Правописание суффиксов глаголов ова ева ыва ива. Н и нн в прилагательных. Правописание суффиксов причастий

Каждый атом состоит из ядра и атомной оболочки , в состав которых входят различные элементарные частицы – нуклоны и электроны (рис. 5.1). Ядро – центральная часть атома, содержащая практически всю массу атома и обладающая положительным зарядом. Ядро состоит из протонов и нейтронов , которые являются двухзарядными состояниями одной элементарной частицы – нуклона. Заряд протона +1; нейтрона 0.

Заряд ядра атома равен Z . ē , где Z – порядковый номер элементов (атомный номер) в периодической системе Менделеева, равный числу протонов в ядре; ē – заряд электрона.

Число нуклонов в ядре называется массовым числом элемента (A ):

A = Z + N ,

где Z – число протонов; N – число нейтронов в атомном ядре.

Для протонов и нейтронов массовое число принимают равное 1, для электронов равное 0.


Рис. 5.1. Строение атома

Общеприняты следующие обозначения для какого-нибудь химического элемента X : , здесь A – массовое число, Z – атомный номер элемента.

Атомные ядра одного и того же элемента могут содержать разное число нейтронов N . Такие разновидности атомных ядер называются изотопами данного элемента. Таким образом, изотопы имеют: одинаковый атомный номер, но различные массовые числа A . Большинство химических элементов представляют собой смесь различных изотопов, например изотопы урана:

.

Атомные ядра различных химических элементов могут иметь одинаковое массовое число А (с разным числом протонов Z ). Такие разновидности атомных ядер называются изобарами . Например:

– – – ; –

Атомная масса

Для характеристики массы атомов и молекул используют понятие атомной массы M – это относительная величина, которая определяется по отношению
к массе атома углерода и принимается равной m а = 12,000 000. Для
абсолютного определения атомной массы была введена атомная единица
массы
(а.е.м.), которая определяется по отношению к массе атома углерода в следующем виде:

.

Тогда атомную массу элемента можно определить как:

где М – атомная масса изотопов рассматриваемого элемента. Это выражение облегчает определение массы ядер элементов, элементарных частиц, частиц – продуктов радиоактивных превращений и т. д.

Дефект массы ядра и энергия связи ядра

Энергия связи нуклона – физическая величина, численно равная работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

Нуклоны связаны в ядре благодаря ядерным силам, которые значительно превосходят силы электростатического отталкивания, действующие между протонами. Для расщепления ядра необходимо преодолеть эти силы, т. е. затратить энергию. Соединение нуклонов с образованием ядра, напротив, сопровождается высвобождением энергии, которую называют энергией связи ядра ΔW св:

,

где – так называемый дефект массы ядра; с ≈ 3 . 10 8 м/с – скорость света в вакууме.

Энергия связи ядра – физическая величина, равная работе, которую нужно совершить для расщепления ядра на отдельные нуклоны без сообщения им кинетической энергии.

При образовании ядра происходит уменьшение его массы, т. е. масса ядра меньше, чем сумма масс составляющих его нуклонов, эта разница называется дефектом масс Δm :

где m p – масса протона; m n – масса нейтрона; m ядр – масса ядра.

При переходе от массы ядра m ядр к атомным массам элемента m а, это выражение можно записать в следующем виде:

где m H – масса водорода; m n –масса нейтрона и m а – атомная масса элемента, определенные через атомную единицу массы (а.е.м.).

Критерием устойчивости ядра является строгое соответствие в нем числа протонов и нейтронов. Для устойчивости ядер справедливо следующее соотношение:

,

где Z – число протонов; A – массовое число элемента.

Из известных к настоящему времени примерно 1700 видов ядер, только около 270 являются стабильными. Причем в природе преобладают четно­-четные ядра (т. е. с четным числом протонов и нейтронов), которые являются особенно стабильными.

Радиоактивность

Радиоактивность – превращение неустойчивых изотопов одного химического элемента в изотопы другого химического элемента с выделением некоторых элементарных частиц. Различают: естественную и искусственную радиоактивность.

К основным видам относят:

– α-излучение (распад);

– β-излучение (распад);

– спонтанное деление ядра.

