Приступили все черты мережковский. Дмитрий мережковский - биография, информация, личная жизнь. Дилогия о примордиальном Христианстве

Хромосомный уровень организации наследственного материала. Хромосомы, как группы сцепления генов.

Из принципов генетического анализа вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в разных парах хромосом. Следовательно, у каждого организма, число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, очевидно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно. Остается допустить, что в каждой хромосоме находится не один ген, а много. Если это так, то следует признать, что третье правило Менделя касается только распределения хромосом, а не генов, т.е. его действие ограничено. Анализ проявления третьего правила показал, что в некоторых случаях новые комбинации генов у гибридов совсем отсутствовали, т.е. наблюдалось полное сцепление между генами исходных форм и в фенотипе наблюдалось расщепление 1:1. В других случаях комбинация признаков отмечалась с меньшей частотой, чем ожидается при независимом наследовании.

В 1906 году У. Бетсон описал нарушение менделевского закона независимого наследования двух признаков. Возникли вопросы: почему не все признаки наследуются и как они наследуются, как расположены гены в хромосомах, каковы закономерности наследования генов, находящихся в одной хромосоме? На эти вопросы смогла ответить хромосомная теория наследственности, созданная Т. Морганом, в 1911 году.

Т. Морган, изучив все отклонения, предложил называть совместное наследование генов, ограничивающее их свободное комбинирование, сцеплением генов или сцепленным наследованием.

Закономерности полного и неполного сцепления. Группы сцепления у человека.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер наблюдается в мейозе. Он обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, как и сцепление генов, характерно для животных, растений, микроорганизмов. Исключение составляют самцы дрозофилы и самки тутового шелкопряда. Кроссинговер обеспечивает рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О наличии кроссинговера можно судить на основе учета частоты возникновения организмов с новым сочетанием признаков. Явление кроссинговера было открыто Морганом на дрозофиле.

Запись генотипа дигетерозиготы при независимом наследовании:

А В

Запись генотипа дигетерозиготы при сцепленном наследовании:

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а не претерпевшие – некроссоверными.

АВ, ав Ав, аВ

Некроссоверные гаметы. Кроссоверные гаметы.

Соответственно организмы, возникшие от сочетания кроссоверных гамет, называют кроссоверами или рекомбинантами, а возникшие от сочетания некроссоверных гамет – некроссоверами или нерекомбинантами .

Явление кроссинговера, как и сцепление генов, можно рассмотреть и в классическом опыте Т. Моргана при скрещивании дрозофил.

Признак

P♀ BV x ♂ bv

серый цвет тела

черный цвет тела

нормальные крылья

рудиментарные крылья

Анализирующее скрещивание

1. Полное сцепление генов.

2. Неполное сцепление генов.

1. Полное сцепление

P♀ bv x ♂ BV

F 2 bv bv

расщепление – 1:1

2. Неполное сцепление (кроссинговер)

P:♀ BV x ♂ bv

G: BV bv Bv bV bv

некроссоверные кроссоверные

F 2 BV bv Bv bV

некроссоверов – 83% кроссоверов – 17%

Для измерения расстояния между генами путем анализирующего скрещивания можно применять формулу:

где:

X – расстояние между генами в % кроссинговера или в морганидах;

а – количество особей 1-й кроссоверной группы;

в – количество особей 2-й кроссоверной группы;

n общее количество гибридов в опыте;

100% – коэффициент для перевода в проценты.

На основании исследования сцепленного наследования Морган сформулировал тезис, вошедший в генетику под названием правило Моргана : гены, локализованные в одной хромосоме, наследуются сцеплено, причем сила сцепления зависит от расстояния между ними.

Сцепленные гены расположены в линейном порядке и частота кроссинговера между ними прямо пропорциональна расстоянию между ними. Однако, этот тезис характерен только для близко лежащих друг к другу генов. В случае же относительно удаленных генов наблюдается некоторое отклонение от такой зависимости.

Морган предложил выражать расстояние между генами в процентах кроссинговера между ними. Расстояние между генами также выражают в морганидах или сантиморганидах. Морганида – генетическое расстояние между генами, где происходит кроссинговер с частотой 1%.

По частоте кроссинговера между двумя генами можно судить об относительном расстоянии между ними. Так, если между генами А и В кроссинговер составляет 3%, а между генами В и С – 8% кроссинговера, то между А и С кроссинговер должен происходить с частотой либо 3+8=11%, либо 8-3=5%, в зависимости от того, в каком порядке эти гены расположены в хромосоме.

