Методы построения графиков функций. Примеры на построение. Сбор и использование персональной информации

ВНЕАУДИТОРНАЯ ПРАКТИЧЕСКАЯ РАБОТА 2

Преобразование графиков функций.

Цель

Постройте графики функций, используя различные преобразования, ответьте на вопрос задачи.

Выполнение работы

Методические указания

Работа рассчитана на 10 вариантов, номер варианта совпадает с последней цифрой порядкового номере в списке. Например, 1, 11, 21, 31 …выполняют 1 вариант, 2,12, 22 … - 2 вариант, и т.д.

Работа состоит из двух частей: первая часть задания 1 – 5, это задания которые обязательно нужно выполнить, чтобы получить зачет, если эти задания выполнены с ошибкой, необходимо их исправить и снова сдать работу на проверку. Вторая часть, содержит задания, выполнив которые, вы можете заработать дополнительную оценку: основная часть +2 задания – «4», основная часть +3 задания – «5».

Задание 1. Графиком линейной функции является прямая, для ее построения достаточно двух точек. (значения аргумента х берем произвольно, а значение функции у, считаем подставляя в формулу).

Чтобы проверить проходит ли график функции через указанную точку нужно координаты точки подставить вместо х и у, если получили верное равенство, то прямая проходит через указанную точку, в противном случае – не проходит.

Задание 2, 3, 4. Графики указанных функций получаются из графиков функций , используя сдвиг вдоль оси х или у.

, сначала строим график функции или , затем сдвигаем его на «а» единиц вправо или влево (+а – влево, - а вправо), затем сдвигаем на «в» единиц вверх или вниз (+в – вверх, -в – вниз)

Аналогично с другими функциями:

Задание 5 Чтобы построить график функции: , нужно: 1) построить график функции , 2) часть графика которая находится выше оси х оставить без изменения, 3) часть графика, которая находится ниже оси х зеркально отобразить.

Задачи для самостоятельного решения.

Обязательная часть

Задание 1. Постройте график линейной функции, определите, проходит ли график функции через указанную точку:


Задание 2. Постройте график квадратичной функции, укажите множество значений данной функции.


Задание 3. Постройте график функции, определите, возрастает или убывает указанная функция.


Задание 4. Постройте график функции, ответьте на вопрос задачи.


Задание 5. Постройте график функции, содержащей знак модуля.


Задачи на дополнительную оценку.

Задание 6. Постройте график функции, заданной кусочно, определите, есть ли точка разрыва у данной функции:



Задание 7. Определите, сколько решений имеет система уравнений, отвеет обоснуйте. Сделайте выводы, ответив на вопросы.

    Графики каких функций вы строили в данной работе?

    Как называется график линейной функции?

    Как называется график квадратичной функции?

    Какие преобразования графиков вы знаете?

    Как в системе координат располагается график четной функции? График нечетной функции?

Графики любых функций строят по точкам. Но если вид графика заранее неизвестен, эти точки надо выбирать со смыслом - выделять особо важные точки графика, которые определяют его вид.

Обрати внимание!

К особо важным точкам графика функции y = f (x) относят:

- стационарные и критические точки;

Точки экстремума ;

Точки пересечения графика с осью \(x\) (нули функции) и с осью \(y\);

Точки разрыва функции.

Если речь идет о построении графика незнакомой функции, когда заранее невозможно представить вид графика, полезно применять определенную схему исследования свойств функции, которая помогает составить представление о ее графике. Когда такое представление сложится, можно приступать к построению графика по точкам.

В курсе математического анализа разработана универсальная схема исследования свойств функции и построения графика функции, позволяющая строить весьма сложные графики. Для наших нужд будут достаточны упрощенные варианты указанной схемы.

1) Если функция y = f (x) непрерывна на всей числовой прямой, то достаточно найти стационарные и критические точки, точки экстремума, промежутки монотонности, точки пересечения графика с осями координат и при необходимости выбрать еще несколько контрольных точек.

