Последний шаг протокола квантовой криптографии состоит в том, чтобы используя классические алгоритмы, исправить ошибки и уменьшить информацию, доступную Еве. Последняя процедура называется усилением секретности (privacy amplification). Простейшая процедура коррекции ошибок состоит в следующем. Алиса случайно выбирает пары битов и производит над ними операцию XOR. Боб выполняет такую же операцию над соответствующими своими битами. Если результат совпадает, они сохраняют первый из двух битов и уничтожают второй – поскольку сама процедура происходит по открытому каналу и результат доступен Еве. Если результаты отличаются – оба бита выкидываются (на практике используется более сложный алгоритм). После этой процедуры Алиса и Боб имеют одинаковые копии ключа, но у Евы все же может остаться некоторая информация о нем. Возникает необходимость в ее уменьшении – вступает в силу протоколы усиления секретности . Эти классические протоколы работают следующим образом. Алиса опять выбирает случайно пары битов и вычисляет их сумму по модулю 2 (XOR). Но в отличие от процедуры коррекции ошибок, она не сообщает это значение. Она лишь оглашает какие биты были выбраны, например, 103 и 539. Затем Алиса и Боб заменяют два бита на результат операции XOR. Таким образом Алиса и Боб укорачивают их ключи. Если Еве доступна лишь часть информации о двух битах, то ее информация о результате выполнения операции XOR будет еще меньше. Рассмотрим, например, случай, когда Еве известен только первый бит и ничего не известно про второй. Тогда она вообще ничего не знает про результат операции XOR. Если же Ева знает значения каждого из битов с вероятностью, скажем, 60%, то вероятность того, что она угадает значение операции XOR будет только (сумма вероятностей того, что оба бита угатаны неправильно и правильно, соответственно). Такую процедуру можно повторить несколько раз. Подчеркнем, что на этих этапах (выполнения протоколов коррекции ошибок и усиления секретности) работают исключительно классические протоколы, использующие открытые каналы связи. Итак, если вероятность ошибок не превосходит некоторой критической величины (в нерелятивистских схемах предел, по-видимому, составляет < 11% что определяется потерями в оптическом волокне), то далее возможна коррекция ошибок в нераскрытой части при помощи классических кодов и дальнейшее сжатие ключа (privacy amplification) для получение результирующего секретного ключа.

Включается абсолютно стойкий протокол одноразового блокнота через открытый канал связи.

Весь протокол повторяется каждый раз при необходимости посылки очередного сообщения.

Заметим, что на практике для передачи квантовых битов и обмена классическими сообщениями можно использовать один и тот же канал связи.

Замечание. Потери оптического волокна в окнах телеком составляют примерно: 1.55 мкм 0.2 дБ/км (0.2=10lgI 2 /I 1 , I 2 /I 1 =1.047); 1.31 мкм 0.35 дБ/км;

0.8 мкм 2 дБ/км.

Подслушивание в протоколе BB 84

Из-за того, что по квантовому каналу передается случайная смесь двух базисов, любая попытка подслушивания приводит к риску изменения поляризационного состояния фотона. Это приведет к различию в значениях битов Алисы и Боба, если измерения проводились в совпадающих базисах. Например, в некотором смысле, оптимальная стратегия подслушивания состоит в том, что Ева перехватывает все фотоны в квантовом канале, производит свои измерения только в одном из двух базисов (или вообще, только в одном) и ретранслирует исходы (т.н. стратегия перехватчик-ретранслятор ). Затем она пересылает Бобу (ретранслирует) другой кубит в состоянии, соответствующем результату ее измерения. Это не противоречит теореме о запрете копирования. В половине всех случаев Ева правильно угадает базис и, следовательно, Алиса-Боб не распознают ее присутствие. Однако, в другой половине случаев Ева неверно угадывает базис, поэтому она перешлет Бобу правильный кубит лишь в с вероятностью 50% (mutially unbiased bases). Этот кубит будет обнаружен Алисой-Бобом, в половине от этого числа случаев, т.к. они получат некоррелированные результаты (выявляется в протоколе коррекции ошибок). В итоге при использовании этой стратегии, Ева получает 50% информации - в случае угадывания базиса - в то время как Алиса-Боб получают 25% ошибочных битов в просеянном ключе, т.е. после выкидывания исходов в неправильных базисах. Этот случай подслушивания легко регистрируется. В другом варианте этой стратегии подслушивания Ева применяет ее только к каждому десятому биту. В этом случае она получает доступ к 5 процентам информации, в то время как Алиса и Боб обнаруживают 2.5%. Заметим, что рассмотренный случай активного подслушивателя в квантовом канале не взламывает протокола.

Вообще, анализируя ситуацию на этапе, когда Алиса и Боб имеют просеянный ключ и учитывая возможное присутствие Евы, можно сказать, что существует некоторая корреляция между классической информацией, доступной легитимным пользователям (Алисе и Бобу) и подслушивателем – Евой. Такая ситуация типична для классических криптографических протоколов. Чтобы анализировать ее количественно, вводится функция распределения , где все участники протокола – Алиса Боб и Ева описываются случайными параметрами , соответственно. Предположим, что такое совместное распределение вероятностей (классическое) существует. При этом Алиса и Боб обладают лишь маргинальным распределением . Задача состоит в том, чтобы ограничить доступную Еве информацию. Для данного распределения пока неизвестен критерий, дающий секретный ключ, распределенный между Алисой и Бобом или - условная энтропия. Однако существует некая граничная мера даваемая разностью между взаимной шенноновской информацией Алисы и Боба и взаимной информацией Евы :

Эта оценка показывает, что установление секретного ключа возможно, если Боб обладает большей информацией, чем Ева !

В приведенной только что аргументации есть слабое звено – мы предполагали, что Ева выполняет атаку до того, как Алиса и Боб включили процедуру коррекции ошибок. Формально это означает, что совместное распределение существует. Однако Ева может дождаться окончания протокола коррекции ошибок и только затем провести атаку. Такой вид атак называется «стратегией задержанного выбора »

Для нейтрализации активного подслушивателя в открытом канале можно воспользоваться схемой аутентификации Вегмана-Картера. В этой схеме Алиса и Боб должны изначально иметь небольшой секретный ключ, установленный, например, при личной встрече. С помощью такого ключа устанавливается нечто вроде «контрольной суммы» или метки, зависящей от каждого бита сообщения. Подслушиватель, который не знает ключа, имеет низкую вероятность сгенерировать правильную метку. Таким образом, метка устанавливает легитимность сообщения, а ее изменение указывает на попытку подслушивания.

Рассмотренный протокол ВВ84 является типичным и иллюстрирует основные принципы квантового распределения ключа. На его примере мы также рассмотрели некоторые протоколы коррекции ошибок, усиления секретности и стратегии подслушивателя. Рассмотрим некоторые другие протоколы квантовой криптографии.

Замечание. К очевидным недостаткам квантового распределения ключа следует отнести чисто практическую сложность их реализации. Квантовые состояния очень хрупки и подвержены сильному влиянию окружения, кроме того, они не могут быть усилены (простыми способами). Говоря о криптографических приложениях, пока не ясно как осуществить цифровую подпись или ability to settle disputes before judge.

ПРОТОКОЛ В92 [ 7 ]

Рассуждения, приведенные выше, основывались на том факте, что любое измерение неортогональных состояний, которое не возмущает их, в то же время не дает о них никакой информации (т.е. информации, позволяющей различить их). В 1992 году Ч.Беннет и Ж.Брассард предложили протокол распределения ключа, основанный на передаче только двух неортогональных состояний квантовой системы вместо четырех.

Рассмотрим два неортогональных состояния и , таких, что . Пусть и - два проектора в подпространства ортогональные состояниям и , соответственно. Заметим, что эти два оператора не коммутируют и что их индексы переставлены по отношению к соответствующим состояниям. Нетрудно убедиться, что оператор Р 0 уничтожает состояние :

но дает ненулевой результат при действии на :

В последнем соотношении фигурирует величина - вероятность ненулевого исхода. Аналогичные соотношения справедливы и для оператораР 1 .

Распределение ключей происходит следующим образом.

1. Устанавливается синхронизация моментов посылки состояний.

2. Алиса приготавливает и посылает Бобу случайную бинарную последовательность квантовых состояний и , где, например, , а .

3. Боб, независимо от Алисы, случайным образом решает, какой из двух операторов Р 0 или Р 1 применить к полученной последовательности состояний.

4. Затем Боб по открытому каналу сообщает Алисе номера синхронизационной шкалы, для которых он получил положительный результат. При этом он не сообщает, какой из двух операторов он использовал. Остальные события игнорируются

5. Если подслушивания не было, то оставленные события, составляющие приблизительно, -ую часть от общего числа испытаний, должны быть коррелированы. Заметим, что для поляризационного кодирования состояний “0 о ”и “45 о ”эта величина равна 1/2. Таким образом, если Алиса посылала , а Боб измерял Р 0 , если Алиса посылала , то Боб измерял Р 1 .

6. Перед тем, как Алиса и Боб установят секретный ключ, они должны провести процедуру коррекции ошибок и усиления секретности, действуя, например, так же как и в протоколе ВВ84. Жертвуя некоторыми битами, они убеждаются в идентичности некоторого их числа. Протокол иллюстрируется в таблице 2.

Итак, наше базовое предположение о невозможности извлечения однозначной информации об неортогональных состояниях без их возмущения, позволило ввести более простой, по сравнению с ВВ84, протокол. Однако, на практике, реализация такого протокола не нашла широкого применения. Дело в том, что все-таки существуют способы различимости двух неортогональных состояний, ценой некоторых потерь. Идея и соответствующие демонстрационные эксперименты основаны на том, что измерение, выполняемое в базисе, ортогональном, например, состоянию , однозначно выделяет такое состояние, в том смысле, что только состояние не пройдет через поляроид, ориентированный горизонтально. Другое же состояние пройдет через горизонтальный поляроид с 50%-ми потерями.