А ─ ─ ─ В ─ ─ ─ ─ ─ ─ ─ ─ С В ─ ─ ─ А ─ ─ ─ ─ ─ ─ ─ ─ С

Задача 1. Катаракта и полидактилия наследуются как доминантные аутосомные признаки. Женщина унаследовала катаракту от отца, полидактилию от матери. Гены сцеплены, расстояние между ними 3М. Каковы генотипы и фенотипы детей от брака этой женщины и мужчины нормального по этим признакам? Какова вероятность рождения здоровых детей?

катаракта

P ♀ аВ х ♂ ав

полидактилия

Х = АВ = 3 Морг.

P ♀ аВ х ♂ ав

Ответ: вероятность рождения здорового ребенка – 1,5%, имеющих по 1 признаку – 48,5%, имеющих оба признака – 1,5%

G: (аВ) (Ав) (ав)

F1 аВ Ав ав АВ

ав ав ав ав

48,5% 48,5% 1,5% 1,5%

Генетическая карта хромосомы – это схема, отображающая порядок расположения генов на относительном расстоянии их друг от друга. О расстоянии между сцепленными генами судят по частоте кроссинговера между ними. Генетические карты всех хромосом составлены для наиболее изученных в генетическом отношении организмов: дрозофилы, кур, мышей, кукурузы, томатов, нейроспоры. Для человека также составлены генетические карты всех 23 хромосом.

После установления линейной дискретности хромосом возникла необходимость составления цитологических карт с целью сопоставления с генетическими, составленными на основе учета рекомбинаций.

Цитологическая карта – это карта хромосомы, на которой определяется расположение и относительное расстояние между генами в самой хромосоме. Построение их ведется на основе анализа хромосомных перестроек, дифференциальной окраски политенных хромосом, радиоактивных меток и др.

К настоящему времени, у ряда растений и животных построены и сопоставлены генетические и цитологические карты. Реальность этого сопоставления подтверждает правильность принципа о линейном расположении генов в хромосоме.

У человека можно назвать некоторые случаи сцепленного наследования.

    Гены, контролирующие наследование групп крови по системе АВ0 и синдрома дефекта ногтей и коленной чашечки, наследуются сцепленно.

    Сцеплены гены резус-фактора и овальной формы эритроцитов.

    В третьей аутосоме расположены гены группы крови Лютеран и секреции антигенов А и В со слюной.

    Гены полидактилии и катаракты наследуются сцепленно.

    В Х-хромосоме расположены гены гемофилии и дальтонизма, а также гены цветовой слепоты и мышечной дистрофии Дюшена.

    В 6 аутосоме находятся сублокусы А, В, С, D/DR системы HLA, контролирующих синтез антигенов гистосовместимости.

Наследование признаков Х-сцепленных и голандрических.

Признаки, контролируемые генами, расположенными в половых хромосомах, называются сцепленным с полом. У человека описано более 60 заболеваний, сцепленных с полом, большинство из которых наследуются рецессивно. Гены в половых хромосомах можно разделить на 3 группы:

    Гены частично сцепленные с полом. Они расположены в парных сегментах Х и Y хромосом . К заболеваниям частично сцепленным с полом относят: геморрагический диатез, судорожные расстройства, пигментный ретинит, пигментную ксеродерму, общую цветовую слепоту.

    Гены полностью сцепленные с полом. Они расположены в участке Х хромосомы , для которого нет гомологичного участка в Y хромосоме (гетерологическом). Эти гены контролируют заболевания: атрофия зрительного нерва, мышечная дистрофия Дюшена, дальтонизм, гемофилия, способность ощущать запах синильной кислоты.

    Гены, расположенные в участке Y хромосомы , для которого нет гомологичного локуса в Х хромосоме, называются голандрическими . Они контролируют признаки: синдактилия, гипертрихоз ушной раковины.

Ген дальтонизма проявляется у 7% мужчин и у 0,5% женщин, но носительницами этого гена являются 13% женщин.

Сцепленное с полом наследование было описано Т. Морганом на примере наследования признака окраски глаз у дрозофилы.