Ядро распадающегося элемента называется материнским , а ядро образующегося элемента – дочерним . Самопроизвольный распад атомных ядер подчиняется следующему закону радиоактивного распада:

где N 0 – число ядер в химическом элементе в начальный момент времени; N – число ядер в момент времени t ; – так называемая «постоянная» распада, которая представляет собой долю ядер, распавшихся в единицу времени.

Величина обратная «постоянной» распада , характеризует среднюю продолжительность жизни изотопа. Характеристикой устойчивости ядер относительно к распаду является период полураспада , т. е. время, в течение которого первоначальное количество ядер уменьшается вдвое:

Связь между и :

При радиоактивном распаде выполняется закон сохранения заряда:

,

где – заряд распавшихся или получившихся (образовавшихся) «осколков»; и правило сохранения массовых чисел :

где – массовое число образовавшихся (распавшихся) «осколков».

5.4.1. α и β-распад

α-распад представляет собой излучение ядер гелия . Характерен для «тяжелых» ядер с большими массовыми числами A > 200 и зарядом z > 82.

Правило смещения при α-распаде имеет следующий вид (происходит образование нового элемента):

.

; .

Отметим, что α-распад (излучение) обладает наибольшей ионизирующей способностью, но наименьшей проницаемостью.

Различают следующие виды β-распада :

– электронный β-распад (β – -распад);

– позитронный β-распад (β + -распад);

– электронный захват (k-захват).

β – -распад происходит при избытке нейтронов с выделением электронов и антинейтрино :

.

β + -распад происходит при избытке протонов с выделением позитронов и нейтрино :

Для электронного захвата (k -захвата) характерно следующее превра­щение:

.

Правило смещения при β-распаде имеет следующий вид (происходит образование нового элемента):

для β – -распада: ;

для β + -распада: .

β-распад (излучение) обладает наименьшей ионизирующей способностью, но наибольшей проницаемостью.

α и β-излучения сопровождаются γ-излучением , которое представляет собой излучение фотонов и не является самостоятельным видом радиоактивного излучения.

γ-фотоны выделяются при уменьшении энергии возбужденных атомов и не вызывают изменение массового числа A и изменение заряда Z . γ-излучение обладает наибольшей проникающей способностью.

Активность радионуклидов

Активность радионуклидов – мера радиоактивности, характеризующая число распадов ядер в единицу времени. Для определенного количества радионуклидов в определенном энергетическом состоянии в заданный момент времени активность А задается в виде:

где – ожидаемое число спонтанных ядерных превращений (число распадов ядер), происходящих в источнике ионизирующего излучения за интервал времени .

Самопроизвольное ядерное превращение называют радиоактивным распадом .

Единицей измерения активности радионуклидов является обратная секунда (), имеющая специальное название беккерель (Бк) .

Беккерель равен активности радионуклида в источнике, в котором за время 1 сек. происходит одно спонтанное ядерное превращение.

Внесистемная единица активности – кюри (Ku) .

Кюри – активность радионуклида в источнике, в котором за время 1 сек. происходит 3,7 . 10 10 спонтанных ядерных превращений, т. е. 1 Ku = 3,7 . 10 10 Бк.

Например, примерно 1 г чистого радия дает активность 3,7 . 10 10 ядерных распадов в секунду.

Не все ядра радионуклида распадаются одновременно. В каждую единицу времени самопроизвольное ядерное превращение происходит с определенной долей ядер. Доля ядерных превращений для разных радионуклидов различна. Например, из общего числа ядер радия ежесекундно распадается 1,38 . часть, а из общего количества ядер радона – 2,1 . часть. Доля ядер, распадающихся в единицу времени, называется постоянной распада λ.

Из приведенных определений следует, что активность А связана с числом радиоактивных атомов N в источнике в данный момент времени соотношением:

С течением времени число радиоактивных атомов уменьшается по закону:

, (3) – 30 лет, радона поверхностной или линейной активностью.

