Модуль сложения двух векторов. Проекции вектора на оси координат. Скалярное произведение векторов

Они используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

2. Мультипликативные модели

Y=
.

Этот тип моделей применяется тогда, когда результативный показатель представляет собой произведение нескольких факторов.

3. Кратные модели

Y=.

Они применяются тогда, когда результативный показатель получают делением одного факторного показатели на величину другого.

4. Смешанные (комбинированные) модели - это сочетание в различных комбинациях предыдущих моделей:

Y=; Y=; Y=(a+b)c .

Преобразование факторных систем

1. Преобразование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители .

Например, при исследовании процесса формирования объема производства продукции (см.рис.6.1) можно применять такие детерминированные модели, как

ВП=КРГВ; ВП=КРДДВ, ВП=КРДПСВ.

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

2. Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его составные элементы-слагаемые .

Пример. Как известно, объем реализации продукции

VРП = VВП – VИ,

где VВП - объем производства;

VИ – объем внутрихозяйственного использования продукции.

В сельскохозяйственном предприятии зернопродукция использовалась в качестве семян (С) и кормов (К) Тогда приведенную исходную модель можно записать следующим образом: VП = VВП - (С + К).

3. К классу кратных моделей применяют следующие способы их преобразования:

    удлинения;

    формального разложения;

    расширения;

    сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей .

Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3) и объема выпуска продукции (VВП). Исходная модель этой факторной системы будет иметь вид

С=.

Если общую сумму затрат (3) заменить отдельными их элементами, такими, как оплата труда (ОТ), сырье и материалы (СМ), амортизация основных средств (А), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов

С=+++=X+ X+ X+ X,

где X– трудоемкость продукции; X– материалоемкость продукции; X– фондоемкость продукции; X– уровень накладных затрат

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей .

Если b=l+m+n+р , то

Y=
.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р):

Р=,

где /7 - сумма прибыли от реализации продукции;

3 - сумма затрат на производство и реализацию продукции.

Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид:

Р=
.

Себестоимость одного тонно-километра (С
) зависит от суммы затрат на содержание и эксплуатацию автомобиля (3) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид

С
=.

Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов:

С
=
.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель

ввести новый показатель с, то модель примет вид

.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (Д), то получим следующую модель годовой выработки:

ГВ=
,

где ДВ – среднедневная выработка; Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (Т) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П):

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель :

.

В данном случае получается конечная модель того же типа, что и исходная, однако с другим набором факторов.

Другой пример. Экономическая рентабельность активов предприятия (ROA) рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (A): ROA=П/A.

Если числитель и знаменатель разделим на объем продажи продукции (S), то получим кратную модель, но с новым набором факторов: рентабельности реализованной продукции и капиталоемкости продукции:

Результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также от профессиональных знаний и навыков исследователя. Процесс моделирования факторных систем - очень сложный и ответственный момент в экономическом анализе. От того, насколько реально и точно созданные модели отражают связь между исследуемыми показателями, зависят конечные результаты анализа .

При построении экономических моделей выявляются существенные факторы и отбрасываются детали несущественные для решения поставленной задачи.

К экономическим моделям могут относится модели:

  • экономического роста
  • потребительского выбора
  • равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса.

Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса.

Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель

В управлении хозяйственными процессами наибольшее значение имеют прежде всего экономико-математические модели , часто объединяемые в системы моделей.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей
  • Экстраполяционные модели
  • Факторные эконометрические модели
  • Оптимизационные модели
  • Балансовые модели, модель МежОтраслевогоБаланса (МОБ)
  • Экспертные оценки
  • Теория игр
  • Сетевые модели
  • Модели систем массового обслуживания

Экономико-математические модели и методы, применяемые в экономическом анализе

R a = ЧП / ВА + ОА ,

В обобщенном виде смешанная модель может быть представлена такой формулой:

Итак, вначале следует построить экономико-математическую модель, описывающую влияние отдельных факторов на обобщающие экономические показатели деятельности организации. Большое распространение в анализе хозяйственной деятельности получили многофакторные мультипликативные модели , так как они позволяют изучить влияние значительного количества факторов на обобщающие показатели и тем самым достичь большей глубины и точности анализа.