Отмечено несколько закономерностей наследования сцепленных с полом признаков:

      передаются крест на крест (от отца – дочери, от матери – сыну);

      результаты прямого и обратного скрещиваний не совпадают;

      у гетерогаметного пола признак проявляется в любом состоянии (доминантном или рецессивном).

Основные положения хромосомной теории наследственности.

Основные положения хромосомной теории наследственности можно сформулировать следующим образом:

    Гены находятся в хромосомах. Каждый ген в хромосоме занимает определенный локус. Гены в хромосомах расположены линейно.

    Каждая хромосома представляет группу сцепленных генов. Число групп сцепления у каждого вида равно числу пар хромосом.

    Между гомологичными хромосомами происходит обмен аллельными генами – кроссинговер.

    Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними. Зная расстояние между генами можно вычислить процентное соотношение генотипов у потомства.

Вопросы:

1. Сцепленное наследование признаков

2. Полное сцепление

3. Неполное сцепление

4. Основные положения хромосомной теории наследственности

5. Картирование хромосом человека

Сцепленное наследование признаков. В 1902-1903 годах У. Сэттон и Р. Пеннет обнаружили параллелизм в поведении генов и хромосом, который послужил обоснованием хромосомной гипотезы, а в дальнейшем – теории наследственности. Согласно этой теории, гены, расположены в хромосомах в линейной последовательности, поэтому именно хромосомы представляют собой материальную основу наследственности.

Происходящее при дигибридном скрещивании независимое комбинирование признаков объясняется тем, что расщепление одной пары аллельных генов, определяющих соответствующие признаки, происходит независимо от другой пары. Однако это наблюдается только тогда, когда аллельные гены находятся в разных парах хромосом и при образовании половых клеток гибрида в мейозе отцовские и материнские хромосомы независимо комбинируются. В настоящее время известно, что геном человека состоит из 35 тысяч генов, распределенных по 23 парам хромосом. Поэтому независимо комбинироваться одновременно могут только 23 признака, гены которых находятся в 23 парах хромосом. А все остальные гены, начиная с 24-го, наследуются сцеплено с другим геном и признаком. Тем самым нарушается правило Г. Менделя о независимом наследовании признаков и

Сцепленное наследование открыли в 1906 г. английские генетики У. Бэтсон и Р. Пеннет, изучая наследование признаков у душистого горошка. Однако они не смогли объяснить это явление.

В 1910 г. Томас Морган с соавторами К. Бриджесом и А. Стертевантом экспериментально обосновали и развили природу сцепленного наследования. Было обнаружено существование групп сцепления генов, связанных с определенными хромосомами. При этом было показано, что сцепление генов в пределах хромосомы не абсолютно. Гены, лежащие в разных частях гомологичных хромосом, могут разъединяться и сочетаться друг с другом путем рекомбинаций внутри пары гомологичных хромосом. Дальнейшее изучение этих процессов позволило вскрыть основу генетической организации хромосом.

В результате экспериментов Т. Морган и его сотрудники установили, что гены, расположенные в одной хромосоме, представляют собой группу сцепления.

Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Например, у дрозофилы 4 группы сцепления, у человека 23, у собаки 39, у кошки 19, у свиньи 19 и т. д.

Полное сцепление. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость – над зачаточными крыльями. Ген серой окраски тела – В, аллельный ему ген черной окраски тела – b; ген длиннокрылости – V, ген зачаточных крыльев – v. Обе пары этих генов находятся во второй паре хромосом.

Родительские особи по обеим парам признаков были гомозиготны: самка по доминантному признаку серого тела (ВВ) и доминантному признаку длиннокрылости (VV), самец по рецессивному признаку черной окраски (bb) и рецессивному признаку зачаточных крыльев (vv). Все потомство F 1 имело серое тело и длинные крылья и было дигетерозиготно.

Для выяснения генотипа гибридов первого поколения Морган провел анализирующее скрещивание самцов F 1 c черными зачаточнокрылыми самками. В результате этого скрещивания должно было получиться потомство четырех фенотипов в равных соотношениях: серые длиннокрылые, серые с зачаточными крыльями, черные длиннокрылые и черные с зачаточными крыльями. Однако Морган получил потомков только двух фенотипов: черные короткокрылые и серые длиннокрылые (как родительские формы).

Так как у гетерозиготного самца в одной и той же хромосоме из гомологичной пары расположены гены черной окраски и зачаточных крыльев, а в другой – гены серой окраски и длиннокрылости, то наблюдалось полное сцепление признаков.