ЭПР-ПРОТОКОЛ [ 6 ]

В 1991 году А.Экерт предложил протокол основанный на перепутанных состояниях. Впоследствии оказалось, что этот протокол является разновидностью ВВ84, однако в обзорах по квантовым способам распределения ключа, как правило, он фигурирует отдельно. Примечательно также, что казалось бы, абсолютно умозрительные рассуждения, приведшие Эйнштейна, Подольского и Розена к их известному парадоксу, а также идеи, высказанные Дж.Беллом, все-таки нашли свое практическое воплощение. Сам А.Экерт, формулируя суть протокола, отмечал, что здесь «распределение ключа зависит от полноты квантовой механики». Под полнотой понимается тот факт, что квантовое описание обеспечивает максимально возможную информацию о рассматриваемой системе. Экспериментальная реализация рассматриваемого протокола, во всяком случае в принципиальном смысле, мало отличается от установок по наблюдению нарушения неравенств Белла. Можно сказать, что при распределении ключа вводится квантовый канал, где сам ключ существует без какого-либо «элемента реальности», связанного с этим ключом. В этом смысле он защищен полнотой квантовой механики.

Канал состоит из источника перепутанных фотонов, находящихся в синглетном состоянии. Частицы разлетаются вдоль оси z в направлениях к легитимным пользователям – Алисе и Бобу. Каждый из них получает по одной частице или половинке перепутанной пары. Затем Алиса и Боб выполняют измерение над свой частицей, ориентируя поляризационные призмы вдоль трех направлений: для Алисы – а i , для Боба – b j (i , j = 1, 2, 3 ). Конкретно, измеряя углы от вертикальной оси:

(17.16)

(17.17)

Алиса и Боб выбирают ориентацию призм случайно и независимо друг от друга для каждой пары перепутанных частиц. Каждое измерение дает результат либо +1, либо –1, т.е. срабатывает один из двух детекторов, установленных в выходных модах поляризационной призмы Алисы и Боба. Параметризованный таким образом сигнал представляет один (для одной частицы) бит информации.

где аргументы в корреляционных функциях Р означают выбранное направление. Например, означает вероятность того, что при данных установках поляризационных призм a i , b j Алиса получила результат «-1», а Боб «+1». Можно показать, что величина Е принимает значения

Для двух пар одинаковых ориентаций анализаторов (поляризационных призм)

квантово-механические предсказания дают полную антикорреляцию результатов, полученных Алисой и Бобом:

Следуя Клаузеру, Хорну, Шимони и Хольту можно ввести наблюдаемую величину - наблюдаемую Белла, составленную из корреляционных коэффициентов (17.18):

которая равна

После того, как перепутанные частицы поступили к Алисе и Бобу, те могут объявить по открытому каналу связи ориентации анализаторов, которые были выбраны случайным образом при каждом измерении. Затем, результаты измерений разделяются на две группы. К первой группе относятся результаты, полученные при разных ориентациях анализаторов, т.е., приводящие к (21). Ко второй – при одинаковых. Не учитываются те результаты, когда частица Алисы или Боба по каким-то причинам не была зарегистрирована вообще. Затем Алиса и Боб сообщают результат, который они получили только для первой группы измерений. Это позволяет им установить то значение S , которое для невозмущенных состояний частиц должно оказаться равным (21). В свою очередь последнее утверждение дает основание легитимным пользователям считать, что результаты, относящиеся ко второй группе измерений, антикоррелированы и могут быть преобразованы в секретный набор битов – сырой ключ .

Подслушиватель не может воспользоваться информацией, перехватывая перепутанные частицы, поскольку самой информации там нет. Считается, что она появляется в результате измерений, выполняемых Алисой. По Экерту измерение Алисы приготавливает состояние частицы Боба, хотя более последовательно было бы утверждать, что эта информация закодирована в корреляционных функциях Р и величине Е .

Литература

W. Diffie and M.E. Hellman, IEEE Trans. Inf. Theory IT-22, 644 (1977).

R. Rivest, A. Shamir, and L. Adleman, "On Digital Signatures and Public-Key Cryptosystems" , MIT Laboratory for Computer Science, Technical Report, MIT/LCS/TR-212 (January 1979).

P.W. Shor, Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society, Los Alamos, CA, 1994) p. 124.

C.H. Bennett, G. Brassard, and A.K. Ekert, "Quantum cryptography" , Scientific American, October 1992, p. 50.

S. Wiesner, SIGACT News 15 , 78 (1983); original manuscript written circa 1970. C.H. Bennett and G. Brassard, in "Proc. IEEE Int. Conference on Computers, Systems and Signal Processing", IEEE, New York (1984). C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5 , 3 (1992).

A.K. Ekert, Phys. Rev. Lett. 67 , 661 (1991); A.K. Ekert, J.G. Rarity, P.R. Tapster, and G.M. Palma, Phys. Rev. Lett. 69 , 1293 (1992).

C.H. Bennett, Phys. Rev. Lett. 68 , 3121 (1992).

A. Muller, J. Breguet, and N. Gisin, Europhys. Lett. 23 , 383 (1993).

P.R. Tapster, J.G. Rarity and P.C.M. Owens, Phys. Rev. Lett. 73 , 1923 (1994).

P D. Townsend, J.G. Rarity, and P.R. Tapster, Electron. Lett. 29 , 1291 (1993).

D.Mayers, A.Yao, Unconditional Security in Quantum Cryptography, quant-ph/9802025.

E.Biham, M.Boyer, P.O.Boykin, T.Mor, V.Roychowdhury, A Proof of the Security of Quantum Key Distribution, quant-ph/9912053.

P.W.Shor, J.Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution Protocol, quant-ph/0003004.


Эти наборы значений углов не являются единственными.

11 ноября 2016 в 17:07

Немного о квантовой криптографии

  • Информационная безопасность ,
  • Криптография
Квантовые компьютеры и связанные с ними технологии в последнее время становятся все актуальнее. Исследования в этой области не прекращаются вот уже десятилетия, и ряд революционных достижений налицо. Квантовая криптография - одно из них.
Владимир Красавин «Квантовая криптография»

Данная статья является прологом к циклу статей и переводов по теме Квантовая криптография.

Действительно в последнее время все чаще мы слышим такие понятия как «Квантовый компьютер», «Квантовые вычисления» и конечно же «Квантовая криптография».

И если с первыми двумя понятиями в принципе всё понятно, то «Квантовая криптография» - понятие, которое хоть и имеет точную формулировку, до сих пор остается для большинства людей темным и не совсем понятным этакий Ёжик в тумане.

Но прежде чем непосредственно перейти к разбору данной темы введем базовые понятия:

Криптография – наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.

Квантовая криптография – метод защиты коммуникаций, основанный на принципах квантовой физики. В отличие от традиционной криптографии, которая использует математические методы, чтобы обеспечить секретность информации, квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики.

Ортогональность – понятие, являющееся обобщением перпендикулярности для линейных пространств с введённым скалярным произведением.

Quantum Bit Error Rate (QBER) – уровень квантовых ошибок.


Квантовая криптография – направление молодое, но медленно развивающиеся в силу своей необычности и сложности. С формальной точки зрения это не есть криптография в полном понимании этого слова, так как базируется она не столько на математических моделях, сколько на физики квантовых частиц.

Главной её особенностью, а заодно и особенностью любой квантовой системы является невозможность вскрытия состояние системы на протяжении времени, так при первом же измерении система меняет свое состояние на одно из возможных неортогональных значений. Помимо всего прочего существует «Теорема о запрете клонирования» сформулированная в 1982 году Вуттерсом, Зуреком и Диэксом, которая говорит о невозможности создания идеальной копии произвольного неизвестного квантового состояния, хотя и существует лазейка, а именно - создание неточной копии. Для этого нужно привести исходную систему во взаимодействие с большей вспомогательной системой и провести унитарное преобразование общей системы, в результате которого несколько компонентов большей системы станут приблизительными копиями исходной.

Основы передачи данных

Дабы не приводить сложных и не всем понятных схем, прибегну к помеси физики и геометрии.

В качестве носителей информации, чаще всего, используются одиночные или парные связанные фотоны. Значения 0/1 кодируются различными направлениями поляризации фотонов. При передаче используются случайно выбранный 1 из двух или трех неортогональных базисов. Соответственно правильно обработать входной сигнал возможно только если получатель смог подобрать правильный базис, в противном случае исход измерения считается неопределенным.

Если же хакер попытается получить доступ к квантовому каналу, по которому происходит передача, то он, как и получатель будет ошибаться в выборе базиса. Что приведет к искажению данных, которое будет обнаружено обменивающимися сторонами при проверке, по некому выработанному тексту, о котором они договорились заранее, например, при личной встрече или по зашифрованному, методами классической криптографии, каналу.

Ожидание и Реальность

При использовании идеальной системы перехват данных невозможен, так как моментально обнаруживается участниками обмена. Однако при обращении к реальным системам все становится намного прозаичней.

Появляются две особенности:

  • Существует возможность неправильно переданных битов, в силу того, что процесс носит вероятностный характер.
  • Так как главная особенность системы – это использование импульсов с низкой энергией, это сильно снижает скорость передачи данных.
Теперь немного подробней о данных особенностях.

Неправильные, или точнее говоря искаженные биты могут возникать по двум основным причинам. Первая причина это я, несовершенность оборудования используемого при передаче данных, вторая причина - это вмешательство криптоаналитика или хакера.
Решение первой причины очевидно Quantum Bit Error Rate.

Quantum Bit Error Rate представляет собой уровень квантовых ошибок, который вычисляется по довольно замысловатой формуле:

QBER= «p_f+(p_d*n*q*∑(f_r* t_l) /2)*μ»

Где:

p_f: вероятность неправильного «щелчка» (1-2%)
p_d: вероятность неправильного сигнала фотона:
n: количество обнаружений
q: фаза= 1/2; поляризация = 1
Σ: detector efficiency
f_r: частота повторения
p_l: скорость передачи данных (чем больше расстояние, тем меньше)
µ: затухание для световых импульсов.