После этого нужно выбрать способ решения этой модели. Традиционные способы : способ цепных подстановок, способы абсолютных и относительных разниц, балансовый способ, индексный метод, а также методы корреляционно-регрессионного, кластерного, дисперсионного анализа, и др. Наряду с этими способами и методами в экономическом анализе используются и специфически математические способы и методы.

Интегральный метод экономического анализа

Одним из таких способов (методов) является интегральный. Он находит применение при определении влияния отдельных факторов с использованием мультипликативных, кратных, и смешанных (кратно-аддитивных) моделей.

В условиях применения интегрального метода имеется возможность получения более обоснованных результатов исчисления влияния отдельных факторов, чем при использовании метода цепных подстановок и его вариантов. Метод цепных подстановок и его варианты, а также индексный метод имеют существенные недостатки: 1) результаты расчетов влияния факторов зависят от принятой последовательности замены базисных величин отдельных факторов на фактические; 2) дополнительный прирост обобщающего показателя, вызванный взаимодействием факторов, в виде неразложимого остатка присоединяется к сумме влияния последнего фактора. При использовании же интегрального метода этот прирост делится поровну между всеми факторами.

Интегральный метод устанавливает общий подход к решению моделей различных видов, причем независимо от числа элементов, которые входят в данную модель, а также независимо от формы связи между этими элементами.

Интегральный метод факторного экономического анализа имеет в своей основе суммирование приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках.

В процессе применения интегрального метода необходимо соблюдение нескольких условий. Во-первых, должно соблюдаться условие непрерывной дифференцируемости функции, где в качестве аргумента берется какой-либо экономический показатель. Во-вторых, функция между начальной и конечной точками элементарного периода должна изменяться по прямой Г е . Наконец, в третьих, должно иметь место постоянство соотношения скоростей изменения величин факторов

d y / d x = const

При использовании интегрального метода исчисление определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования осуществляется по имеющейся стандартной программе с применением современных средств вычислительной техники.

Если мы осуществляем решение мультипликативной модели, то для расчета влияния отдельных факторов на обобщающий экономический показатель можно использовать следующие формулы:

ΔZ(x) = y 0 * Δ x + 1/2 Δ x * Δ y

Z(y)= x 0 * Δ y +1/2 Δ x * Δ y

При решении кратной модели для расчета влияния факторов воспользуемся такими формулами:

Z=x /y ;

Δ Z(x) = Δ x y Ln y1/y0

Δ Z(y)= Δ Z - Δ Z(x)

Существует два основных типа задач, решаемых при помощи интегрального метода: статический и динамический. При первом типе отсутствует информация об изменении анализируемых факторов в течение данного периода. Примерами таких задач могут служить анализ выполнения бизнес-планов либо анализ изменения экономических показателей по сравнению с предыдущим периодом. Динамический тип задач имеет место в условиях наличия информации об изменении анализируемых факторов в течение данного периода. К этому типу задач относятся вычисления, связанные с изучением временных рядов экономических показателей.

Таковы важнейшие черты интегрального метода факторного экономического анализа.

Метод логарифмирования

Кроме этого метода, в анализе находит применение также метод (способ) логарифмирования. Он используется при проведении факторного анализа, когда решаются мультипликативные модели. Сущность рассматриваемого метода заключается в том, что при его использовании имеет место логарифмически пропорциональное распределение величины совместного действия факторов между последними, то есть эта величина распределяется между факторами пропорционально доле влияния каждого отдельного фактора на сумму обобщающего показателя. При интегральном же методе упомянутая величина распределяется между факторами в одинаковой мере. Поэтому метод логарифмирования делает расчеты влияния факторов более обоснованными по сравнению с интегральным методом.