При мейозе образуется два сорта гамет: в одной хромосоме расположены гены B и V, а в другой – гены b и v. При оплодотворении образуется потомство только двух типов. При полном сцеплении гены всегда передаются вместе, так как они расположены в одной хромосоме.

Неполное сцепление. В одном из экспериментов Т. Морган скрещивал черных длиннокрылых самок с серыми зачаточнокрылыми самцами . В первом поколении было получено серое длиннокрылое потомство . После этого было проведено анализирующее скрещивание, однако из первого поколения были взяты не самцы, а самки , которых скрестили с черными зачаточнокрылыми самцами.

При таком скрещивании было получено четыре разновидности фенотипов потомков: черные длиннокрылые (41,5%), серые с зачаточными крыльями (41,5%), черные с зачаточными крыльями (8,5%) и серые длиннокрылые (8,5%). В данном случае сцепление оказывается неполным, т.е. происходит перекомбинация генов, локализованных в одной хромосоме.

Причиной неполного сцепления является кроссинговер, который цитологически был открыт Ф. Янссеном в 1909 г. Т. Морган, опираясь на эти наблюдения Ф. Янссена, высказал гипотезу, что гомологичные хромосомы обмениваются участками, несущими блоки генов. Если сцепленные гены лежат в одной хромосоме и у гетерозигот при образовании гамет происходит рекомбинация этих генов, значит гомологичные хромосомы во время мейоза обменялись своими частями. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером (англ. crossing over означает образование перекреста). Особей с новым сочетанием признаков, образовавшимся в результате кроссинговера, называют кроссоверами.

В результате исследований Т. Морган пришел к выводу, что количество появления новых форм зависит от частоты перекреста, которая определяется по формуле:

Частота перекреста = число кроссоверных форм ∙ 100% / Общее число потомков

Морган установил, что частота перекреста между определенной парой генов – относительно постоянная величина, но различная для разных пар генов. На основании этого был сделан вывод о том, что по частоте перекреста можно судить о расстоянии между генами.

Расстояние между генами определяется в процентах кроссинговера. За единицу его берется 1% кроссинговера, а сама единица называется морганидой (в честь Т. Моргана).

Гаметы, в которые попали хроматиды, не претерпевшие кроссинговер, называются некроссоверными и их обычно больше. Гаметы, в которые попали хроматиды, претерпевшие кроссинговер, называются кроссоверными и их обычно меньше.

Гены, локализованные в одной хромосоме, передаются вместе (сцеплено) и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы и количество групп сцепления равно количеству пар хромосом (или гаплоидному их числу). Так, у мухи дрозофилы 8 хромосом – 4 группы сцепления, у человека 46 хромосом – 23 группы сцепления.

На частоту кроссинговера могут повлиять радиация, химические вещества, гормоны, лекарственные препараты и высокая температура. Чаще всего они повышают частоту кроссинговера. У дрозофилы кроссинговер наблюдается только у самок, однако при рентгеновском облучении его можно вызвать и у самцов.

Основные положения хромосомной теории наследственности (Т. Морган с соавторами, 1911):

1. Гены расположены в хромосомах линейно в определенных локусах. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления; число групп сцепления равно гаплоидному набору хромосом.

3. Между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер).

4. Процент кроссинговера пропорционален расстоянию между генами; единица расстояния – морганида – равна 1% кроссинговера.

Картирование хромосом человека. Зная расстояние между генами, можно построить карту хромосомы. Генетическая карта хромосомы представляет собой отрезок прямой, на которой схематически обозначен порядок расположения генов и указано расстояние между ними в морганидах. Она строится на основе результатов анализирующего скрещивания.

Цитологическая карта хромосомы представляет собой фотографию или точный рисунок хромосомы, на котором отмечается последовательность расположения генов. Ее строят на основе сопоставления результатов анализирующего скрещивания и хромосомных перестроек.