Выбор единиц удельной активности определяется конкретной задачей. Например, активность в воздухе выражают в беккерелях на кубический метр (Бк/м 3) – объемная активность. Активность в воде, молоке и других жидкостях также выражается как объемная активность, так как количество воды и молока измеряется в литрах (Бк/л). Активность в хлебе, картофеле, мясе и других продуктах выражается как удельная активность (Бк/кг).

Очевидно, что биологический эффект воздействия радионуклидов на организм человека будет зависеть от их активности, т. е. от количества радионуклида. Поэтому объемная и удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных и других материалах нормируются.

Поскольку в течение определенного времени человек может облучаться различными путями (от поступления радионуклидов в организм до внешнего облучения), то все факторы облучения связывают определенной величиной, которая называется дозой облучения.

Состав и характеристики атомного ядра

Атом – наименьшая часть химического элемента, способная к самостоятельному существованию и являющаяся носителем его свойств. Атом представляет собой электрически нейтральную систему, состоящую из положительно заряженного ядра и отрицательно заряженных электронов. Диаметр атома порядка 10 -10 м, диаметр ядра – 10-15 – 10 -14 м. Ядро атома имеет сложное строение. В 1932 г. В.Гейзенберг и Д.Иваненко предложили нуклонную модель строения ядра, согласно которой ядро атома состоит из протонов и нейтронов.

Протон [от греч. protos – первый] (символ ) – стабильная элементарная частица, ядро атома водорода. Время жизни протона > 10 31 лет. Масса 1,6726∙10 -27 кг 938,3 МэВ. Электрический заряд протона положительный: 1,6∙10 -19 Кл. Спин протона равен ½, поэтому он подчиняется статистике Ферми-Дирака. Число протонов в ядре – зарядовое число, определяет общий заряд ядра и порядковый номер элемента в таблице Менделеева. Заряд ядра определят число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля. Число электронов в нейтральном атоме равно числу протонов в ядре, а их общий отрицательный заряд равен .

Характеристики протона, нейтрона, электрона
Характеристика Протон Нейтрон Электрон
Масса, МэВ 938.28 939.57 0.511
Электрический заряд (в единицах заряда электрона) +1 -1
Внутренний момент количества движения (в единицах ћ) 1/2 1/2 1/2
Четность +1 +1 +1
Статистика Ферми-Дирака
Магнитный момент (в единицах ядерного магнетона)
+2.79 -1.91
(в единицах магнетона Бора) 1.001
Время жизни >10 25 лет 887+ 2 с >4.3·10 23 лет
Тип распада pe - ν e

Нейтрон (символ n ) [от лат neuter – ни тот, ни другой] – элементарная частица с нулевым электрическим зарядом, массой покоя 1,6749∙10 -27 кг (939,565 МэВ). Наряду с протоном под общим названием нуклон входит в состав атомных ядер. Имеет спин ½, подчиняется статистике Ферми-Дирака (является фермионом). Открыт в 1932 г. Дж. Чедвиком. В свободном состоянии нейтрон нестабилен, самопроизвольно распадается, превращаясь в протон с испусканием электрона и антинейтрино: Время жизни нейтрона – 896 с.

Протон и нейтрон считаются двумя состояниями нуклона. Масса атома определяется в основном массой его ядра. Массовое число зависит от общего числа протонов и нейтронов в ядре: (ядро содержит протонов и нейтронов). Массу ядра атома выражают в атомных единицах массы. Атомная единица массы (а.е.м.) – единица массы, равная 1/12 массы изотопа углерода ; применяется в атомной и ядерной физике для выражения масс элементарных частиц, атомов, молекул. 1 а.е.м. = 1,6605655 · 10 -27 кг.

Для обозначения ядер атомов принята символика

где – символ химического элемента, – зарядовое число, – массовое число.

Изотопами называют ядра, имеющие одинаковый заряд , но различные массовые числа (т.е. различаются числом нейтронов). Например,

Ядра с одинаковыми , но разными называются изобарами . Например,

Ядра с одинаковым числом нейтронов, но разным числом протонов называются изотонами. Например,

Ядра с одинаковым числом протонов и нейтронов, но разными периодами полураспада называются изомерами. Например, существуют два вида ядер брома с периодами полураспада 4,4 часа и 18 мин.