В процессе логарифмирования находят применение не абсолютные величины прироста экономических показателей, как это имеет место при интегральном методе, а относительные, то есть индексы изменения этих показателей. К примеру, обобщающий экономический показатель определяется в виде произведения трех факторов — сомножителей f = x y z .

Найдем влияние каждого из этих факторов на обобщающий экономический показатель. Так, влияние первого фактора может быть определено по следующей формуле:

Δf x = Δf · lg(x 1 / x 0) / lg(f 1 / f 0)

Каким же было влияние следующего фактора? Для нахождения его влияния воспользуемся следующей формулой:

Δf y = Δf · lg(y 1 / y 0) / lg(f 1 / f 0)

Наконец, для того, чтобы исчислить влияние третьего фактора, применим формулу:

Δf z = Δf · lg(z 1 / z 0)/ lg(f 1 / f 0)

Таким образом, общая сумма изменения обобщающего показателя расчленяется между отдельными факторами в соответствии с пропорциями отношений логарифмов отдельных факторных индексов к логарифму обобщающего показателя.

При применении рассматриваемого метода могут быть использованы любые виды логарифмов — как натуральные, так и десятичные.

Метод дифференциального исчисления

При проведении факторного анализа находит применение также метод дифференциального исчисления. Последний предполагает, что общее изменение функции, то есть обобщающего показателя, подразделяется на отдельные слагаемые, значение каждого из которых исчисляется как произведение определенной частной производной на приращение переменной, по которой определена эта производная. Определим влияние отдельных факторов на обобщающий показатель, используя в качестве примера функцию от двух переменных.

Задана функция Z = f(x,y) . Если эта функция является дифференцируемой, то ее изменение может быть выражено следующей формулой:

Поясним отдельные элементы этой формулы:

ΔZ = (Z 1 - Z 0) - величина изменения функции;

Δx = (x 1 - x 0) — величина изменения одного фактора;

Δ y = (y 1 - y 0) -величина изменения другого фактора;

- бесконечно малая величина более высокого порядка, чем

В данном примере влияние отдельных факторов x и y на изменение функции Z (обобщающего показателя) исчисляется следующим образом:

ΔZ x = δZ / δx · Δx; ΔZ y = δZ / δy · Δy.

Сумма влияния обоих этих факторов — это главная, линейная относительно приращения данного фактора часть приращения дифференцируемой функции, то есть обобщающего показателя.

Способ долевого участия

В условиях решения аддитивных, а также кратно-аддитивных моделей для исчисления влияния отдельных факторов на изменение обобщающего показателя используется также способ долевого участия. Его сущность состоит в том, что вначале определяется доля каждого фактора в общей сумме их изменений. Затем эта доля умножается на общую величину изменения обобщающего показателя.

Предположим, что мы определяем влияние трех факторов — а ,b и с на обобщающий показатель y . Тогда для фактора, а определение его доли и умножение ее на общую величину изменения обобщающего показателя можно осуществить по следующей формуле:

Δy a = Δa/Δa + Δb + Δc*Δy

Для фактора в рассматриваемая формула будет иметь следующий вид:

Δy b =Δb/Δa + Δb +Δc*Δy

Наконец, для фактора с имеем:

Δy c =Δc/Δa +Δb +Δc*Δy

Такова сущность способа долевого участия, используемого для целей факторного анализа.

Метод линейного программирования

См.далее:

Теория массового обслуживания

См.далее:

Теория игр

Находит применение также теория игр. Так же, как и теория массового обслуживания, теория игр представляет собой один из разделов прикладной математики. Теория игр изучает оптимальные варианты решений, возможные в ситуациях игрового характера. Сюда относятся такие ситуации, которые связаны с выбором оптимальных управленческих решений, с выбором наиболее целесообразных вариантов взаимоотношений с другими организациями, и т.п.

Для решения подобных задач в теории игр используются алгебраические методы, которые базируются на системе линейных уравнений и неравенств, итерационные методы, а также методы сведения данной задачи к определенной системе дифференциальных уравнений.