2) Если функция y = f (x) определена не на всей числовой прямой, то начинать следует с нахождения области определения функции (если область не задана) и с указания ее точек разрыва.

3) Полезно исследовать функцию на чётность, поскольку графики четной или нечетной функций обладают симметрией (соответственно относительно оси \(y\) или относительно начала координат), и, следовательно, можно сначала построить только ветвь графика при \(x>0\), а затем дорисовать симметричную ветвь.

4) Если lim x → ∞ f (x) = b , то, как известно, прямая \(y=b\) является горизонтальной асимптотой графика функции y = f (x) . Асимптоту следует строить на координатной плоскости, она дает своеобразный ориентир для графика.

5) При условии: если x → a , то y → ∞ - прямая \(x=a\) является вертикальной асимптотой графика функции y = f (x) .

Пример:

Построить график функции y = x 2 + 1 x 2 − 1 .

Решение 1. Введем обозначение: f (x) = x 2 + 1 x 2 − 1 . Найдем область определения функции. Она задается условиями x ≠ 1, x ≠ − 1 . Итак, D (f) = (− ∞ ; − 1) ∪ (− 1 ; 1) ∪ (1 ; + ∞) .

2. Исследуем функцию на чётность:

f (− x) = − x 2 + 1 − x 2 − 1 = x 2 + 1 x 2 − 1 = f (x)

Значит, заданная функция чётна, ее график симметричен относительно оси ординат, а потому можно для начала ограничиться построением ветвей графика при x ≥ 0 .

3. Найдём асимптоты. Вертикальной асимптотой является прямая \(x=1\), поскольку при этом значении \(x\) знаменатель дроби обращается в нуль, а числитель отличен от нуля. Для отыскания горизонтальной асимптоты надо вычислить lim x → ∞ f (x) :

lim x → ∞ x 2 + 1 x 2 − 1 = lim x → ∞ x 2 x 2 + 1 x 2 x 2 x 2 − 1 x 2 = lim x → ∞ 1 + 1 x 2 1 − 1 x 2 = 1

Значит, \(y=1\) - горизонтальная асимптота графика функции.

4. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

y ′ = x 2 + 1 x 2 − 1 ′ = (x 2 + 1) ′ ⋅ (x 2 − 1) − (x 2 + 1) ⋅ (x 2 − 1) ′ x 2 − 1 2 = 2 x ⋅ (x 2 − 1) − (x 2 + 1) ⋅ 2 x x 2 − 1 2 = − 4 x x 2 − 1 2 .

Производная существует всюду в области определения функции, значит, критических точек у функции нет.

Стационарные точки найдем из соотношения y ′ = 0 . Получаем: \(-4x=0\), откуда находим, что \(x=0\). При \(x<0\) имеем: y ′ > 0 ; при \(x>0\) имеем: y ′ < 0 . Значит, \(x=0\) - точка максимума функции, причем y max = f (0) = 0 2 + 1 0 2 − 1 = − 1 .

При \(x>0\) имеем: y ′ < 0 ; но следует учесть наличие точки разрыва \(x=1\). Значит, вывод о промежутках монотонности будет выглядеть так: на промежутке 0 ; 1) функция убывает, на промежутке (1 ; + ∞) функция также убывает.

5. Составим таблицу значений функции f (x) = x 2 + 1 x 2 − 1 при x ≥ 0:

6. Отметив найденные точки на координатной плоскости, учтя при этом, что\((0;-1)\) - точка максимума, что \(y=1\) -горизонтальная асимптота, что \(x=1\) -вертикальная асимптота, построим ветви искомого графика при x ≥ 0 . Добавив ветви, симметричные построенным относительно оси ординат, получим весь график.

Урок на тему: "Построение графиков функций. Алгоритм построения и примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Ребята, мы с вами построили много графиков функций, например, параболы, гиперболы, графики тригонометрических функций и другие. Давайте вспомним, как мы это делали. Мы выбирали точки на оси абсцисс, высчитывали значения ординат нашей функций и плавно соединяли наши ординаты на координатной плоскости. То есть, мы строили график по точкам. При построении многих графиков, точки нужно выбирать обдуманно. Теперь давайте обобщим наши знания и напишем общие правила построения графиков функций.