Картирование хромосом человека связано с определенными трудностями и проводится с использованием методов гибридизации соматических клеток и ДНК. В настоящее время во многих странах продолжает разрабатываться единая международная программа «Геном человека». В начале 2001 года была полностью расшифрована нуклеотидная последовательность генома человека и выявлена локализация большинства генов. Дальнейшее картирование хромосом человека будет иметь не только большое научное, но и практическое значение: с помощью методов генной инженерии можно будет проводить профилактику и лечение многих наследственных болезней.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Вместе с признаками, которые наследуются независимо, должны существовать и такие, которые наследуются сцеплено друг с другом, так как они определяются генами, расположенными в одной хромосоме. Такие гены образуют группу сцепления . Количество групп сцепления в организмах определенного вида равно количеству хромосом в гаплоидном наборе (например, у дрозофилы 1пара = 4, у человека 1пара = 23).

Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

(Кроссоверные гаметы - гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Кроссинговер - обмен участками гомологичных хромосом в процессе клеточного деления, преимущественно в профазе первого мейотического разделения, иногда в митозе. Опытами Т. Моргана, К. Бриджеса и А. Стертеванта было показано, что нет абсолютно полного сцепления генов, при котором гены передавались бы всегда вместе. Вероятность того, что два гена, локализованные в одной хромосоме, не разойдутся в процессе мейоза, колеблется в пределах 1-0,5. В природе преобладает неполное сцепление, обусловленное перекрёстком гомологичных хромосом и рекомбинацией генов. Цитологическая картина кроссинговера была впервые описана датским ученым Ф. Янсенсом.

Кроссинговер проявляется только тогда, когда гены находятся в гетерозиготном состоянии (АВ / ав). Если гены находятся в гомозиготном состоянии (АВ / АВ или аВ/аВ), обмен идентичными участками не дает новых комбинаций генов в гаметах и в поколении. Частота (процент) перекрёстка между генами зависит от расстояния между ними: чем дальше они располагаются друг от друга, тем чаще происходит кроссинговер. Т. Морган предложил расстояние между генами измерять кроссинговером в процентах, по формуле:

N1/N2 X 100 = % кроссинговера ,

где N1 - общее число особей в F;

N2 - суммарное число кроссоверных особей.

Отрезок хромосомы, на котором осуществляется 1% кроссинговера, равна одной морганиде (условная мера расстояния между генами). Частоту кроссинговера используют для того, чтобы определить взаимное расположение генов и расстояние между ними. Для построения генетической карты человека пользуются новыми технологиями, кроме того построены цитогенетические карты хромосом.

Различают несколько типов кроссинговера: двойной, множественный (сложный), неправильный, неровный.

Кроссинговер приводит к новому сочетанию генов, вызывает изменение фенотипа. Кроме того, он наряду с мутациями является важным фактором эволюции организмов.)

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

· гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;

· каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

· гены расположены в хромосомах в определенной линейной последовательности;

· гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

· сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;

· каждый вид имеет характерный только для него набор хромосом - кариотип.

Наследование пола и признаков, сцепленных с полом. Половые хромосомы и их роль в детерминации пола.Наследование пола. Пол особи - это сложный признак, формируемый как действием генов, так и условиями развития. У человека одна из 23 пар хромосом - половые хромосомы, обозначаемые как X и Y. Женщины - гомогаметный пол, т.е. имеют две X-хромосомы, одну - полученную от матери, а другую - от отца. Мужчины - гетерогаметный пол, имеют одну X- одну Y-хромосому, причем X передается от матери, а Y - от отца. Заметим, что гетерогаметный пол не всегда обязательно мужской; например, у птиц это самки, в то время как самцы гомогаметны. Имеются и другие механизмы детерминации пола. Так, у ряда насекомых Y-хромосома отсутствует. При этом один из полов развивается при наличии двух X-хромосом, а другой - при наличии одной X-хромосомы. У некоторых насекомых пол определяется соотношением числа аутосом и половых хромосом. У ряда животных может происходить т.н. переопределение пола, когда в зависимости от факторов внешней среды зигота развивается либо в самку, либо в самца. Развитие пола у растений имеет столь же разнообразные генетические механизмы, как и у животных.

Признаки, сцепленные с X-хромосомой . Если ген находится в половой хромосоме (его называют сцепленным с полом), то проявление его у потомков следует иным, чем для аутосомых генов, правилам. Рассмотрим гены, находящиеся в X-хромосоме. Дочь наследует две X-хромосомы: одну - от матери, а другую - от отца. Сын же имеет только одну X-хромосому - от матери; от отца же он получает Y-хромосому. Поэтому отец передает гены, имеющиеся в его X-хромосоме, только своей дочери, сын же их получить не может. Поскольку X-хромосома более "богата" генами по сравнению с Y-хромосомой, то в этом смысле дочь генетически более схожа с отцом, чем сын; сын же более схож с матерью, чем с отцом.