Одним из экономико-математических методов, применяемых в анализе хозяйственной деятельности организаций, является так называемый анализ чувствительности. Данный метод зачастую применяется в процессе анализа инвестиционных проектов, а также в целях прогнозирования суммы прибыли, остающейся в распоряжении данной организации.

В целях оптимального планирования и прогнозирования деятельности организации необходимо заранее предусматривать те изменения, которые в будущем могут произойти с анализируемыми экономическими показателями.

Например, следует заранее прогнозировать изменение величин тех факторов, которые влияют на размер прибыли: уровень покупных цен на приобретаемые материальные ресурсы, уровень продажных цен на продукцию данной организации, изменение спроса покупателей на эту продукцию.

Анализ чувствительности состоит в определении будущего значения обобщающего экономического показателя при условии, что величина одного или нескольких факторов, оказывающих влияние на этот показатель, изменится.

Так, например, устанавливают, на какую величину изменится прибыль в перспективе при условии изменения количества продаваемой продукции на единицу. Этим самым мы анализируем чувствительность чистой прибыли к изменению одного из факторов, влияющих на нее, то есть в данном случае фактора объема продаж. Остальные же факторы, влияющие на величину прибыли, являются при этом неизменными. Можно определить величину прибыли также и при одновременном изменении в будущем влияния нескольких факторов. Таким образом анализ чувствительности дает возможность установить силу реагирования обобщающего экономического показателя на изменение отдельных факторов, оказывающих влияние на этот показатель.

Матричный метод

Наряду с вышеизложенными экономико-математическими методами в анализе хозяйственной деятельности находят применение также . Эти методы базируются на линейной и векторно-матричной алгебре.

Метод сетевого планирования

См.далее:

Экстраполяционный анализ

Кроме рассмотренных методов, используется также экстраполяционный анализ. Он включает в себя рассмотрение изменений состояния анализируемой системы и экстраполяцию, то есть продление имеющихся характеристик этой системы на будущие периоды. В процессе осуществления этого вида анализа можно выделить такие основные этапы: первичная обработка и преобразование исходного ряда имеющихся данных; выбор типа эмпирических функций; определение основных параметров этих функций; экстраполяция; установление степени достоверности проведенного анализа.

В экономическом анализе используется также метод главных компонент. Они применяется в целях сравнительного анализа отдельных составных частей, то есть параметров проведенного анализа деятельности организации. Главные компоненты представляют собой важнейшие характеристики линейных комбинаций составных частей, то есть параметров проведенного анализа, которые имеют самые значительные величины дисперсии, а именно, наибольшие абсолютные отклонения от средних величин.

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок , т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В - его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \(\overrightarrow{AB} \), причем первая буква означает начало вектора, а вторая - его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \(\vec{0} \) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \(|\overrightarrow{AB}| \) или \(|\vec{a}| \).

Векторы \(\vec{a} \) и \(\vec{b} \) называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \(\vec{a} \) и \(\vec{b} \) называются равными (\(\vec{a} = \vec{b} \)), если они коллинеарны, одинаково направлены и их длины равны.

На рис. 1 изображены слева неравные, а справа - равные векторы \(\vec{a} \) и \(\vec{b} \). Из определения равенства векторов следует, что если данный вектор перенести параллельно самому себе, то получится вектор, равный данному. В связи с этим векторы в аналитической геометрии называют свободными.

Проекция вектора на ось

Пусть в пространстве заданы ось \(u \) и некоторый вектор \(\overrightarrow{AB} \). Проведем через точки А и В плоскости, перпендикулярные оси \(u \). Обозначим через А" и В" точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \(\overrightarrow{AB} \) на ось \(u \) называется величина А"В" направленного отрезка А"В" на оси \(u \). Напомним, что
\(A"B" = |\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) совпадает c направлением оси \(u \),
\(A"B" = -|\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) противоположно направлению оси \(u \),
Обозначается проекция вектора \(\overrightarrow{AB} \) на ось \(u \) так: \(Пр_u \overrightarrow{AB} \).