Что же такое график функции?

– это множество точек, абсциссы которых являются значениями из области определения, а ординаты - значениями функции y= f(x). График любой функций строят по точкам. Но если мы точно не знаем, какой будет вид у графика, то точки надо выбирать обдуманно. Ребята, какие важные точки есть у функций?

Давайте, вспомним их:

А) Стационарные и критические точки . Такие точки мы научились находить при вычислении экстремумов функций. Это точки, в которой производная либо равна нулю, либо не существует.
б) Точки экстремума . Точки максимума и минимума функций. Точки, возле которых определяется характер монотонности.
в) Точки пересечения графика с осью абсцисс и осью ординат . Значения, в которых функция y= f(x)= 0 – точки пересечения с осью абсцисс. А если вычислить f(0) – то эта точка пересечения с осью ординат.
г) Точки разрыва функций . Эти точки ищутся для не непрерывных функций.

Правило построения графиков функций

Ребята, давайте запишем основные правила построения графиков функций:


Несколько правил, упрощающих построение графиков функций:

А) График функции y= f(x) + a получается из графика функции y= f(x) (график y= f(x) заранее известен), путем параллельного переноса графика y= f(x) на а единиц вверх, если а > 0; и на а единиц вниз, если а

Для примера построим три графика: а) y= x 2 , б) y= x 2 + 2, в) y= x 2 - 3.

Графики наших функций получается из графика функции y=x 2 , путем его параллельного переноса: б) на две единицы вверх, в) на три единицы вниз.

Графики наших функций:


б) График функции y= f(x + a) получается из графика функции y= f(x) (график y= f(x) заранее известен). Используем параллельный перенос графика y= f(x) на а единиц влево, если а > 0, и на а единиц вправо, если а

Для примера построим три графика: а) y= (x - 2) 2 , б) y= (x + 1) 2 .

Графики наших функций получается из графика функции y= x 2 , путем его параллельного переноса: б) на две единицы вправо, в) на одну единицу влево.

Графики наших функций:


в) Для построения графика функции y= f(-x), следует построить график функции y= f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y= f(-x).

Для примера построим два графика: a) y= x 3 , б) y= (-x) 3 .

Графики нашей функций получается из графика функции y=x 3 , путем отражения относительно оси ординат.


г) Для построения графика функции y= -f(x) следует построить график функции y=f(x) и отразить его относительно оси абсцисс.

Для примера построим два графика: a) y= cos(x), б) y=-cos(x). Графики нашей функций получается из графика функции y= cos(x), путем отражения относительно оси абсцисс.


Ребята, теперь давайте построим графики функций, вид которых заранее не известен. Будем использовать правила, которые мы определили в начале.

Примеры на построение

I. Построить график функции: y= 2x 2 + 4x - 5.

Решение:
1) Область определения: D(y)= (-∞; +∞).
2) Найдем стационарные точки:
y"= 4x + 4,
4x + 4 = 0,
x= -1.
3) Определим вид стационарной точки и характер монотонности:

Исследование функции дает возможность найти область определения и область изменения функции, области ее убывания или возрастания, асимптоты, интервал знакопостоянства и др. Однако при рассмотрении графиков многих функций часто можно избежать проведения подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика. Изложению именно таких методов посвящается эта глава, которая может служить практическим руководством при построении многих функций.

Параллельный перенос

Перенос вдоль оси ординат

f (x) => f (x) - b

Пусть требуется построить график функции у = f (х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на ЅbЅ единиц меньше соответствующих ординат графика функций у = f (х) при b>0 и на ЅbЅ единиц больше - при b<0. Следовательно, график функции у = y (х) - b можно получить параллельным переносом вдоль оси ординат графика функции у = f (х) на ЅbЅединиц вниз при b>0 или вверх при b<0. Перемещение графика связано с его перерисовыванием, что бывает затруднительно, особенно в случае сложных графиков. Перенос же графика на ЅbЅединиц вниз или вверх вдоль оси ординат эквивалентен соответствующему противоположному переносу оси абсцисс настолько же единиц. Именно этим способом мы будем пользоваться. Тогда представив исходную функцию в виде у + b = f (х), сформулируем следующее правило.