Говоря о второй особенности стоит упомянуть, что во всех системах присутствует затухание сигнала. И, если в используемых ныне способах передачи данных эта проблема решается за счет различных способов усиления. То в случае с квантовым каналом на данный момент максимальна достигнутая скорость 75 Кбит/с, но уровень потерянных фотонов почти достиг 50%. Хотя справедливость ради скажу, что по известным данным минимальные потери при передаче составляют 0,5% на скорости всего лишь 5 кбит/с.

Таким образом можно сделать следующие выводы:

  1. Хоть в идеале защищенный методами Квантовой криптографии канал взломать практически невозможно, по крайней мере известными на данный момент способами, на практике следуя правилу, что стойкость системы определяется стойкостью самого слабого её звена, мы убеждаемся в обратном;
  2. Квантовая криптография развивается, причем довольно-таки быстро, но к сожалению практика не всегда поспевает за теорией. И как следствие вытекает третий вывод;
  3. Созданные на данный момент системы использующие такие протоколы как BB84, B92 подвержены атакам, и по своей сути не обеспечивают достаточной стойкости.
Конечно Вы скажете:

Но как же так есть ведь протоколы E91 и Lo05. И он принципиально отличается от BB84, B92.
- Да, и все же есть одно, НО…

Но об этом в следующей статье.

Наружное коленчатое тело

Наружное коленчатое тело (corpus genicu-latum laterale) является местом расположения так называемого «второго нейрона» зрительно­го пути. Через наружное коленчатое тело про­ходит около 70% волокон зрительного тракта . Наружное коленчатое тело представляет собой возвышенность, соответствующую месту расположения одного из ядер зрительного буг­ра (рис. 4.2.26-4.2.28). Содержит оно около 1 800 000 нейронов, на дендритах которых за­канчиваются аксоны ганглиозных клеток сет­чатой оболочки.

Ранее предполагали, что наружное коленча­тое тело представляет собой лишь «ретрансля­ционную станцию», передающую информацию от нейронов сетчатки через зрительную лучис­тость коре головного мозга. В настоящее время показано, что на уровне наружного коленчато­го тела происходит довольно существенная и разноплановая обработка зрительной инфор­мации . О нейрофизиоло­гическом значении этого образования речь пой­дет несколько ниже. Первоначально необхо-


Рис. 4.2.26. Модель левого наружного коленчатого тела (по Wolff, 1951):

а - вид сзади и изнутри; б - вид сзади и снаружи (/ - зри­тельный тракт; 2 - седло; 3 - зрительная лучистость; 4 - го­ловка; 5 - тело; 6 - перешеек)

димо остановиться на его анатомических осо­бенностях.

Ядро наружного коленчатого тела представ­ляет собой одно из ядер зрительного бугра. Располагается оно между вентропостериолате-ральным ядром зрительного бугра и подушкой зрительного бугра (рис. 4.2.27).

Наружное коленчатое ядро состоит из дор-зального и филогенетически более древнего вентрального ядер. Вентральное ядро у челове­ка сохранено в виде рудимента и состоит из группы нейронов, расположенных ростральней дорзального ядра . У низших млекопитаю­щих это ядро обеспечивает наиболее прими­тивные фотостатические реакции. Волокна зри­тельного тракта к этому ядру не подходят.

Дорзальное ядро составляет основную часть ядра наружного коленчатого тела. Представ­ляет оно собой многослойную структуру в виде седла или асимметричного конуса с округлен­ной верхушкой (рис. 4.2.25-4.2.28). На гори­зонтальном срезе видно, что наружное коленча­тое тело связано спереди со зрительным трак­том, с латеральной стороны - с ретролентику-лярной частью внутренней капсулы, медиаль­но - со средним коленчатым телом, сзади с гиппокампальной извилиной, а постериолате-рально - с нижним рогом бокового желудоч­ка. К ядру наружного коленчатого тела сверху прилежит подушка зрительного бугра, антерио-латерально - темпоропонтинные волокна и зад­няя часть внутренней капсулы, латерально - зона Вернике, а с внутренней стороны - меди­альное ядро (рис. 4.2.27). Зона Вернике являет­ся самой внутренней частью внутренней капсу­лы. Именно в ней и начинается зрительная лу­чистость. Волокна зрительной лучистости рас­полагаются с дорзолатеральной стороны ядра наружного коленчатого тела, в то время как волокна слухового тракта - с дорзомедиальной.


■ .■. ■>

Рис. 4.2.27. Наружное коленчатое тело и его отноше­ние к структурам головного мозга:

а - горизонтальный срез мозга (/ - наружное коленчатое тело; 2 - внутрення капсула; 3 -подушка зрительного бугра); б - сагиттальный срез мозга (гистологический срез, окрашенный гематоксилином и эозином) (НКТ -наружное коленчатое тело)

Наружное коленчатое тело соединяется с верхним четверохолмием при помощи связки, называемой передним плечом.

Даже при макроскопическом исследовании наружного коленчатого тела выявляется, что это образование обладает слоистым строением. У обезьян и человека четко различается шесть полос «серого вещества» и расположенные между ними «белые» прослойки, состоящие из аксонов и дендритов (рис. 4.2.28). Первым слоем обозначен слой, расположенный с вент­ральной стороны. Два внутренних слоя состоят из клеток большого размера (магноцеллюляр-ные слои 1 и 2). Получили они такое название


Рис. 4.2.28. Наружное коленчатое тело:

/ - гиппокамп; 2 - субарохноидальное пространство; 3 - нож­ка мозга; 4 - слой 1; 5 - слой 2; 6 - нижний рог бокового желудочка; 7 - слой 3; 8 - слой 4; 9 - слой 5; 10 - слой 6. Наружное коленчатое тело является ядром зрительного бугра. Четко видно наличие шести темных слоев скопления нейронов, разделенных светлыми слоями, состоящими из нервных волокон. Слои 1 и 2 складываются из крупных нейронов (магноцеллю-лярные), а слои 3-6 - из мелких клеток (парвоцеллюлярные)

по той причине, что состоят из крупных нейро­нов с эксцентрично расположенным ядром и большим количеством в цитоплазме вещества Ниссля. Аксоны нейронов магноцеллюлярного слоя формируют не только зрительную лучис­тость, но также направляются к верхним бугор­кам четверохолмия. Четыре наружных слоя состоят из маленьких и среднего размера кле­ток (парвоцеллюлярные слои, 3-6). Они со­держат нейроны, получающие информацию от сетчатки и передающие ее только зрительной коре головного мозга (формируют зрительную лучистость). Обнаруживаются и нейроны, обес­печивающие связь между нейронами наружного коленчатого тела. Это так называемые «вста­вочные нейроны» (интернейроны). Предполага­ют, что два слоя, состоящие из мелких нейро­нов (парвоцеллюлярные слои), появляются в связи с развитием центрального зрения.

Важно отметить, что на перечисленные слои нейронов проецируются волокна, идущие от различных участков сетчатки обоих глаз. Так, перекрещенные волокна зрительного тракта за­канчиваются в 1, 4 и 6-м слоях, а неперекре-щенные - во 2, 3 и 5-м (рис. 4.2.29). Это про­исходит таким образом, что волокна от кор­респондирующих частей двух половин сетчатки (например, правая височная и левая назальная половины сетчатки) заканчиваются в соседних слоях. Приведенные особенности проекции на наружное коленчатое тело установлены на ос­новании использования разнообразных методов

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ


Рис. 4.2.29. Представительство сетчатой оболочки в наружном коленчатом теле:

Импульсы от корреспондирующих точек (а, б) двух сетчаток проходят в зрительный тракт. Неперекрешенные волокна (а") за­канчиваются во 2, 3 и 5-м слоях наружного коленчатого тела. Перекрещенные волокна (б") заканчиваются в слоях 1, 4 и 6. Импульсы после прохождения НКТ (в") проецируются на кору головного мозга

исследования. Так, в случаях разрушения контр­латерального зрительного нерва или предше­ствовавшего удаления глазного яблока разви­вается дегенерация нейронов 1, 4 и 6-го слоев наружного коленчатого тела (рис. 4.2.30). При разрушении гомолатеральных волокон зритель­ного нерва наступает дегенерация нейронов 2, 3 и 5-го слоев. Это явление называется транссинаптической дегенерацией. Установле­но также, что если при рождении котенку сшить веки одного глаза, то через три месяца насту­пит дегенерация 25-40% нейронов наружно­го коленчатого тела. Подобной формой транс­синаптической дегенерации можно объяснить некоторые механизмы развития амблиопии, раз­вивающейся при врожденном косоглазии.

О различной проекции на наружное коленча­тое тело перекрещенных и неперекрещенных волокон свидетельствуют и экспериментальные исследования. В этих исследованиях в одно из глазных яблок вводится радиоактивная амино­кислота, распространяющаяся трансаксонально по направлению наружного коленчатого тела и накапливающаяся в его нейронах (рис. 4.2.31).