Теорема
Проекция вектора \(\overrightarrow{AB} \) на ось \(u \) равна длине вектора \(\overrightarrow{AB} \) , умноженной на косинус угла между вектором \(\overrightarrow{AB} \) и осью \(u \) , т.е.

\(Пр_u \overrightarrow{AB} = |\overrightarrow{AB}|\cos \varphi \) где \(\varphi \) - угол между вектором \(\overrightarrow{AB} \) и осью \(u \).

Замечание
Пусть \(\overrightarrow{A_1B_1}=\overrightarrow{A_2B_2} \) и задана какая-то ось \(u \). Применяя к каждому из этих векторов формулу теоремы, получаем

\(Пр_u \overrightarrow{A_1B_1} = Пр_u \overrightarrow{A_2B_2} \) т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \(\overrightarrow{AB} \). Пусть, далее, \(X = Пр_u \overrightarrow{AB}, \;\; Y = Пр_u \overrightarrow{AB}, \;\; Z = Пр_u \overrightarrow{AB} \). Проекции X, Y, Z вектора \(\overrightarrow{AB} \) на оси координат называют его координатами. При этом пишут
\(\overrightarrow{AB} = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x 1 ; y 1 ; z 1) и B(x 2 ; y 2 ; z 2), координаты вектора \(\overrightarrow{AB} \) определяются следующими формулами:

X = x 2 -x 1 , Y = y 2 -y 1 , Z = z 2 -z 1

Замечание
Если вектор \(\overrightarrow{AB} \) выходит из начала координат, т.е. x 2 = x, y 2 = y, z 2 = z, то координаты X, Y, Z вектора \(\overrightarrow{AB} \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Пусть дан произвольный вектор \(\vec{a} = (X;Y;Z) \); будем считать, что \(\vec{a} \) выходит из начала координат и не лежит ни в одной координатной плоскости. Проведем через точку А плоскости, перпендикулярные осям. Вместе с координатными плоскостями они образуют прямоугольный параллелепипед, диагональю которого служит отрезок ОА (см. рисунок).

Из элементарной геометрии известно, что квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его измерений. Следовательно,
\(|OA|^2 = |OA_x|^2 + |OA_y|^2 + |OA_z|^2 \)
Но \(|OA| = |\vec{a}|, \;\; |OA_x| = |X|, \;\; |OA_y| = |Y|, \;\;|OA_z| = |Z| \); таким образом, получаем
\(|\vec{a}|^2 = X^2 + Y^2 + Z^2 \)
или
\(|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} \)
Эта формула выражает длину произвольного вектора через его координаты.

Обозначим через \(\alpha, \; \beta, \; \gamma \) углы между вектором \(\vec{a} \) и осями координат. Из формул проекции вектора на ось и длины вектора получаем
\(\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \alpha, \;\; \cos \beta, \;\; \cos \gamma \) называются направляющими косинусами вектора \(\vec{a} \) .

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.

Сложение двух векторов

Пусть даны два вектора \(\vec{a} \) и \(\vec{b} \). Суммой \(\vec{a} + \vec{b} \) называется вектор, который идет из начала вектора \(\vec{a} \) в конец вектора \(\vec{b} \) при условии, что вектор \(\vec{b} \) приложен к концу вектора \(\vec{a} \) (см. рисунок).

Замечание
Действие вычитания векторов обратно действию сложения, т.е. разностью \(\vec{b} - \vec{a} \) векторов \(\vec{b} \) и \(\vec{a} \) называется вектор, который в сумме с вектором\(\vec{a} \) дает вектор \(\vec{b} \) (см. рисунок).

