Открытые и замкнутые множества примеры. Понятие счетного множества. Теория вещественных чисел. Метрические пространства и непрерывные отображения

В курсе математического анализа на первом курсе ВУЗов встречается много непонятного и непривычного. Одна из первых таких «новых» тем — это открытые и замкнутые множества . Постараемся дать пояснения по данной тематике.

Перед тем, как приступить к постановке определений и задач, напомним значение используемых обозначений и кванторов :
∈ — принадлежит
∅ — пустое множество
Ε — множество действительных чисел
х* — закреплённая точка
А* — множество граничных точек
: — такое, что
⇒ — следовательно
∀ — для каждого
∃ — существует
U ε (х) — окрестность х по ε
Uº ε (х) — проколотая окрестность х по ε

Итак,
Определение 1: Множество М ∈ Ε называется открытым, если для любого у ∈ М найдётся такое ε > 0, что окрестность y по ε строго меньше М
С помощью кванторов определение запишется следующим образом:
М ∈ Ε — открытое, если ∀ у∈М ∃ ε>0: U ε (y) < M

Простым языком — открытое множество состоит из внутренних точек. Примерами открытого множества являются пустое множество, прямая, интервал (а, b)

Определение 2: Точка x* ∈ E называется граничной точкой множества М, если в любой окрестности точки х содержатся точки как из множества М, так и из его дополнения.
Теперь с помощью кванторов:
х*∈ E — граничная точка, если ∀U ε (x) ∩ М ≠ ∅ и ∀U ε (x) ∩ Е\М

Определение 3: Множество называется замкнутым, если ему принадлежат все граничные точки. Пример — отрезок

Стоит отметить, что существуют множества, которые одновременно и открытые, и замкнутые. Это, например, всё множество действительных чисел и пустое множество (позднее будет доказано, что это 2 возможных и единственных случая).

Докажем несколько теорем, связанных с открытым и замкнутым множествами.

Теорема 1: Пусть множество А — открытое. Тогда дополнение к множеству А является замкнутым множеством.

В = Е\А

Предположим, что В — незамкнутое. Тогда существует граничная точка х*, которая не принадлежит В, а значит — принадлежит А. По определению граничной точки окрестность х* имеет пересечение как с В, так и с А. Однако с другой стороны х* является внутренней точкой открытого множества А, поэтому вся окрестность точки х* лежит в А. Отсюда делаем вывод, что множества А и В пересекаются не по пустому множеству. Такого быть не может, поэтому наше предположение неверно и В является замкнутым множеством, ч. т. д.
В кванторах доказательство можно записать короче:
Предположим, что В — незамкнутое, тогда:
(1) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ∩ В ≠ ∅ (определение граничной точки)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ А ≠ ∅ (определение открытоко множества)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — замкнутое, ч. т. д.

Теорема 2: Пусть множество А — замкнутое. Тогда дополнение к множеству А является открытым множеством.
Доказательство: Обозначим дополнение множества А как множество В:
В = Е\А
Доказывать будем от противного.
Предположим, что В — замкнутое множество. Тогда любая граничная точка лежит в В. Но так как А — также замкнутое множество, то все граничные точки принадлежат и ему. Однако точка не может одновременно принадлежать множеству и его дополнению. Противоречие. В — открытое множество, ч. т. д.
В кванторах это выглядеть будет следующим образом:
Предположим, что В — замкнутое, тогда:
(1) ∀ х∈А*:х∈A (из условия)
(1) ∀ х∈А*:х∈В (из предположения)
Из (1) и (2) ⇒ А ∩ В ≠ ∅. Но А ∩ В = А ∩ Е\А = 0. Противоречие. В — открытое, ч. т. д.

Теорема 3: Пусть множество А — замкнутое и открытое. Тогда А = Е или А = ∅
Доказательство: Начнём записывать подробно, но сразу использую кванторы.
Предположим, что множество С — замкнутое и открытое, причём С ≠ ∅ и С ≠ Е. Тогда очевидно, что С ⊆ Е.
(1) ∃ х∈А*:х∈С ⇒ ∀U ε (x) ∩ Е\С ≠ ∅ (определение граничной точки, которая принадлежит С)
(2) ∃ х∈А*:х∈A ⇒ ∀U ε (x) ⊂ В (определение открытого множества С)
Из (1) и (2) следует, что Е\С ∩ С ≠ ∅, но это неверно. Противоречие. С не может быть одновременно и открытым, и замкнутым, ч. т. д.

Математический анализ — это фундаментальная математика, сложная и непривычная для нас. Но надеюсь, что-то стало понятнее после прочтения статьи. В добрый путь!

Posted by |

Типы множеств вещественной прямой

Положение точки относительно множества A

Односторонние окрестности

Топология вещественной прямой

Числовые множества

Основные множества чисел это отрезок и интервал (a; b).

Числовое множество A называется ограниченным сверху , если существует такое число M, что a £ M для любого a Î A. Число M в этом случае называется верхней гранью или мажорантой множества.

Супремумом множества A, sup A называется …

… наименьшая из его мажорант;

… число M такое, что a £ M для любого a Î A и в любой окрестности M есть элемент множества A;

Аналогично вводятся понятия «ограниченное снизу », «миноранта » (нижняя грань), и «инфимум » (точная нижняя грань).

Полнота вещественной прямой (равносильные формулировки)

1. Свойство вложенных отрезков. Пусть заданы отрезки É É … É É … Они имеют хотя бы одну общую точку. Если длины отрезков можно выбрать сколь угодно малыми, то такая точка единственна.

Следствие: метод дихотомии для теорем существования . Пусть задан отрезок . Делим его пополам и выбираем одну из половин (так, чтобы она обладала нужным свойством). Эту половину обозначим через . Продолжаем этот процесс неограниченно. Получим систему вложенных отрезков, длины которых приближаются к 0. Значит, они имеют ровно одну общую точку. Осталось доказать, что она и будет искомой.

2. Для любого непустого ограниченного сверху множества существует супремум.

3. Для любых двух непустых множеств, одно из которых лежит левее другого, существует разделяющая их точка (существование сечений).

Окрестности:

U(x) = (a, b), a < x < b; Ue(x) = (x – e; x + e), e > 0;

U(¥) = (–¥; a) U (b; ¥), Ue(¥) = (–¥; –e) U (e; +¥), e > 0;

U(+¥) = (e; +¥); U(–¥) = (–¥; –e).

Проколотые окрестности:

Ǔ(x) = (a, x) U (x, b) = U(x) \ {x}; Ǔe(x) = (x – e; x) U (x; x + e) = Ue(x) \ {x}

Ue–(x) = (x – e; x], e > 0; Ue+(x) = }