Рис. 4.2.31. Распределение радиоактивной метки в на­ружных коленчатых телах после введения в левое глаз­ное яблоко обезьяны радиоактивной аминокислоты:

а - левое наружное коленчатое тело; б - правое наружное ко­ленчатое тело. (Аминокислота поглощается ганглиозными клет­ками сетчатой оболочки и транспортируется по аксонам через зрительный нерв, зрительный перекрест и зрительный тракт к наружному коленчатому телу. Иллюстрация указывает на то, что слои 2, 3 и 5 получают информацию от ипсилатераль-ного глаза, а слои 1, 4 и 6 - от контрлатерального глаза)


Рис. 4.2.30. Изменение микроскопического строения наружного коленчатого тела с двух сторон при удале­нии одного глазного яблока (по Alvord, Spence, 1997):

а - наружное коленчатое тело (НКТ), расположенное ипсилате-рально относительно энуклеированного глаза; б - НКТ, распо­ложенное контрлатерально относительно энуклеированного гла­за. (После смерти больного, у которого задолго до смерти было удалено глазное яблоко, микроскопически исследованы наруж­ные коленчатые тела. После нарушения нормальной проекции ганглиозных клеток сетчатой оболочки на нейроны НКТ наступа­ет атрофия последних. При этом интенсивность окрашивания слоев уменьшается. На рисунке видно, что 3-й и 5-й слои НКТ, расположенные ипсилатерально относительно удаленного глаза, значительно слабее окрашены гематоксилином и эозином. В то же время слои 3 и 5 НКТ, расположенные контрлатерально от­носительно удаленного глаза, окрашены более интенсивно, чем слои 4 и 6. Можно также отметить, что слои 1 и 2 поражены в наименьшей степени)


Функциональная анатомия зрительной системы

Особенности проекции сетчатки на наруж­ное коленчатое тело. В последнее время выяв­лены особенности проекции сетчатой оболочки на наружное коленчатое тело. Сводятся они к тому, что каждая точка половины сетчатки точ­но проецируется на определенную точку ядра наружного коленчатого тела («точка к точке») . Таким образом, пространственное возбуждение в слое ганглиозных клеток сетчат­ки «картируется» пространственным распреде­лением возбуждения нейронов в разных слоях наружного коленчатого тела. Строгий топогра­фический порядок связей наблюдается и между клетками различных слоев. Проекции каждой точки поля зрения во всех слоях находятся не­посредственно одна под другой, так что можно выделить колонкообразный участок, пересека­ющий все слои наружного коленчатого тела и соответствующий проекции локальной области поля зрения.

Приведенная закономерность проекции вы­явлена на основании экспериментальных ис­следований. Так, показано, что локальное то­чечное повреждение сетчатки приводит к раз­витию транснейронной дегенерации небольших, но четко очерченных скоплений клеток в трех слоях наружного коленчатого тела с обеих сто­рон . Фокальное повреждение зрительной коры или введение в нее радио­активного трейсера приводит к «маркировке» клеток или волокон, расположенных на линии, простирающейся поперек всех слоев наружно­го коленчатого тела на том же самом уровне. Эти участки соответствуют «рецептивным по­лям» наружного коленчатого тела и получили название «проекционная колонка» (рис. 4.2.32).

В этом месте изложения материала целесо­образно остановиться на особенностях рецеп­тивных полей наружного коленчатого тела. Ре­цептивные поля наружного коленчатого тела напоминают таковые ганглозных клеток сетча­той оболочки. Различают несколько основных типов рецептивных полей. Первый тип характе­ризуется наличием ON-ответа при возбуждении центра и OFF-ответа при возбуждении пери­ферии (ON/OFF-тип). Второй тип рецептив­ных полей характеризуется обратным отноше­нием - OFF/ON-тип. Для наружного коленча­того тела характерно также и то, что в слоях 1 и 2 обнаруживается смесь рецептивных по­лей первого и второго типов. В то же время в слоях 3-6 обнаруживается только один тип рецептивных полей (в двух слоях поля первого типа, а в других двух - второго типа). Обнару­живаются также линейные рецептивные поля с различным соотношением ON- и OFF-центров (рис. 4.2.33). Использование электрофизиологи­ческих методов позволило выявить, что рецеп­тивные поля наружного коленчатого тела обла­дают более выраженной оппонентной реакцией, чем рецептивные поля ганглиозных клеток сет-


Латеральная

Рис. 4.2.32. Схематическое изображение парасагит-

тального среза наружного коленчатого тела. Проекция

зрительного сигнала с формированием рецептивного



1т*- Задняя

* * *Z* х

Рис. 4.2.33. Структура рецептивных полей наружно­го коленчатого тела (а, б) и первичной зрительной коры {в-ж) (по Hubel, Weisel, 1962):

а - ON-центр рецептивное поле наружного коленчатого тела; б - OFF-центр рецептивное поле наружного коленчатого тела; в -ж - различные варианты строения простых рецептивных по­лей. (Крестики отмечают поля, отвечающие ON-реакцией, а тре­угольники- OFF-реакцией. Ось рецептивного поля отмечена сплошной линией, проходящей через центр рецептивного поля)

чатки. Именно это предопределяет большое значение наружного коленчатого тела в усиле­нии контраста. Выявлены также явления про­странственно-временной суммации поступаю­щих сигналов, анализа спектральных харак­теристик сигнала и т. д. Нейроны наружного коленчатого тела, участвующие в кодировании цвета, локализуются в парвоцеллюлярных сло­ях, где сконцентрированы цветооппонентные

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ


Клетки «красно-зеленого» и «сине-желтого» цвета. Как и для ганглиозных клеток сетчатки, для них характерна линейная суммация колбоч-ковых сигналов по площади сетчатки. Магно-целлюлярные слои также состоят из оппонент-ных нейронов с пространственно распределен­ными в рецептивных полях входами от колбочек разного типа. Необходимо отметить, что анато­мическая сегрегация нейронов с различными функциональными свойствами наблюдается уже в сетчатке, где отростки биполяров и ганглиоз­ных клеток ON- и OFF-типов локализуются в разных подслоях внутреннего плексиформного слоя. Такое «анатомическое обособление» ней­ронных систем, образующих разные каналы передачи информации, является общим принци­пом в построении анализаторных структур и наиболее выражено в колончатой структуре коры, на чем мы остановимся несколько ниже.

Сетчатая оболочка

наружную часть наружного коленчатого тела (рис. 4.2.29). Макулярная область сетчатки проецируется на клиновидный сектор, располо­женный в задних двух третях или трех четвер­тях наружного коленчатого тела (рис. 4.2.34, 4.2.35).

Отмечено, что представительство зритель­ных полуполей в зрительном тракте как бы «поворачивается» на уровне наружного колен­чатого тела таким образом, что вертикальное сечение становится горизонтальным. При этом верхняя часть сетчатки проецируется на меди­альную часть, а нижняя на латеральную часть наружного коленчатого тела. Этот поворот пол­ностью изменяется в зрительной лучистости таким образом, что, когда волокна достигают зрительной коры, квадрант верхней части сет­чатки располагается в верхней части тракта, а нижний квадрант - снизу.

Наружное коленчатое тело



Рис. 4.2.34. Проекция сетчатой оболочки на наружное коленчатое тело: / - макула; 2 - монокулярный полумесяц



з р Яа

Продолжая описание особенностей проек­ции сетчатки на наружное коленчатое тело, не­обходимо отметить, что периферические височ­ные участки сетчатки противоположного глаза проецируются на слои 2, 3 и 5 и называются монокулярным полумесяцем.

Наиболее полные данные о ретинотопичес-кой организации волокон зрительного нерва, зрительного перекреста и ядер наружного ко­ленчатого тела у человека и обезьяны получе­ны Brouewer, Zeeman , Polyak , Hoyt, Luis . Первоначально мы опишем проек­цию немакулярных волокон. Неперекрещиваю-щиеся волокна, идущие от верхне-височного квадранта сетчатки, в зрительном перекресте располагаются дорзо-медиально и проецируют­ся на медиальую часть ядра наружного колен­чатого тела. Неперекрещивающиеся волокна, идущие от нижне-височного квадранта сетчат­ки, в зрительном перекресте располагаются снизу и латерально. Они проецируются на


Рис. 4.2.35. Схематическое изображение коронарного

среза через наружное коленчатое тело (вид сзади)

(по Miller, 1985):

обращает на себя внимание большое представительство в на­ружном коленчатом теле макулярной области (1-6-номера слоев НКТ)


Функциональная анатомия зрительной системы

Синаптические взаимодействия нейронов наружного коленчатого тела. Ранее предпола­гали, что аксон ганглиозной клетки контакти­рует только с одним нейроном наружного ко­ленчатого тела. Благодаря электронной микро­скопии установлено, что афферентные волокна образуют синапсы с несколькими нейронами, (рис. 4.2.36). В то же время каждый нейрон наружного коленчатого тела получает информа­цию от нескольких ганглиозных клеток сетчат­ки . На основании ультраструктурных ис­следований выявлены также разнообразные си­наптические контакты между ними . Аксоны ганглиозных клеток могут заканчиваться как на теле нейронов наружного коленчатого тела, так и на первичных или вторичных их дендритах. При этом формируются так называемые «клу-бочковые» окончания (рис. 4.2.37, см. цв. вкл.). У кошек «клубочки» отделены от окружающих образований тонкой капсулой, состоящей из от­ростков глиальных клеток . Подобная изоляция «клубочков» отсутствует у обезьян.

Синаптические «клубочки» содержат синап­сы аксонов ганглиозных клеток сетчатки, си­напсы нейронов наружного коленчатого тела и вставочных нейронов («интернейронов»). Эти синаптические образования напоминают «триа­ды» сетчатой оболочки.

Каждый «клубочек» состоит из зоны плотно упакованных нейронов и их терминалов. В цент­ре этой зоны расположен аксон ганглиозной

Рис. 4.2.36. Схематическое изображение взаимодейст­вия терминалов аксонов ганглиозных клеток сетчатки с нейронами наружного коленчатого тела у обезьяны (по Glees, Le Gros, Clark, 1941):

пучок волокон зрительного нерва (а) входит в клеточный слой (б) наружного коленчатого тела (НКТ) справа. Некоторые волок­на отдают 5-6 ветвей, подходят к телу нейронов НКТ и обра­зуют синапс. Аксоны клеток НКТ (в) покидают клеточный слой НКТ, проходят через волокнистый слой и формируют зритель­ную лучистость


клетки сетчатки, являющийся пресинаптичес-ким. Он образует синапсы с нейроном наруж­ного коленчатого тела и вставочными нейрона­ми. Дендриты нейронов наружного коленчатого тела поступают в «клубочки» в виде шипа, ко­торый непосредственно и образует синапс с аксоном сетчатки. Дендрит вставочных нейро­нов (интернейронов) образует синапс со смеж­ным «клубочком», формируя между ними по­следовательные синапсы.