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \(\vec{a},\;\; \vec{b}, \;\; \vec{c} \). Сложив \(\vec{a} \) и \(\vec{b} \), получим вектор \(\vec{a} + \vec{b} \). Прибавив теперь к нему вектор \(\vec{c} \), получим вектор \(\vec{a} + \vec{b} + \vec{c} \)

Произведение вектора на число

Пусть даны вектор \(\vec{a} \neq \vec{0} \) и число \(\lambda \neq 0 \). Произведением \(\lambda \vec{a} \) называется вектор, который коллинеарен вектору \(\vec{a} \), имеет длину, равную \(|\lambda| |\vec{a}| \), и направление такое же, как и вектор \(\vec{a} \) , если \(\lambda > 0 \), и противоположное, если \(\lambda Геометрический смысл операции умножения вектора \(\vec{a} \neq \vec{0} \) на число \(\lambda \neq 0 \) можно выразить следующим образом: если \(|\lambda| >1 \), то при умножении вектора \(\vec{a} \) на число \(\lambda \) вектор \(\vec{a} \) «растягивается» в \(\lambda \) раз, а если \(|\lambda| 1 \).

Если \(\lambda =0 \) или \(\vec{a} = \vec{0} \), то произведение \(\lambda \vec{a} \) считаем равным нулевому вектору.

Замечание
Используя определение умножения вектора на число нетрудно доказать, что если векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны и \(\vec{a} \neq \vec{0} \), то существует (и притом только одно) число \(\lambda \) такое, что \(\vec{b} = \lambda \vec{a} \)

Основные свойства линейных операций

1. Переместительное свойство сложения
\(\vec{a} + \vec{b} = \vec{b} + \vec{a} \)

2. Сочетательное свойство сложения
\((\vec{a} + \vec{b})+ \vec{c} = \vec{a} + (\vec{b}+ \vec{c}) \)

3. Сочетательное свойство умножения
\(\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a} \)

4. Распределительное свойство относительно суммы чисел
\((\lambda +\mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \)

5. Распределительное свойство относительно суммы векторов
\(\lambda (\vec{a}+\vec{b}) = \lambda \vec{a} + \lambda \vec{b} \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\(Пр_u (\vec{a} + \vec{b}) = Пр_u \vec{a} + Пр_u \vec{b} \)

Теорему можно обобщить на случай любого числа слагаемых.

Теорема
При умножении вектора \(\vec{a} \) на число \(\lambda \) его проекция на ось также умножается на это число, т.е. \(Пр_u \lambda \vec{a} = \lambda Пр_u \vec{a} \)

Следствие
Если \(\vec{a} = (x_1;y_1;z_1) \) и \(\vec{b} = (x_2;y_2;z_2) \), то
\(\vec{a} + \vec{b} = (x_1+x_2; \; y_1+y_2; \; z_1+z_2) \)

Следствие
Если \(\vec{a} = (x;y;z) \), то \(\lambda \vec{a} = (\lambda x; \; \lambda y; \; \lambda z) \) для любого числа \(\lambda \)

Отсюда легко выводится условие коллинеарности двух векторов в координатах.
В самом деле, равенство \(\vec{b} = \lambda \vec{a} \) равносильно равенствам \(x_2 = \lambda x_1, \; y_2 = \lambda y_1, \; z_2 = \lambda z_1 \) или
\(\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} \) т.е. векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны в том и только в том случае, когда их координаты пропорциональны.

Разложение вектора по базису

Пусть векторы \(\vec{i}, \; \vec{j}, \; \vec{k} \) - единичные векторы осей координат, т.e. \(|\vec{i}| = |\vec{j}| = |\vec{k}| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \(\vec{i}, \; \vec{j}, \; \vec{k} \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \(\vec{a} \) может быть единственным образом разложен по базису \(\vec{i}, \; \vec{j}, \; \vec{k}\; \), т.е. представлен в виде
\(\vec{a} = \lambda \vec{i} + \mu \vec{j} + \nu \vec{k} \)
где \(\lambda, \;\; \mu, \;\; \nu \) - некоторые числа.

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых - это численное значение? В том, что они обладают направлением.

