Нахождение высоты в прямоугольном треугольнике. Прямоугольный треугольник. Г8.04.1. Пропорциональные отрезки в прямоугольном треугольнике

Конус. Усеченный конус

Конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной кривой и точку вне кривой (рис.32).

Данная кривая называется направляющей , прямые – образующими , точка – вершиной конической поверхности.

Прямой круговой конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной окружности и точку на прямой, которая перпендикулярна плоскости окружности и проходит через ее центр. В дальнейшем эту поверхность будем кратко называть конической поверхностью (рис.33).

Конусом (прямым круговым конусом ) называется геометрическое тело, ограниченное конической поверхностью и плоскостью, которая параллельна плоскости направляющей окружности (рис.34).


Рис. 32 Рис. 33 Рис. 34

Конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг оси, содержащей один из катетов треугольника.

Круг, ограничивающий конус, называется его основанием . Вершина конической поверхности называется вершиной конуса. Отрезок, соединяющий вершину конуса с центром его основания, называется высотой конуса. Отрезки, образующие коническую поверхность, называются образующими конуса. Осью конуса называется прямая, проходящая через вершину конуса и центр его основания. Осевым сечением называется сечение, проходящее через ось конуса. Разверткой боковой поверхности конуса называется сектор, радиус которого равен длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

Для конуса верны формулы:

где R – радиус основания;

H – высота;

l – длина образующей;

S осн – площадь основания;

S бок

S полн

V – объем конуса.

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию конуса (рис.35).


Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг оси, содержащей боковую сторону трапеции, перпендикулярную основаниям.

Два круга, ограничивающие конус, называются его основаниями . Высотой усеченного конуса называется расстояние между его основаниями. Отрезки, образующие коническую поверхность усеченного конуса называются образующими . Прямая, проходящая через центры оснований, называется осью усеченного конуса. Осевым сечением называется сечение, проходящее через ось усеченного конуса.

Для усеченного конуса верны формулы:

(8)

где R – радиус нижнего основания;

r – радиус верхнего основания;

H – высота, l – длина образующей;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

V – объем усеченного конуса.

Пример 1. Сечение конуса параллельное основанию делит высоту в отношении 1:3, считая от вершины. Найти площадь боковой поверхности усеченного конуса, если радиус основания и высота конуса равны 9 см и 12 см.

Решение. Сделаем рисунок (рис. 36).

Для вычисления площади боковой поверхности усеченного конуса используем формулу (8). Найдем радиусы оснований О 1 А и О 1 В и образующую АВ.

Рассмотрим подобные треугольники SO 2 B и SO 1 A , коэффициент подобия , тогда

Отсюда

Так как то

Площадь боковой поверхности усеченного конуса равна:

Ответ: .

Пример2. Четверть круга радиуса свернута в коническую поверхность. Найти радиус основания и высоту конуса.

Решение. Четверить круга является разверткой боковой поверхности конуса. Обозначим r – радиус его основания, H – высота. Площадь боковой поверхности вычислим по формуле: . Она равна площади четверти круга: . Получим уравнение с двумя неизвестными r и l (образующая конуса). В данном случае образующая равна радиусу четверти круга R , значит, получим следующее уравнение: , откуда Зная радиус основания и образующую, найдем высоту конуса:

Ответ: 2 см, .

Пример 3. Прямоугольная трапеция с острым углом 45 О, меньшим основанием 3см и наклонной боковой стороной равной , вращается вокруг боковой стороны перпендикулярной основаниям. Найти объем полученного тела вращения.

Решение. Сделаем рисунок (рис. 37).

В результате вращения получим усеченный конус, чтобы найти его объем вычислим радиус большего основания и высоту. В трапеции O 1 O 2 AB проведем AC^O 1 B . В имеем: значит, этот треугольник равнобедренный AC =BC =3 см.

Ответ:

Пример 4. Треугольник со сторонами 13 см, 37 см и 40 см вращается вокруг внешней оси, которая параллельна большей стороне и находится от нее на расстоянии 3 см (Ось расположена в плоскости треугольника). Найти площадь поверхности полученного тела вращения.

Решение . Сделаем рисунок (рис. 38).

Поверхность полученного тела вращения состоит из боковых поверхностей двух усеченных конусов и боковой поверхности цилиндра. Для того чтобы вычислить эти площади необходимо знать радиусы оснований конусов и цилиндра (BE и OC ), образующие конусов (BC и AC ) и высоту цилиндра (AB ). Неизвестной является только CO . это расстояние от стороны треугольника до оси вращения. Найдем DC . Площадь треугольника ABC с одной стороны равна произведению половины стороны AB на высоту, проведенную к ней DC , с другой стороны, зная все стороны треугольника, его площадь вычислим по формуле Герона.

Лекция: Конус. Основание, высота, боковая поверхность, образующая, развертка

Конус – это тело, которой состоит из окружности, которая находится в основании, из точки равноудаленной от всех точек на окружности, а также от прямых, соединяющих эту точку (вершину) со всеми точками, лежащими на окружности.


Несколькими вопросами ранее, мы рассматривали пирамиду. Так вот конус – это частный случай пирамиды, в основании которой лежит окружность. Практически все свойства пирамиды подходят и для конуса.

Каким образом можно получить конус? Вспомните прошлый вопрос и то, как мы получили цилиндр. Теперь возьмите равнобедренный треугольник и крутите его вокруг своей оси – Вы получите конус.