Lieberman выделяет пре- и постсинап-тические «ингибирующие» и «возбуждающие» дендритические и «клубочковые» синапсы. Они представляют собой сложное скопление си­напсов между аксонами и дендритами. Именно эти синапсы структурно обеспечивают феномен торможения и возбуждения рецептивных полей наружного коленчатого тела .

Функции наружного коленчатого тела. Предполагают, что к функциям наружного ко­ленчатого тела относятся: усиление контраста изображения, организация зрительной инфор­мации (цвет, движение, форма), модуляция уровня обработки зрительной информации с их активацией (посредством ретикулярной форма­ции) . Обладает наружное коленчатое тело и бинокулярными рецептивными полями . Важно отметить, что на функции наруж­ного коленчатого тела влияют и более высо­ко расположенные центры мозга. Подтвержде­нием роли наружного коленчатого тела в обра­ботке информации, идущей от высших отделов мозга, является обнаружение проекции на него эфферентных волокон, исходящих из коры го­ловного мозга. Возникают они в VI слое зри­тельной коры и проецируются на все слои на­ружного коленчатого тела. По этой причине не­значительное повреждение зрительной коры вызывает атрофию нейронов во всех шести слоях наружного коленчатого тела . Терминалы этих волокон небольшого размера и содержат многочисленные синаптические пу­зырьки. Оканчиваются они как на дендритах нейронов наружного коленчатого тела, так и на вставочных нейронах («интернейронах») . Предполагают, что посредством этих во­локон кора головного мозга модулирует дея­тельность наружного коленчатого тела . С другой стороны, показано, что из­менение активности нейронов наружного колен­чатого тела избирательно активизируют или тормозят нейроны зрительной коры мозга.

Существуют и другие связи наружного ко­ленчатого ядра. Это связь с подушкой зритель­ного бугра, вентральным и латеральным ядрами зрительного бугра .

Кровоснабжение наружного коленчатого тела осуществляется задней мозговой и задней ворсинчатой артериями (рис. 4.2.38) . Основным сосудом, кровоснабжаю-щим наружное коленчатое тело, особенно зад-не-внутреннюю его поверхность, является зад-

Глава 4. ГОЛОВНОМ МОЗГ И ГЛАЗ


90 80 70 60150 40 30 20-10


Рис. 4.2.38. Артериальное кровоснабжение поверхности наружного коленчатого тела:

/ - передняя ворсинчатая (хориоидальная) артерия; 2 - вор­синчатое сплетение; 3 - ножка мозга; 4 - ворота наружного ко­ленчатого тела; 5 - наружное коленчатое тело; 6 - медиальное коленчатое тело; 7 - глазодвигательный нерв; 8 - ядро глазо­двигательного нерва; 9 - задняя мозговая артерия; 10 - задняя ворсинчатая артерия; // - черная субстанция

няя мозговая артерия. В ряде случаев от этой артерии отходит ветвь - задняя ворсинчатая (хориоидальная) артерия. При нарушении кро­вообращения в этой артерии обнаруживаются нарушения поля верхнего гомонимного квадран­та сетчатой оболочки.

Передняя ворсинчатая (хориоидальная) ар­терия почти полностью кровоснабжает перед­нюю и боковую поверхности наружного колен­чатого тела. По этой причине нарушение крово­обращения в ней приводит к поражению воло­кон, исходящих из нижнего квадранта сетчатки (рис. 4.2.39). Эта артерия отходит от внутренней сонной артерии (иногда от средней мозговой артерии) сразу дистальней места вы­хода задней соединительной артерии. При до­стижении передней части наружного коленча­того тела передняя ворсинчатая артерия отдает различное число ветвей перед вступлением в нижний рог бокового желудочка.

Часть наружного коленчатого тела, на ко­торую проецируются волокна, исходящие из желтого пятна, кровоснабжается как перед­ней, так и задней ворсинчатой артериями . Кроме того, от хорошо развитой системы анастомозов, расположен­ных в мягкой и паутинной оболочках мозга, отходят многочисленные артериолы, проникаю­щие в наружное коленчатое тело. Там они обра­зуют густую сеть капилляров во всех его слоях .


^--^--^ Горизонтальный меридиан поля зрения - - - - - Нижний косой меридиан поля зрения

I I Территория передней ворсинчатой артерии ВИВ Территория наружной ворсинчатой артерии

Рис. 4.2.39. Схема кровоснабжения правого наружного коленчатого тела и особенности выпадения поля зрения (гомонимный дефект поля зрения), наступающего в ре­зультате нарушения кровообращения в бассейне ворсин­чатой (хориоидальной) артерии (по Frisen et al., 1978):

а - сетчатка; б - наружное коленчатое тело (/-передняя вор­синчатая артерия; 2 - медиальная поверхность; 3 - латераль­ная поверхность; 4 - задняя ворсинчатая артерия; 5 - задняя артерия мозга)


Функциональная анатомия зрительной системы

4.2.6. Зрительная лучистость

Зрительная лучистость (radiatio optica; Гра-сиоле, Gratiolet) является аналогом других лу-чистостей зрительного бугра, таких как слухо­вая, затылочная, теменная и лобная. Все пере­численные лучистости проходят через внутрен­нюю капсулу, соединяющую полушария мозга и


стволовую часть мозга, спинной мозг. Внутрен­няя капсула находится латеральней зритель­ного бугра и боковых желудочков мозга и ме-диальней чечевицеподобного ядра (рис. 4.2.40, 4.2.41). Наиболее задняя часть внутренней кап­сулы содержит волокна слуховой и зрительной лучистости и нисходящие волокна, идущие от затылочной коры к верхним бугоркам четверо­холмия .



10

и

16

17

Рис. 4.2.41. Горизонтальный срез моз­га на уровне расположения зритель­ной лучистости:

/ - шпорная борозда; 2 - зрительная лу­чистость; 3 - внутренняя капсула; 4 - на­ружная капсула; 5 - четвертый желудочек;

6 - пластинка прозрачной перегородки;

7 - передний рог бокового желудочка; 8 -
продольная щель мозга; 9 - колено мозо­
листого тела; 10 - полость прозрачной пе­
регородки; // - головка хвостатого ядра;
12 - ограда; 13 - скорлупа; 14 - бледный
шар; 15 - зрительный бугор; 16 - гиппо-
камп; 17 - заднее колено бокового желу­
дочка

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ

Зрительная лучистость соединяет наружное коленчатое тело с корой затылочной доли го­ловного мозга. При этом ход волокон, исходя­щих от различных отделов наружного коленча­того тела, довольно существенно отличается. Так, волокна, идущие от нейронов латерального отдела наружного коленчатого тела, огибают нижний рог бокового желудочка, расположен­ный в височной доле, а затем, направляясь кза­ди, проходят под задним рогом этого желудоч­ка, достигая нижних отделов зрительной коры, вблизи шпорной борозды (рис. 4.2.40, 4.2.41). Волокна от медиального отдела наружного ко­ленчатого тела идут несколько более прямым путем к первичной зрительной коре (поле 17 по Бродману), расположенной в медиальной части затылочной доли. Волокна этого пути отклоня­ются латерально, пройдя непосредственно кпе­реди от входа в боковой желудочек, а затем поворачивают кзади, идут в каудальном направ­лении, огибая сверху задний рог этого желу­дочка и оканчиваются в коре, расположенной вдоль верхнего края шпорной борозды.

Верхние волокна, покидающие наружное коленчатое тело, направляются прямо к зри­тельной коре. Нижние волокна делают петлю вокруг желудочков мозга (петля Меера) и на­правляются к височной доле. Нижние волокна плотно прилежат к чувствительным и двига­тельным волокнам внутренней капсулы. Даже небольшой инсульт, возникающий в этой об­ласти, приводит к верхним гемианопсическим дефектам поля зрения и гемипарезу (контр­латеральному).

Наиболее передние волокна обнаруживают­ся приблизительно в 5 еж позади вершины височной доли. Отмечено, что лобэктомия, при которой мозговую ткань иссекают в 4 см от вершины височной доли, не приводит к появ­лению дефекта поля зрения. При поврежде­нии более обширной области (глубоко распо­ложенные опухоли, темпоральная декомпрес­сия по поводу травмы или инфекционного заболевания) развиваются гомонимные верхне­квадрантные гемианопсии . Наиболее ти­пичные формы дефекта поля зрения при по­вреждении зрительной лучистости приведены на рис. 4.2.19, 4.2.43.

Как указано выше, зрительная лучистость содержит 3 главные группы волокон. Верх­няя часть содержит волокна, обслуживающие нижние поля зрения, нижняя часть - верхние поля. Центральная часть содержит макулярные волокна.

Ретинотопическая организация волокон на­ружного коленчатого тела распространяется и на зрительную лучистость, но с некоторыми из­менениями в положении волокон (рис. 4.2.42). Дорзальный пучок волокон, представляющий верхний периферический квадрант сетчатки, исходит из медиальной части наружного колен­чатого тела и проходит к дорзальной губе пти-


чьей шпоры. Вентральный пучок волокон пред­ставляет периферию нижнего квадранта сетчат­ки. Проходит он в латеральной части наружно­го коленчатого тела и подходит к вентральной губе птичьей шпоры. Предполагают, что эти проекции периферии сетчатки лежат в зритель­ной лучистости медиальней проекции макуляр-ных волокон . Макулярные волокна рас­пространяют вперед, занимая большую цент­ральную часть зрительной лучистости в виде клина. Затем они направляются кзади и сходят­ся в области верхней и более низко располо­женной губ птичьей шпоры.