Максимально наглядно применение векторных величин объясняется в физике. Самыми простыми примерами являются силы (сила трения, сила упругости, вес), скорость и ускорение, поскольку помимо численных значений они также обладают направлением действия. Для сравнения приведём пример скалярных величин : это может быть расстояние между двумя точками или масса тела. Для чего же необходимо выполнять действия над векторными величинами такие как сложение или вычитание? Это нужно, чтобы было возможно определить результат действия системы векторов, состоящей из 2 или более элементов.

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) - это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c , начало которого совпадает с началом первого, а конец - с концом второго при условии, что b начинается в той же точке, в которой заканчивается a .
  7. Разностью векторов a и b называют сумму a и (- b ), где (- b ) - противоположно направленный к вектору b . Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c , который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a {a₁; a₂ } и b {b₁; b₂ } расчёты будут иметь следующий вид: c {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a {a₁; a₂ ; a₃ } и b {b₁; b₂; b₃ } координаты разности будут также получены попарным вычитанием: c {c₁; c₂; c₃ } = {a₁ – b₁; a₂ – b₂; a₃ – b₃ }.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

Результат операции вычитания показан на рисунке ниже .

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1 . На плоскости заданы 4 точки: A (1; -3), B (0; 4), C (5; 8), D (-3; 2). Определить координаты вектора q = AB - CD, а также рассчитать его длину.

Решение . Вначале следует найти координаты AB и CD . Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; -3), а концом – B (0; 4). Рассчитаем координаты направленного отрезка:

AB {0 - 1; 4 - (- 3)} = {- 1; 7}

Аналогичный расчёт выполняется для CD :

CD {- 3 - 5; 2 - 8} = {- 8; - 6}

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a - b координаты имеют вид {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }. Для конкретного случая можно записать:

q = {- 1 - 8; 7 - (- 6)} = { - 9; - 1}

Чтобы найти длину q , воспользуемся формулой | q | = √(q₁² + q ₂²) = √((- 9)² + (- 1)²) = √(81 + 1) = √82 ≈ 9,06.

Задача 2 . На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p - n; m - n; m - n - p. Выяснить, какая из них обладает наименьшим модулем.

Решение . В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p - n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m - n . Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

Часть 3. Для того чтобы найти разность m - n - p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m - (n + p) : в этом случае вначале строится сумма n + p , которая затем вычитается из m ;
  • (m - n) - p : здесь сначала нужно найти m - n , а затем отнять от этой разности p ;
  • (m - p) - n : первым действием определяется m - p , после чего из полученного результата нужно вычесть n .

Так как в предыдущей части задачи мы уже нашли разность m - n , нам остаётся лишь вычесть из неё p . Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным - окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p - n, m - n и m - n - p . Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m - n - p .

Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.


*Все представленные выше четыре вектора равны!

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:


При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Суммой двух векторов АВ и ВС будет являться вектор АС .

Записывается как АВ +ВС =АС .

Это правило называется – правилом треугольника .

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b , или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a , и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили вектор противоположный вектору b, и нашли разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть, координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То c 1 = a 1 + b 1 c 2 = a 2 + b 2

Если

То c 1 = a 1 – b 1 c 2 = a 2 – b 2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .

Найдём вектор, который будет являться результатом АО –ВО:

АО –ВО =АО +(–ВО )=АВ

То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ +AD .

Найдём вектор, который будет являться суммой векторов AD и AB BC равен вектору AD . Значит AB +AD =AB +BC =AC

AC это длина диагонали ромба АС , она равна 16.

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО +ВО .

Найдём вектор, который будет являться суммой векторов АО и ВО ВО равен вектору OD, з начит

AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

По теореме Пифагора:

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО –ВО .

Найдём вектор, который будет являться результатом АО –ВО :

АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:

По теореме Пифагора:

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВ –АС .

Найдём результат разности векторов:

СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

27663. Найдите длину вектора а (6;8).

27664. Найдите квадрат длины вектора АВ .