Образующие конуса – это отрезки, заключенные между точками окружности и вершиной конуса. Образующие конуса равны между собой.

Чтобы найти длину образующей, следует воспользоваться формулой:

Если все образующие соединить между собой, можно получить боковую поверхность конуса. Общая его поверхность состоит из боковой поверхности и основания в виде окружности.


Конус имеет высоту . Чтобы ее получить, достаточно опустить перпендикуляр из вершины, непосредственно, в центр основания.


Чтобы найти площадь боковой поверхности, следует воспользоваться формулой:

Для нахождения полной площади поверхности конуса воспользуйтесь следующей формулой.

Усеченный конус получается, если от конуса отсечь меньший конус плоскостью, параллельной основанию (рис. 8.10). В усеченном конусе два основания: "нижнее" - основание исходного конуса - и “верхнее" - основание отсекаемого конуса. По теореме о сечении конуса - основания усеченного конуса подобны.

Высотой усеченного конуса называется перпендикуляр, опущенный из точки одного основания на плоскость другого. Все такие перпендикуляры равны (см. п. 3.5). Высотой называют также их длину, т. е. расстояние между плоскостями оснований.

Усеченный конус вращения получается из конуса вращения (рис. 8.11). Поэтому его основания и все параллельные им его сечения - круги с центрами на одной прямой - на оси. Усеченный конус вращения получается вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной основаниям, или вращением

равнобедренной трапеции вокруг оси симметрии (рис. 8.12).

Боковая поверхность усеченного конуса вращения

Это принадлежащая ему часть боковой поверхности конуса вращения, из которого он получен. Поверхность усеченного конуса вращения (или его полная поверхность) состоит из его оснований и его боковой поверхности.

8.5. Изображения конусов вращения и усеченных конусов вращения.

Прямой круговой конус рисуют так. Сначала рисуют эллипс, изображающий окружность основания (рис. 8.13). Затем находят центр основания - точку О и вертикально проводят отрезок РО, который изображает высоту конуса. Из точки Р проводят к эллипсу касательные (опорные) прямые (практически это делают на глаз, прикладывая линейку) и выделяют отрезки РА и РВ этих прямых от точки Р до точек касания А и В. Обратите внимание, что отрезок АВ - это не диаметр основания конуса, а треугольник АРВ - не осевое сечение конуса. Осевое сечение конуса - это треугольник АРС: отрезок АС проходит через точку О. Невидимые линии рисуют штрихами; отрезок ОР часто не рисуют, а лишь мысленно намечают, чтобы изобразить вершину конуса Р прямо над центром основания - точкой О.

Изображая усеченный конус вращения, удобно нарисовать сначала тот конус, из которого получается усеченный конус (рис. 8.14).

8.6. Конические сечения. Мы уже говорили, что боковую поверхность цилиндра вращения плоскость пересекает по эллипсу (п. 6.4). Также и сечение боковой поверхности конуса вращения плоскостью, не пересекающей его основание, является эллипсом (рис. 8.15). Поэтому эллипс называется коническим сечением.

К коническим сечениям относятся и другие хорошо известные кривые - гиперболы и параболы. Рассмотрим неограниченный конус, получающийся при продолжении боковой поверхности конуса вращения (рис. 8.16). Пересечем его плоскостью а, не проходящей через вершину. Если а пересекает все образующие конуса, то в сечении, как уже сказано, получаем эллипс (рис. 8.15).

Поворачивая плоскость ОС, можно добиться того, чтобы она пересекала все образующие конуса К, кроме одной (которой ОС параллельна). Тогда в сечении получим параболу (рис. 8.17). Наконец, вращая плоскость ОС дальше, переведем ее в такое положение, что а, пересекая часть образующих конуса К, не пересекает уже бесконечное множество других его образующих и параллельна двум из них (рис. 8.18). Тогда в сечении конуса К с плоскостью а получаем кривую, называемую гиперболой (точнее, одну ее "ветвь"). Так, гипербола, которая является графиком функции частный случай гиперболы - равнобочная гипербола, подобно тому как окружность является частным случаем эллипса.

Любые гиперболы можно получить из равнобочных с помощью проектирования, аналогично тому как эллипс получается параллельным проектированием окружности.

Чтобы получить обе ветви гиперболы, надо взять сечение конуса, имеющего две "полости", т. е. конуса, образованного не лучами, а прямыми, содержащими образующие боковой поверхности конуса вращения (рис. 8.19).

Конические сечения изучали еще древнегреческие геометры, и их теория была одной из вершин античной геометрии. Наиболее полное исследование конических сечений в древности было проведено Аполлонием Пергским (III в. до н.э.).

Имеется ряд важных свойств, объединяющих в один класс эллипсы, гиперболы и параболы. Например, ими исчерпываются "невырожденные", т. е. не сводящиеся к точке, прямой или паре прямых, кривые, которые задаются на плоскости в декартовых координатах уравнениями вида

Конические сечения играют важную роль в природе: по эллиптическим, параболлическим и гиперболическим орбитам движутся тела в поле тяготения (вспомните законы Кеплера). Замечательные свойства конических сечений часто используются в науке и технике, например, при изготовлении некоторых оптических приборов или прожекторов (поверхность зеркала в прожекторе получается вращением дуги параболы вокруг оси параболы). Конические сечения можно наблюдать как границы тени от круглых абажуров (рис. 8.20).