В результате разделения периферических и центральных проекций повреждение зритель­ной лучистости может привести к квадрантным выпадениям поля зрения с наличием четкой горизонтальной границы.

Расположенные наиболее периферически на­зальные проекции сетчатки, представляющие собой «монокулярный полумесяц», собираются вблизи верхних и более низких границ дор-зальных и вентральных пучков зрительной лу­чистости .

Нарушения в области зрительной лучисто­сти приводят к ряду специфических наруше­ний полей зрения, часть которых приведена на рис. 4.2.43. Характер выпадения поля зрения во многом определяется уровнем повреждения. Причиной подобных нарушений могут быть раз-

Наружное коленчатое тело




(3(3

оо

Рис. 4.2.43. Схема распространения волокон в зри­тельном тракте, наружном коленчатом теле и зритель­ной лучистости. Нарушение поля зрения при поврежде­нии участков, расположенных после зрительного пере­креста:

/ - сдавление зрительного тракта - гомонимная гемианопсия с нечетким краем; 2 - сдавление проксимальной части зрительно­го тракта, наружного коленчатого тела или нижней части зри­тельной лучистости - гомонимная гемианопсия без сохранения макулярного поля с четким краем; 3 - сдавление передней пет­ли зрительной лучистости - верхняя квадрантная анопсия с не­четкими краями; 4 -сдавление верхней части зрительной лу­чистости - нижняя квадрантная анопсия с нечеткими краями;

5 - сдавление средней части зрительной лучистости - гомоним­
ная гемианопсия с нечеткими краями и выпадением центрально­
го зрения; 6 - сдавление задней части зрительной лучистости -
конгруентная гомонимная гемианопсия с сохранением централь­
ного зрения; 7 - сдавление передней части коры в области шпо­
ры - темпоральное выпадение поля зрения с противоположной
стороны; 8 - сдавление средней части коры в области шпоры -
гомонимная гемианопсия с сохранением центрального зрения со
стороны поражения и сохранением темпорального поля зрения с
противоположной стороны; 9 - сдавление задней части коры за­
тылочной области - конгруентная гомонимная гемианопсичес-

кая скотома

нообразные заболевания мозга. Наиболее часто это нарушение кровообращения (тромбоз, эм­болия при гипертонической болезни, инсульт) и развитие опухоли (глиома) .

В связи с тем, что нарушение структуры и функции зрительной лучистости нередко связа­но с нарушением кровообращения, важно знать

06 особенностях кровоснабжения этой области.
Кровоснабжение зрительной лучистости

осуществляется на 3 уровнях (рис. 4.2.24):

1. Часть зрительной лучистости, проходя­
щей латерально и выше нижего рога бокового
желудочка, кровоснабжается ветвью передней
ворсинчатой (хориоидальной) артерии.

2. Часть зрительной лучистости, располо­
женной позади и латеральней рога желудоч­
ка, кровоснабжается глубокой глазной ветвью
средней мозговой артерии. Последняя прони-


кает в эту область через переднее перфориро­ванное вещество совместно с латеральными полосчатыми артериями.

3. При подходе зрительной лучистости к коре головного мозга кровоснабжение осущест­вляется перфорирующими артериями коры, главным образом, ветвями артерии птичьей шпоры. Артерия птичьей шпоры отходит от задней мозговой артерии, а иногда и от средней мозговой артерии.

Все перфорирующие артерии относятся к так называемым концевым артериям.

Зрительная кора

Как было указано выше, системы нейронов сетчатки и наружного коленчатого тела анали­зируют зрительные стимулы, оценивая их цве­товые характеристики, пространственный конт­раст и среднюю освещенность в различных участках поля зрения. Следующий этап анализа афферентных сигналов выполняется системой нейронов первичной зрительной коры (visul cortex).

Выявление участков коры головного мозга, отвечающих за обработку зрительной инфор­мации, имеет свою довольно длительную пре­дысторию. Еще в 1782 г. студент-медик Fran­cesco German описал белую полосу, проходя­щую через серое вещество затылочной доли. Именно он впервые предположил, что кора мо­жет содержать анатомически отличающиеся об­ласти. До открытия Gennari анатомы предпола­гали, что кора представляет собой однородную пластину ткани. Gennari даже не представлял, что он наткнулся на первичную зрительную кору. Прошло более столетия, пока Henschen доказал, что полоска Gennari соответствует первичной зрительной коре.

Кодирование сигнала в латеральном коленчатом теле и первичной зрительной коре

Ганглиозные клетки сетчатки проецируют свои отростки в латеральное коленчатое тело, где они формируют ретинотопическую карту. У млекопитающих латеральное коленчатое тело состоит из 6 слоев, каждый из которых иннервируется либо одним, либо другим глазом и получает сигнал от различных подтипов ганглиозных клеток, образующих слои крупноклеточных (magnocellular), мелкоклеточных (parvocellular) и кониоклеточных (koniocellular) нейронов. Нейроны латерального коленчатого тела имеют рецептивные поля типа «центр-фон», подобно ганглиозным клеткам сетчатки.

Нейроны латерального коленчатого тела проецируются и формируют ретинотопическую карту в первичной зрительной коре V 1 , также называемой «зоной 17» или полосатой корой (striate cortex). Рецептивные поля кортикальных клеток, вместо уже привычной организации рецептивных полей по типу «центр-фон», состоят из линий, или краев, что является принципиально новым шагом в анализе зрительной информации. Шесть слоев V 1 имеют особенности строения: афферентные волокна из коленчатого тела заканчиваются в основном в слое 4 (и некоторые в слое 6); клетки в слоях 2, 3 и 5 получают сигналы от кортикальных нейронов. Клетки слоев 5 и б проецируют отростки в подкорковые области, а клетки 2 и 3 слоя - в другие корковые зоны. Каждая вертикальная колонка клеток функционирует как модуль, получая исходный зрительный сигнал от определенного места в пространстве и посылая переработанную зрительную информацию во вторичные зрительные зоны. Колоночная организация зрительной коры очевидна, так как локализация рецептивных полей остается одинаковой на протяжении всей глубины коры, и зрительная информация от каждого глаза (правого или левого) всегда обрабатывается строго определенными колонками.

Было описано два класса нейронов в области V 1 , которые различаются по своим физиологическим свойствам. Рецептивные поля простых клеток удлинены и содержат сопряженные "on"- и "off""-зоны. Поэтому наиболее оптимальным стимулом для простой клетки является особым образом ориентированные пучки света или тени. Сложная клетка отвечает на определенным образом ориентированную полоску света; эта полоска может находиться в любой области рецептивного поля. Возникающее в результате распознавания изображения ингибирование простых или сложных клеток несет еще более детализированную информацию о свойствах сигнала, такую как наличие линии определенной длины или определенного угла в пределах данного рецептивного поля.

Рецептивные поля простой клетки образуются в результате конвергенции значительного количества афферентов из коленчатого тела. Примыкающие друг к другу центры нескольких рецептивных полей образуют одну корковую рецептивную зону. Поле сложной клетки зависит от сигналов простой клетки и других кортикальных клеток. Последовательное изменение организации рецептивных полей от сетчатки к латеральному коленчатому телу и затем к простым и сложным кортикальным клеткам говорит об иерархии в обработке информации, посредством чего ряд нейронных конструкций одного уровня интегрируется на следующем, где на основе исходной информации формируется еще более абстрактная концепция. На всех уровнях зрительного анализатора особое внимание уделяется контрастности и определению границ изображения, а не общей освещенности глаза. Таким образом, сложные клетки зрительной коры могут «видеть» линии, являющиеся границами прямоугольника, и их мало волнует абсолютная интенсивность света внутри этого прямоугольника. Серия четких и продолжающих друг друга исследований в области механизмов восприятия зрительной информации, начатая пионерскими работами Куффлера с сетчаткой, была продолжена на уровне зрительной коры Хьюбелем и Визелем. Хьюбель дал яркое описание ранних экспериментов на зрительной коре в лаборатории Стивена Куффлера в Университете Джона Хопкинса (США) в 50-х годах XX века. С тех пор наше понимание физиологии и анатомии коры больших полушарий значительно развилось благодаря экспериментам Хьюбеля и Визеля, а также благодаря большому количеству работ, для которых их исследования были отправной точкой или источником вдохновения. Наша цель - дать краткое, повествовательное описание кодирования сигнала и архитектуры коры в аспекте восприятия, основанное на классических работах Хьюбеля и Визеля, а также на более поздних экспериментах, выполненных ими, их коллегами, а также многими другими. В этой главе мы лишь дадим схематический набросок функциональной архитектуры латерального коленчатого тела и зрительной коры, а также их роли в обеспечении первых шагов анализа зрительных сиен: определение линий и форм на основе поступающего из сетчатки сигнала в форме «центр-фон».

При продвижении от сетчатки к латеральному коленчатому телу, а затем и к коре полушарий возникают вопросы, которые стоят вне пределов техники. В течение длительного время было общепризнанным, что для понимания функционирования любой части нервной системы необходимо знание о свойствах составляющих ее нейронов: каким образом они проводят сигналы и несут информацию, каким образом передают полученную информацию от одной клетки к другой посредством синапсов. Однако мониторинг активности только одной отдельной клетки вряд ли может быть результативным методом для изучения высших функций, где вовлечено большое количество нейронов. Аргумент, который здесь использовался и продолжает использоваться время от времени, следующий: мозг содержит около 10 10 или более клеток. Даже самая простая задача или событие вовлекают сотни тысяч нервных клеток, расположенных в различных частях нервной системы. Каковы же шансы физиолога суметь проникнуть в суть механизма формирования сложного действия в головном мозге, если он может одновременно исследовать только одну или несколько нервных клеток, безнадежно малую долю от общего количества?