В настоящее время известно более 2300 ядер, примерно 300 из них устойчивы, остальные нестабильны. В природе встречаются элементы с атомными номерами от 1 до 92 (кроме технеция и прометия ). Элементы с 93 получены искусственным путем, называются трансурановыми.

На рисунке показана N-Z диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протоноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтроноизбыточные ядра). Протоноизбыточные ядра являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра также являются радиоактивными и превращаются в стабильные в результате β - -распадов, с превращением нейтрона ядра в протон.


N-Z диаграмма атомных ядер

Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - - распада подвержены также -распаду и спонтанному делению, которые становятcя их основными каналами распада. Пунктирная линия очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p - энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n - энергия отделения нейтрона) - справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~ 10 -23 c) с испусканием одного или двух нуклонов.

Плотность ядерного вещества 10 17 кг/м 3 .

Спины нуклонов образуют результирующий спин ядра, суммируясь по квантовым законам сложения моментов. При нечетном числе нуклонов спин ядра будет полуцелым, при четном числе нуклонов – нулем или целым числом. Спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. Поэтому спины ядер не превышают нескольких единиц. У ядер с четным числом протонов и четным числом нейтронов (четно-четные ядра) спин равен нулю.

  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число – общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Делимо ли атомное ядро? И если да, то из каких частиц оно состоит? На этот вопрос пытались ответить многие физики.

    В 1909 г. британский физик Эрнест Резерфорд вместе с немецким физиком Гансом Гейгером и физиком из Новой Зеландии Эрнстом Марсденом провёл свой известный эксперимент по рассеянию α-частиц, результатом которого стал вывод о том, что атом вовсе не неделимая частица. Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Причём, несмотря на то, что размер ядра примерно в 10 000 раз меньше размера самого атома, в нём сосредоточено 99,9% массы атома.

    Но что из себя представляет ядро атома? Какие частицы входят в его состав? Это сейчас мы знаем, что ядро любого элемента состоит из протонов и нейтронов , общее название которых нуклоны . А в начале ХХ века после появления планетарной, или ядерной, модели атома, это было загадкой для многих учёных. Выдвигались разные гипотезы и предлагались разные модели. Но правильный ответ на этот вопрос снова дал Резерфорд.

    Открытие протона

    Опыт Резерфорда

    Ядро атома водорода – это атом водорода, из которого удалили его единственный электрон.

    К 1913 г. были вычислены масса и заряд ядра атома водорода. Кроме того, стало известно, что масса атома любого химического элемента всегда делится без остатка на массу атома водорода. Этот факт навёл Резерфорда на мысль, что в любое ядро входят ядра атомов водорода. И ему удалось доказать это экспериментально в 1919 г.

    В своём опыте Резерфорд поместил источник α-частиц в камеру, в которой был создан вакуум. Толщина фольги, закрывавшей окно камеры, была такой, что α-частицы не могли выходить наружу. За окном камеры располагался экран, на который нанесли покрытие из сернистого цинка.

    Когда камеру начинали заполнять азотом, на экране фиксировались световые вспышки. Это означало, что под воздействием α-частиц из азота выбивались какие-то новые частицы, без труда проникавшие через фольгу, непроходимую для α-частиц. Оказалось, что неизвестные частицы имеют положительный заряд, равный по величине заряду электрона, а их масса равна массе ядра атома водорода. Эти частицы Резерфорд назвал протонами .

    Но вскоре стало понятно, что ядра атомов состоят не только из протонов. Ведь если бы это было так, то масса атома равнялась бы сумме масс протонов в ядре, а отношение заряда ядра к массе было бы величиной постоянной. На самом деле, это справедливо только для простейшего атома водорода. В атомах других элементов всё по-другому. К примеру, в ядре атома бериллия сума масс протонов равна 4 единицам, а масса самого ядра равна 9 единицам. Значит, в этом ядре существуют и другие частицы, обладающие массой в 5 единиц, но не имеющие заряда.