Для построения графика функции y + b = f (x) следует построить график функции y = f (x) и перенести ось абсцисс на ЅbЅ единиц вверх при b>0 или наЅbЅ единиц вниз при b<0. Полученный в новой системе координат график является графиком функции y = f (x) - b.

Перенос вдоль оси абсцисс

f (x) => f (x + a)

Пусть требуется построить график функции у = f (x + a). Рассмотрим функцию y = f (x), которая в некоторой точке x = x1 принимает значение у1 = f (x1). Очевидно, функция у = f (x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f (x + a) может быть получен параллельным перемещением графика функции y = f (x) вдоль оси абсцисс влево наЅaЅ единиц при a>0 или вправо на ЅaЅ единиц при a<0. Параллельное же перемещение вдоль оси абсцисс на ЅaЅ единиц эквивалентно переносу оси ординат на столько же единиц, но в противоположную сторону. Таким образом, получаем следующее правило.

Для построения графика функции y = f (x + a) следует построить график функции y = f (x) и перенести ось ординат на ЅaЅ единиц вправо при a>0 или наЅaЅ единиц влево при a<0. Полученный в новой системе координат график является графиком функции y = f (x + a).

Отражение

Построение графика функции вида y = f (-x)

f (x) => f (-x)

Очевидно, что функции y = f (-x) и y = f (x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f (-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f (x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.

Для построения графика функции y = f (-x) следует построить график функции y = f (x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f (-x)

Построение графика функции вида y = - f (x)

f (x) => - f (x)

Ординаты графика функции y = - f (x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f (x) при тех же значениях аргумента. Таким образом, получаем следующее правило.

Для построения графика функции y = - f (x) следует построить график функции y = f (x) и отразить его относительно оси абсцисс.

Построение графиков четной и нечетной функций.

Как уже отмечалось, для четной функции y = f (x) во всей области изменения ее аргумента справедливо соотношение f (x) = f (-x). Следовательно, функция такого рода принимает одинаковое значение при всех значениях аргумента, равных по абсолютной величин, но противоположных по знаку. График четной функции симметричен относительно оси ординат.

Для построения графика четной функции y = f (x) следует построить ветвь графика этой функции только в области положительных значений аргумента (хі0). График функции y = f (x) в области отрицательных значений аргумента симметричен построенной ветви относительно оси ординат и получается отражением ее относительно этой оси.

Для нечетной функции y = f (x) в области всех значений аргумента справедливо равенство f (-x) = - f (x). Таким образом, в области отрицательных значений аргумента ординаты графика нечетной функции равны по величин, но противоположны по знаку ординатам графика той же функции при соответствующих положительных значениях х. График нечетной функции симметричен относительно начала координат.

Для построения графика нечетной функции y = f (x) следует построить ветвь графика этой функции только в области положительных значений аргумента (хі0). График функции y = f (x) в области отрицательных значений аргумента симметричен построенной ветви относительно начала координат и может быть получен отражением этой ветви относительно оси ординат с последующим отражением в области отрицательных значений относительно оси абсцисс.

Построение графика обратной функции

Как уже отмечалось, прямая и обратная функции выражают одну и ту же зависимость между переменными х и у, с тем только отличием, что в обратной функции переменные поменялись ролями, что равносильно изменению обозначений осей координат. Поэтому графиком обратной функции симметричен графику прямой функции относительно биссектрисы I и III координатных углов, т.е. относительно прямой y = x. Таким образом, получаем следующее правило.

Для построения графика функции y = j (x), обратной по отношению к функции y = f (x), следует построить график y = f (x) и отразить его относительно прямой y =x

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.