При более тщательном изучении логика подобных аргументов относительно основной сложности исследования, связанной с большим количеством клеток и сложными высшими функциями, уже не кажется такой безупречной. Как это часто происходит, появляется упрощающий принцип, открывающий новый и ясный взгляд на проблему. Ситуацию в зрительной коре упрощает то, что основные клеточные типы расположены отдельно друг от друга, в виде хорошо организованных и повторяющихся единиц. Эта повторяющаяся структура нервной ткани тесно переплетена с ретинотопической картой зрительной коры. Таким образом, соседние точки сетчатки проецируются на соседние точки поверхности зрительной коры. Это означает, что зрительная кора организована таким образом, чтобы для каждого мельчайшего сегмента зрительного поля находился набор нейронов для анализа информации и ее передачи. Кроме того, при помощи методов, которые позволяют выделить функционально связанные клеточные ансамбли, были выделены паттерны корковой организации более высокого уровня. В самом деле, архитектура коры определяет структурную основу корковой функции, поэтому новые анатомические подходы вдохновляют на новые аналитические исследования. Таким образом, прежде чем мы опишем функциональные связи зрительных нейронов, полезно вкратце резюмировать общую структуру центральных зрительных путей, начинающихся от ядер латерального коленчатого тела.

Латеральное коленчатое тело

Волокна зрительного нерва начинаются от каждого глаза и заканчиваются на клетках правого и левого латерального коленчатого тела (ЛКТ) (рис. 1), имеющего четко различимую слоистую структуру («коленчатый» - geniculate - означает «изогнутый подобно колену»). В ЛКТ кошки можно увидеть три явных, хорошо различимых слоя клеток (А, А 1 , С), один из которых (А 1) имеет сложное строение и подразделяется далее. У обезьян и других приматов, включая

человека, ЛКТ имеет шесть слоев клеток. Клетки в более глубоких слоях 1 и 2 больше по размерам, чем в слоях 3, 4, 5 и 6, из-за чего эти слои и называют соответственно крупноклеточными (M, magnocellular) и мелкоклеточными (Р, parvocellular). Классификация коррелирует также с большими (М) и маленькими (Р) ганглиозными клетками сетчатки, которые посылают свои отростки в ЛКТ. Между каждым M и Р слоями лежит зона очень маленьких клеток: интраламинарный, или кониоклеточный (К, koniocellular) слой. Клетки К слоя отличаются от M и Р клеток по своим функциональным и нейрохимическим свойствам, образуя третий канал информации в зрительную кору.

Как у кошки, так и у обезьяны каждый слой ЛКТ получает сигналы либо от одного, либо от другого глаза. У обезьян слои 6, 4 и 1 получают информацию от контралатерального глаза, а слои 5, 3 и 2 - от ипсилатерального. Разделение хода нервных окончаний от каждого глаза в различные слои было показано при помощи электрофизиологических и целого ряда анатомических методов. Особенно удивительным является тип ветвления отдельного волокна зрительного нерва при инъекции в него фермента пероксидазы хрена (рис. 2).

Образование терминалей ограничено слоями ЛКТ для этого глаза, без выхода за границы этих слоев. Из-за систематического и определенным образом проводимого разделения волокон зрительного нерва в районе хиазмы, все рецептивные поля клеток ЛКТ расположены в зрительном поле противоположной стороны.

Рис. 2. Окончания волокон зрительного нерва в ЛКТ кошки. В один из аксонов от зоны с "on" центром контралатерального глаза была введена пероксидаза хрена. Веточки аксона заканчиваются на клетках слоев А и С, но не А 1 .

Рис. 3. Рецептивные поля клеток ШТ. Концентрические рецептивные поля клеток ЛКТ напоминают поля ганглиозных клеток в сетчатке, разделяясь на поля с "on"- и "off""-центром. Показаны ответы клетки с "on"-центром ЛКТ кошки. Полоской над сигналом показана продолжительность освещения. Центральные и периферические зоны нивелируют эффекты друг друга, поэтому диффузное освещение всего рецептивного поля дает только слабые ответы (нижняя запись), еще менее выраженные, чем в ганглиозных клетках сетчатки.

Карты зрительных полей в латеральном коленчатом теле

Важной топографической особенностью является высокая упорядоченность в организации рецептивных полей в пределах каждого слоя ЛКТ. Соседние регионы сетчатки образуют связи с соседними клетками ЛКТ, так что рецептивные поля близрасположенных нейронов ЛКТ перекрываются на большой площади. Клетки центральной зоны сетчатки кошки (регион, где сетчатка кошки имеет маленькие по размеру рецептивные поля с малыми центрами), а также зрительной ямки обезьяны образуют связи с относительно большим количеством клеток в пределах каждого слоя ЛКТ. Подобное же распределение связей было обнаружено и у человека при помощи ЯМР. Число клеток, связанных с периферическими регионами сетчатки, относительно мало. Такая избыточная представленность зрительной ямки отражает высокую плотность фоторецепторов в той зоне, которая необходима для зрения с максимальной остротой. Хотя, наверное, число волокон зрительного нерва и число клеток ЛКТ примерно равны, тем не менее каждый нейрон ЛКТ получает конвергирующие сигналы от нескольких волокон зрительного нерва. Каждое волокно зрительного нерва в свою очередь образует дивергирующие синаптические связи с несколькими нейронами ЛКТ.

Однако каждый слой не только топографически упорядочен, но также и клетки разных слоев находятся в ретинотопическом отношении друг к другу. То есть, если продвигать электрод строго перпендикулярно к поверхности ЛКТ, то сначала будут регистрироваться активность клеток, получающих информацию от соответствующих зон одного, а затем и другого глаза, по мере того, как микроэлектрод пересекает один слой ЛКТ за другим. Расположение рецептивных полей находится в строго соответствующих позициях на обеих сетчатках, т. е. они представляют одну и ту же область зрительного поля. В клетках ЛКТ не происходит значительного смешивания информации от правого и левого глаза и взаимодействия между ними, лишь небольшое количество нейронов (которые имеют рецептивные поля в обоих глазах) возбуждаются исключительно бинокулярно.

Удивительно то, что ответы клеток ЛКТ не имеют разительных отличий от сигналов ганглиозных клеток (рис. 3). Нейроны ЛКТ также имеют концентрически организованные антагонизирующие рецептивные поля, либо с "off"-, либо с "on"-центром, но механизм контраста отрегулирован тоньше, за счет большего соответствия между

тормозными и возбуждающими зонами. Таким образом, подобно ганглиозным клеткам сетчатки, для нейронов ЛКТ оптимальным стимулом является контраст, однако они реагируют еще слабее на общее освещение. Изучение рецептивных полей нейронов ЛКТ еще не завершено. Например, в ЛКТ найдены нейроны, вклад которых в работу ЛКТ не был установлен, а также пути, идущие от коры вниз к ЛКТ. Корковая обратная связь необходима для синхронизированной активности нейронов ЛКТ.

Функциональные слои ЛКТ

Почему в ЛКТ на каждый глаз приходится больше одного слоя? Сейчас обнаружено, что нейроны в разных слоях имеют различные функциональные свойства. Например, клетки, находящиеся в четвертых дорзальных мелкоклеточных слоях ЛКТ обезьяны, подобно Ρ ганглиозным клеткам, способны отвечать на свет разных цветов, показывая хорошую цветовую дискриминацию. И наоборот, слои 1 и 2 (крупноклеточные слои) содержат М-подобные клетки, которые дают быстрые («живые») ответы и нечувствительны к цвету, в то время как К слои получают сигналы от "blue-on" ганглиозных клеток сетчатки и могут играть особую роль в цветном зрении. У кошек X и Y волокна (см. раздел «Классификация ганглиозных клеток» заканчиваются в различных подслоях А, С и А 1 , поэтому специфическая инактивация слоя А, но не С, резко снижает точность глазодвижений. Клетки с "on"- и "off"-центром также подразделяются на различные слои в ЛКТ норки и хорька, и, в некоторой степени, у обезьян. Резюмируя вышесказанное, можно сказать, что ЛКТ является перевалочной станцией, в которой аксоны ганглиозных клеток сортируются таким образом, что соседние клетки получают сигналы от одинаковых регионов зрительных полей, и нейроны, перерабатывающие информацию, организованы в виде кластеров. Таким образом, в ЛКТ очевидной является анатомическая база для параллельной переработки (parallel processing) зрительной информации.

Цитоархитектоника зрительной коры

Зрительная информация поступает в кору и ЛКТ через оптическую радиацию. У обезьян оптическая радиация заканчивается на складчатой пластинке, толщиной около 2 мм (рис. 4). Этот регион мозга - известный как первичная зрительная кора, зрительная зона 1 или V 1 - также называется полосатой корой, или «зоной 17». Более старая терминология базировалась на анатомических критериях, разработанных еще в начале XX века. V 1 лежит сзади, в области затылочной доли, и может быть распознана при поперечном разрезе по своему особому внешнему виду. Пучки волокон в этой области формируют полоску, ясно видную невооруженным глазом (поэтому зона и называется «полосатой», рис. 4В). Соседние зоны вне зоны полосатости также связаны со зрением. Зона, непосредственно окружающая зону V, называется зоной V 2 (или «зона 18») и получает сигналы из зоны V, (см. рис. 4С). Четкие границы так называемой экстрастриарноq зрительной коры (V 2 -V 5) нельзя установить при помощи визуального исследования мозга, хотя для этого разработан ряд критериев. Например, в V 2 полосатая исчерченность исчезает, большие клетки расположены поверхностно, и грубые, косо расположенные миелиновые волокна видны в более глубоких слоях..