Один из исторически наиболее известных сцепленных с полом признаков у человека - это гемофилия, приводящая к тяжелым кровотечениям при малейших порезах и обширным гематомам при ушибах. Она вызывается рецессивным дефектным аллелем 0, блокирующим синтез белка, необходимого для свертывания крови. Ген этого белка локализован в Х-хромосоме. Гетерозиготная женщина +0 (+ означает нормальный активный аллель, доминантный по отношению к аллелю гемофилии 0) не заболевает гемофилией, и ее дочери тоже, если у отца нет этой патологии. Однако ее сын может получить аллель 0, и тогда у него развивается гемофилия. Рецессивные заболевания, вызываемые генами X-хромосомы, намного реже поражают женщин, чем мужчин, поскольку у них заболевание проявляется только при гомозиготности - наличии рецессивного аллеля в каждой из двух гомологичных X-хромосом; мужчины заболевают во всех случаях, когда их единственная X-хромосома несет дефектный аллель.

Сцепление с Y-хромосомой. Сведения о генах, находящихся в Y-хромосоме, весьма скудны. Предполагается, что она практически не несет генов, обусловливающих синтез белков, необходимых для функционирования клетки. Но она играет ключевую роль в развитии мужского фенотипа. Отсутствие Y-хромосомы при наличии только одной X-хромосомы приводит к т.н. синдрому Тернера: развитию женского фенотипа с плохо развитыми первичными и вторичными половыми признаками и другими отклонениями от нормы. Встречаются мужчины с добавочной Y-хромосомой (XYY); они высокого роста, агрессивны и нередко аномального поведения. В Y-хромосоме выявлено несколько генов, ответственных за регуляцию синтеза специфических ферментов и гормонов, и нарушения в них приводят к патологиям полового развития. Имеется ряд морфологических признаков, которые, как полагают, определяются генами Y-хромосомы; среди них - развитие волосяного покрова ушей. Подобного рода признаки передаются только по мужской линии: от отца к сыну.

Генетическая детерминация пола, определяемая набором половых хромосом, поддерживает равное воспроизводство самок и самцов. Действительно, женские яйцеклетки содержат только X-хромосому, поскольку женщины имеют генотип XX по половым хромосомам. Генотип же мужчин - XY, и потому рождение девочки или мальчика в каждом конкретном случае определяется тем, несет ли спермий X- или Y-хромосому. Поскольку же в процессе мейоза хромосомы имеют равные шансы попасть в гамету, то половина гамет, производимых индивидами мужского пола, содержит X-, а половина - Y-хромосому. Поэтому половина потомков ожидается одного пола, а половина - другого.

Следует подчеркнуть, что предсказать заранее рождение мальчика или девочки невозможно, поскольку невозможно предугадать, какая мужская половая клетка будет участвовать в оплодотворении яйцеклетки: несущая X- или Y-хромосому. Поэтому наличие большего или меньшего числа мальчиков в семье - дело случая.

В 1911 -1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя на мухах-дрозофилах. Они учитывали две пары альтернативных признаков: серый (В) и черный (Ь) цвет тела и нормальные (V) и короткие (v) крылья. При скрещивании гомозиготных особей с серым цветом тела и нормальными крыльями с мухами с черным цветом тела и короткими крыльями получили единообразие гибридов первого поколения - мух с серым телом и нормальными крыльями. Подтвердился I закон Менделя.

Морган ожидал получить, согласно третьему закону Менделя, мух четырех разных фенотипов в равном количестве (по 25%), а получил двух фенотипов (по 50% каждого). Морган пришел к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, в каждой хромосоме содержится большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе (сцепленно). Цитологические основы этого явления можно пояснить следующей схемой (рис. 1). Одна из пары гомологичных хромосом содержит два доминантных гена (BV), а другая - два рецессивных (bv). При мейозе хромосома с генами BV попадет в одну гамету, а хромосома с генами bv в другую.

Рис. 1. Схема расхождения гомологичных хромосом в мейозе при полном сцеплении.

Таким образом, у дигетерозиготного организма образуются не четыре типа гамет (когда гены расположены в разных хромосомах), а только два, и, следовательно, потомки будут иметь два сочетания признаков (как у родителей).

Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы, и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи-дрозофилы всего 8 хромосом - 4 труппы сцепления, у человека 46 хромосом - 23 группы сцепления.

Если гены, локализованные в одной хромосоме, передаются всегда вместе, то такое сцепление называется пол ным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку мухи-дрозофилы скрестить с рецессивным самцом, результат будет следующий:

Морган предполагал получить опять мух четырех фенотипов по 25%, а получил потомков четырех фенотипов, но в другом соотношении: по 41,5% особей с серым телом и нормальными крыльями и с черным телом и короткими крыльями и по 8,5% мух с серым телом и короткими крыльями и с черным телом и нормальными крыльями. В этом случае сцепление ге нов неполное, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера, которое заключается в обмене участками гомологичных хроматид в процессе их конъюгации в профазе мейоза I (рис. 2). Кроссинговер у гетерозиготных организмов приводит к перекомбинации генетического материала.

Рис. 2. Схема кроссинговера

Каждая из образовавшихся хроматид попадает в отдельную гамету. Образуются 4 типа гамет, но в отличие от свободного комбинирования их процентное соотношение будет неравным, так как кроссинговер происходит не всегда. Частота кроссииговера зависит от расстояния между генами: чем больше расстояние, тем чаще может происходить кроссинговер. Расстояние между генами определяется в процентах кроссииговера - 1 морганида равна 1 % кроссинговера.

Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. Неполное сцепление наблюдается тогда, когда происходит перекомбинация генов (кроссинговер), расположенных в одной хромосоме. Если гены расположены в одной хромосоме и кроссинговер не происходит, сцепление будет полным. Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.

Основные положения хромосомной теории наслед ственности:

Гены расположены в хромосомах линейно в определенных локусах (участках); аллельные гены занимают одинаковые локусы в гомологичных хромосомах;

Гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;

Между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);

Расстояние между генами пропорционально проценту кроссииговера и выражается в морганидах.

Пол организма - это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы - кариотип. Различают хромосомы, одинаковые для обоих полов - аутосомы, и половые хромосомы.

В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы - Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма (рис. 3).

Рис. 3. Схема определения пола у человека. Половина сперматозоидов несет X -хромосому, а другая половина - Y -хромосому. Пол ребенка зависит от того, какой сперматозоид оплодотворит яйцеклетку

У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным - мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский - гетерогаметен.

Признаки, сцепленные с полом

Это признаки, которые кодируются генами, находящимися на половых хромосомах. У человека признаки, кодируемые генами Х-хромосомы, могут проявляться у представителей обоих полов, а кодируемые генами Y-хромосомы - только у мужчин.

Следует иметь в виду, что в мужском генотипе только одна Х-хромосома, которая почти не содержит участков, гомологичных с Y-хромосомой, поэтому все локализованные в Х-хромосоме гены, в том числе и рецессивные, проявляются в фенотипе в первом же поколении.

В половых хромосомах содержатся гены, регулирующие проявление не только половых признаков. Х-хромосома имеет гены, отвечающие за свертываемость крови, цветовое восприятие, синтез ряда ферментов. В Y-хромосоме содержится ряд генов, контролирующих признаки, наследуемые по мужской линии (голандрические признаки): волосистость ушной раковины, наличие кожной перепонки между пальцами и др. Известно очень мало генов, общих для Х- и Y-хромосом.

Различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

Х-сцепленное наследование

Так как Х-хромосома присутствует в кариотипе каждого человека, то и признаки, наследуемые сцеплено с Х-хромосомой, проявляются у представителей обоих полов. Женщины получают эти гены от обоих родителей и через свои гаметы передают их потомкам. Мужчины получают Х-хромосому от матери и передают ее своему потомству женского пола.

Различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. У человека Х-сцепленный доминантный признак передается матерью всему потомству. Мужчина передает свой Х-сцепленный доминантный признак лишь своим дочерям. Х-сцепленный рецессивный признак у женщин проявляется лишь при получении ими соответствующего аллеля от обоих родителей. У мужчин он развивается при получении рецессивного аллеля от матери. Женщины передают рецессивный аллель потомкам обоих полов, а мужчины - только дочерям.

При Х-сцепленном наследовании возможен промежуточный характер проявления признака у гетерозигот.

Y-сцепленные гены присутствуют в генотипе только мужчин и передаются из поколения в поколение от отца к сыну.