    Открытие нейтрона

    В 1930 г. немецкий физик Вальтер Боте Боте и Ханс Беккер во время эксперимента обнаружили, что излучение, возникающее при бомбардировке атомов бериллия α-частицами, имеет огромную проникающую способность. Спустя 2 года английский физик Джеймс Чедвик, ученик Резерфорда, выяснил, что даже свинцовая пластинка толщиной 20 см, помещённая на пути этого неизвестного излучения, не ослабляет и не усиливает его. Оказалось, что и электромагнитное поле не оказывает на излучаемые частицы никакого воздействия. Это означало, что они не имеют заряда. Так была открыта ещё одна частица, входящая в состав ядра. Её назвали нейтроном . Масса нейтрона оказалась равной массе протона.

    Протонно-нейтронная теория ядра

    После экспериментального открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг, независимо друг от друга предложили протонно-нейтронную теорию ядра, которая дала научное обоснование состава ядра. Согласно этой теории ядро любого химического элемента состоит из протонов и нейтронов. Их общее название - нуклоны.

    Общее число нуклонов в ядре обозначают буквой A . Если число протонов в ядре обозначить буквой Z , а число нейтронов буквой N , то получим выражение:

    A = Z + N

    Это уравнение называется уравнением Иваненко-Гейзенберга .

    Так как заряд ядра атома равен количеству протонов в нём, то Z называют также зарядовым числом . Зарядовое число, или атомный номер, совпадает с его порядковым номером в периодической системе элементов Менделеева.

    В природе существуют элементы, химические свойства которых абсолютно одинаковы, а массовые числа разные. Такие элементы называются изотопами . У изотопов одинаковое количество протонов и разное количество нейтронов.

    К примеру, у водорода три изотопа. Все они имеют порядковый номер, равный 1, а число нейтронов в ядре у них разное. Так, у самого простого изотопа водорода, протия, массовое число 1, в ядре 1 протон и ни одного нейтрона. Это простейший химический элемент.

    «Н и НН в прилагательных» - В.) Воспитанник? воспитать – (сов.) Избранник? избрать – (сов. В суфф. –Енн–, –онн– утренний, огненный, пламенный, лекционный, агитационный, революционный. В.) Пудреница? пудрить – (несов. Отглагольные мученик? мучить – (несов. П.) Пишется всегда –н- комиссия образована. – (Тв.П.) (Кто-то образовал – кратк.

    «Полные и краткие причастия» - Незаконченное, а начатое собрание. Замените письменно сочетание с действительным причастием сочетанием со страдательным причастием. Раздавшийся, меня, грохот, слева, заставил, оглянуться. Краткие и полные причастия. Причастия, заключенные в скобки, ставьте в нужном роде, числе и падеже. Формирование познавательных способностей учащегося.

    «НН и Н в прилагательных» - Государство - государственный Традиция – традиционный Хозяйство – хозяйственный Мужество – мужественный Лекция - лекционный. К какой части речи относятся слова правых столбиков? Холод- холодный зима- зимний сон- сонный утро- утренний глина- глиняный. Вкусный сонный хрустальный лунный летний осенний.

    «Предложения с причастиями» - Проверка домашнего задания. Большая вода». Образование причастий. Я в холодный, обнаж _(н,нн)ый сад войду. И. И. Левитан «Золотая осень». Задание 2. В данных предложениях вставьте пропущенные буквы и недостающие знаки препинания. Примерный план ответа: Делаем вывод о роли причастий в художественном тексте.

    «Н и НН в суффиксах» - Тренировочные упражнения. Н и НН в суффиксах разных частей речи. Ветреный - жил ветрено, сумрачный – глядел сумрачно. Вставь пропущенные буквы. В отглагольном прилагательном Н Соленый, тушеный, крашеный. Н и НН в суффиксах прилагательных. Ключ к упражнению: Неожиданный – явился неожиданно, необдуманный – поступил необдуманно.

    «Причастие» - Причастие – самостоятельная часть речи. Действительное причастие. Полная форма. Страдательное причастие. Причастный оборот – это причастие с зависимыми словами. Настоящие время. Прошедшее время. Действительные причастия прошедшего времени. Причастие. Краткая форма. Несовершенный вид. Склонение причастий.