Каждая зона имеет собственное представление зрительного поля сетчатки, спроецированное строго определенным, ретинотопическим образом. Карты проекций были составлены еще в эпоху, когда не было возможно проводить анализ активности отдельных клеток. Поэтому для картирования использовалось освещение пучками света небольших участков сетчатки и регистрация активности коры при помощи большого электрода. Эти карты, а также их современные аналоги, составленные недавно при помощи методов визуализации головного мозга, таких как позитронно-эмиссионная томография и функциональный ядерно-магнитный резонанс, показали, что площадь коры, отведенная на представление центральной ямки, гораздо больше по размерам, чем площадь, отведенная на всю остальную сетчатку. Эти находки, в принципе, соответствовали ожиданиям, поскольку распознавание образов корой осуществляется в основном за счет переработки информации от плотно расположенных в зоне ямки фоторецепторов. Такое представление аналогично расширенному представлению руки и лица в области первичной соматосенсорной коры. Ямка сетчатки проецируется в затылочный полюс коры больших полушарий. Карта периферии сетчатки распространяется в переднем направлении вдоль медиальной поверхности затылочной доли (рис. 5). Из-за перевернутой картины, образуемой на сетчатке при помощи хрусталика, верхнее зрительное поле проецируется на нижнюю область сетчатки и передается в область V 1 , расположенную ниже шпорной борозды; нижнее зрительное поле проецируется над шпорной бороздой.

На срезах коры нейроны могут быть классифицированы по их форме. Две основные группы нейронов образуют звездчатые и пирамидные клетки. Примеры этих клеток показаны на рис. 6В. Основные различия между ними заключаются в длине аксонов и в форме тел клеток. Аксоны пирамидных клеток длиннее, спускаются в белое вещество, покидая кору; отростки же звездчатых клеток заканчиваются в ближайших зонах. Эти две группы клеток могут иметь и другие различия, такие как наличие или отсутствие шипиков на дендритах, которые обеспечивают их функциональные свойства. Есть и другие, причудливо названные нейроны (двухбукетные клетки, клетки-люстры, корзинчатые клетки, клетки-полумесяцы), а также клетки нейроглии. Их характерной особенностью является то, что отростки этих клеток направляются в основном в радиальном направлении: вверх и вниз через толщу коры (под соответствующим утлом к поверхности). И наоборот, многие (но не все) их латеральные отростки короткие. Соединения между первичной зрительной корой и корой высшего порядка осуществляется при помощи аксонов, которые проходят в виде пучков через белое вещество, находящееся под клеточными слоями

Рис. 7. Связи зрительной коры. (А) Слои клеток с различными входящими и исходящими отростками. Отметим, что исходные отростки из ЛКТ в основном прерываются в 4 слое. Отростки из ЛКТ, идущие от крупноклеточных слоев, преимущественно прерываются в 4С и 4В слоях, в то время как отростки от мелкоклеточных прерываются в 4А и 4С. Простые клетки расположены в основном в слоях 4 и 6, комплексные клетки - в слоях 2, 3, 5 и 6. Клетки слоев 2, 3 и 4В посылают аксоны в другие корковые зоны; клетки в слоях 5 и 6 посылают аксоны к верхнему холмику и ЛКТ. (В) Типичная ветвистость аксонов ЛКТ и кортикальных нейронов кошки. Кроме подобных вертикальных связей, многие клетки имеют длинные горизонтальные связи, идущие в пределах одного слоя к удаленным регионам коры.

Входящие, исходящие пути и послойная организация коры

Основной особенностью коры млекопитающих является то, что клетки здесь расположены в виде 6 слоев в пределах серого вещества (рис. 6А). Слои сильно различаются по внешнему виду, в зависимости от плотности расположения клеток, а также толщины каждой из зон коры. Входящие пути показаны на рис. 7A с левой стороны. Исходя из ЛКТ, волокна в основном заканчиваются в слое 4 с небольшим количеством связей, образуемых также в слое 6. Поверхностные слои получают сигналы из области подушки таламуса (pulvinar zone) или других зон таламуса. Большое количество клеток коры, особенно в области слоя 2, а также в верхних частях слоев 3 и 5 получают сигналы от нейронов, также расположенных в пределах коры. Основная масса волокон, идущих от ЛКТ в слой 4, затем разделяется между различными подслоями.

Исходящие из слоев 6, 5, 4, 3 и 2 волокна показаны справа на рис.7А. Клетки, посылаюшие эфферентные сигналы из коры, могут также управлять внутри корковыми соединениями между разными слоями. Например, аксоны клетки из слоя 6, кроме ЛКТ, могут также направляться в один из других кортикальных слоев, в зависимости от типа ответа этой клетки 34) . На основании подобного строения зрительных путей можно представить следующий путь зрительного сигнала: информация с сетчатки передается на клетки коры (в основном, в слой 4) аксонами клеток ЛКТ; информация передается из слоя в слой, от нейрона к нейрону по всей толщине коры; переработанная информация пересылается в другие зоны коры при помощи волокон, направляющихся вглубь белого вещества и возвращающихся обратно в область коры. Таким образом, радиальная или вертикальная организация коры дает нам основания полагать, что колонки нейронов работают как отдельные вычислительные единицы, обрабатывая различные детали зрительных сцен и пересылая полученную информацию далее в другие регионы коры.

Разделение входящих волокон от ЛКТ в слое 4

Афферентные волокна ЛКТ заканчиваются в слое 4 первичной зрительной коры, который имеет сложную организацию и может быть исследован как физиологически, так и анатомически. Первой особенностью, которую мы хотим продемонстрировать, является разделение входящих волокон, идущих от разных глаз. У взрослых кошек и обезьян клетки в пределах одного слоя ЛКТ, получая сигналы от одного глаза, посылают отростки к строго определенным скоплениям клеток коры в слое 4С, отвечающим именно за этот глаз. Скопления клеток сгруппированы в виде чередующихся полосок или пучков кортикальных клеток, получающих информацию исключительно от правого или левого глаза. В более поверхностно и глубже расположенных слоях нейроны управляются обоими глазами, хотя обычно с преобладанием одного из них. Хьюбель и Визель провели оригинальную демонстрацию разделения информации от разных глаз и преобладания одного из них в первичной зрительной коре при помощи электрофизиологических методов. Они использовали термин «глазодоминантные колонки» (ocular dominance columns) при описании своих наблюдений, придерживаясь концепции кортикальных колонок, разработанной Маунткаслом для соматосенсорной коры. Серия экспериментальных методик была разработана для демонстрации чередующихся групп клеток в слое 4, получающих информацию от правого или левого глаза. Вначале было предложено нанести небольшое повреждение в пределах только одного слоя ЛКТ (напомним, что каждый слой получает информацию только от одного глаза). Если это сделать, то дегенерирующие терминали появляются в слое 4, образуя определенный паттерн чередующихся пятен, которые соответствуют зонам, управляемым глазом, посылающим информацию в поврежденную область ЛКТ. Позднее потрясающая демонстрация существования особого паттерна глазного доминирования была выполнена, используя транспорт радиоактивных аминокислот из одного глаза. Эксперимент состоит в том, что в глаз вводится аминокислота (пролин или лецитин), содержащая атомы радиоактивного трития. Инъекция проводится в стекловидное тело глаза, из которого аминокислота захватывается телами нервных клеток сетчатки и включается в состав белка. Со временем помеченный таким образом белок транспортируется в ганглиозные клетки и по волокнам зрительного нерва в их терминали в пределах ЛКТ. Замечательной особенностью является то, что эта радиоактивная метка также передается от нейрона к нейрону через химические синапсы. В конечном итоге метка попадает в окончания волокон ЛКТ в пределах зрительной коры.

На рис. 8 показано расположение в пределах слоя 4 радиоактивных терминалей, образованных аксонами клеток ЛКТ, связанных с глазом, в который вводилась метка

Рис. 8. Глазодоминантные колонки в коре обезьяны, полученные при помощи введения радиоактивного про лина в один глаз. Ауторадиограммы, снятые при темнопольном освещении, где белым показаны зерна серебра. (А) Сверху рисунка срез проходит через слой 4 зрительной коры под углом к поверхности, образуя перпендикулярный срез колонок. В центре слой 4 был срезан горизонтально, показывая, что колонка состоит из удлиненных пластинок. (В) Реконструкция из множества горизонтальных срезов слоя 4С у другой обезьяны, у которой инъекция проводилась в илсилатеральный глаз. (Любой горизонтальный разрез может выявить

лишь часть слоя 4, что обусловлено кривизной коры.) Как в А, так и в В колонки зрительного доминирования выглядят как полоски равной ширины, получающие информацию либо от одного, либо другого глаза.


располагают непосредственно над зрительной корой, поэтому такие участки выглядят как белые пятна на темном фоне фотографии). Пятна от меток перемежаются с зонами без меток, которые получают информацию от контралатерального глаза, куда не вводилась метка. Расстояние от центра до центра между пятнами, которые соответствуют глазодоминантным колонкам, составляет приблизительно 1 мм.

На клеточном уровне сходная структура была выявлена в слое 4 при помощи введения пероксидазы хрена в отдельные направляющиеся в кору аксоны нейронов ЛКТ. Аксон, показанный на рис. 9, идет от нейрона ЛКТ с "off"-центром, отвечающим короткими сигналами на тени и движущиеся пятна. Аксон заканчивается в двух различных группах отростков в слое 4. Группы меченых отростков отделены пустой немеченной зоной, соответствующей по своим размерам территории, отвечающей за другой глаз. Подобного рода морфологические исследования расширяют границы и позволяют более глубоко понять оригинальное описание колонок глазного доминирования, составленное Хьюбелем и Визелем в 1962 году.

Литература

2.о Ferster, D., Chung, S., and Wheat, H. 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380: 249-252.

3. о Hubel, D. H., and Wiesel, T. N. 1959. Receptive fields of single neurones in the cat"s striate cortex. /. Physiol. 148: 574-591.

4. о Hubel, D.H., and Wiesel, T.N. 1961. Integrative action in the cat"s lateral geniculate body. /. Physiol. 155: 385-398.

5. о Hubel, D. H., and Wiesel, T. N. 1962. Receptive fields, binocular interaction and functional architecture in the cat"s visual cortex. /. Physiol. 160: 106-154.