Привести к функции острого угла. Тригонометрические функции. Тригонометрические функции числового аргумента

В дальнейшем десятичный логарифм именуется просто логарифмом.

Логарифм единицы равен нулю.

Логарифмы чисел 10 , 100 , 1000 и т.д. равны 1 ,2 ,3 и т.д., т.е. имеют столько положительных единиц, сколько нулей стоит после единицы.

Логарифмы чисел 0,1 ; 0,01 ; 0,001 и т.д. равны -1 , -2 , -3 и т.д., т.е. имеют столько отрицательных единиц, сколько нулей стоит перед единицей (считая и нуль целых).

Логарифмы остальных чисел имеют дробную часть, именуемую мантиссой . Целая часть логарифма называется характеристикой .

Числа, большие единицы, имеют положительные логарифмы. Положительные числа, меньшие единицы 1 , имеют отрицательные логарифмы.

Например 2 , lg0,5=-0,30103, lg0,005=-2,30103 .

Отрицательные логарифмы для большего удобства нахождения логарифма по числу и числа по логарифму представляются не в вышеприведенной «естественной » форме, а в «искусственной «. Отрицательный логарифм в искусственной форме имеет положительную мантиссу и отрицательную характеристику .

Например, lg0,005=3,69897 . Эта запись означает, что lg0,005=-3+0,69897=-2,30103 .

Чтобы перевести отрицательный логарифм из естественной формы в искусственную, нужно:

1 . На единицу увеличить абсолютную величину его характеристики;
2 . Полученное число снабдить знаком минус сверху;
3 . Все цифры мантиссы, кроме последней из цифр, не равных нулю, вычитать из девяти; последнюю, не равную нулю цифру вычитать из десяти. Получаемые разности записываются на тех же местах мантиссы, где стояли вычитаемые цифры. Нули на конце остаются нетронутыми.

Пример 1 . lg0,05=-1,30103 привести к искусственной форме:
1 . Абсолютную величину характеристики 1 увеличиваем на 1 ; получаем 2 ;
2 . Пишем характеристику искусственной формы в виде 2 и отделяем ее запятой;
3 . Вычитаем первую цифру мантиссы 3 из 9 ; получаем 6 ; записываем 6 на первом месте после запятой. Таким же образом на следующих местах появляются цифры 9(=9-0) , 8(=9-1) , 9(=9-0) и 7(=10-3) .
В результате получаем:

-1,30103=2,69897 .

Пример 2 . -0,18350 представить в искусственной форме:
1 . Увеличиваем 0 на 1 , получаем 1 ;
2 . Имеем 1 ;
3 . Вычитаем цифры 1 ,8 ,3 из 9 ; цифру 5 из 10 ; нуль на конце остается не тронутым.
В результате получаем:

-0,18350=1,81650 .

Чтобы перевести отрицательный логарифм из искусственной формы в естественную, нужно:
1 . На единицу уменьшить абсолютную величину его характеристики;
2 . Полученное число снабдить знаком минус слева;
3 . С цифрами мантиссы поступать, как в случае перехода от естественной формы к искусственной.

Пример 3 . 4,689 00 представить в естественной форме:
1 . 4-1=3 ;
2 . Имеем -3 ;
3 . Вычитаем цифры из мантиссы 6 ,8 и 9 ; цифру 9 из 10 ; два нуля остаются не тронутыми.
В результате получаем:

4,689 00=-3,311 00 .

1 Отрицательные числа вовсе не имеют действительных логарифмов .
2 Все дальнейшие равенства — приближенные с точностью до половины единицы последнего выписанного знака .

Нередко берут цифру десять. Логарифмы чисел по основанию десять именуют десятичными . При проведении вычислений с десятичным логарифмом общепринято оперировать знаком lg , а не log ; при этом число десять, определяющие основание, не указывают. Так, заменяем log 10 105 на упрощенное lg105 ; а log 10 2 на lg2 .

Для десятичных логарифмов типичны те же особенности, которые есть у логарифмов при основании, большем единицы. А именно, десятичные логарифмы характеризуются исключительно для положительных чисел. Десятичные логарифмы чисел, больших единицы, положительны, а чисел, меньших единицы, отрицательны; из двух не отрицательных чисел большему эквивалентен и больший десятичный логарифм и т. д. Дополнительно, десятичные логарифмы имеют отличительные черты и своеобразные признаки, которыми и поясняется, зачем в качестве основания логарифмов комфортно предпочитать именно цифру десять.

Перед тем как разобрать эти свойства, ознакомимся с нижеследующими формулировками.

Целая часть десятичного логарифма числа а именуется характеристикой , а дробная — мантиссой этого логарифма.

Характеристика десятичного логарифма числа а указывается как , а мантисса как {lg а }.

Возьмем, скажем, lg 2 ≈ 0,3010.Соответственно = 0, {lg 2} ≈ 0,3010.

Подобно и для lg 543,1 ≈2,7349. Соответственно, = 2, {lg 543,1}≈ 0,7349.

Достаточно повсеместно употребляется вычисление десятичных логарифмов положительных чисел по таблицам.

Характерные признаки десятичных логарифмов.

Первый признак десятичного логарифма. целого не отрицательного числа, представленного единицей со следующими нулями, есть целое положительное число, равное численности нулей в записи выбранного числа.

Возьмем, lg 100 = 2, lg 1 00000 = 5.

Обобщенно, если

То а = 10 n , из чего получаем

lg a = lg 10 n = n lg 10 = п .

Второй признак. Десятичный логарифм положительной десятичной дроби , показанный единицей с предыдущими нулями, равен - п , где п - численность нулей в представлении этого числа, учитывая и нуль целых.

Рассмотрим, lg 0,001 = - 3, lg 0,000001 =-6.

Обобщенно, если

,

То a = 10 -n и получается

lga= lg 10 n =-n lg 10 =-п

Третий признак. Характеристика десятичного логарифма не отрицательного числа, большего единицы, равна численности цифр в целой части этого числа исключая одну.

Разберем данный признак 1) Характеристика логарифма lg 75,631 приравнена к 1.

И правда, 10 < 75,631 < 100. Из этого можно сделать вывод

lg 10 < lg 75,631 < lg 100,

1 < lg 75,631 < 2.

Отсюда следует,

lg 75,631 = 1 +б,

Смещение запятой в десятичной дроби вправо или влево равнозначно операции перемножения этой дроби на степень числа десять с целым показателем п (положительным или отрицательным). И следовательно, при смещении запятой в положительной десятичной дроби влево или вправо мантисса десятичного логарифма этой дроби не меняется.

Так, {lg 0,0053} = {lg 0,53} = {lg 0,0000053}.

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪.

Таким образом (поменяв местами роли переменных x и y ), заметим, что

arccos х есть дуга (или угол), взятая (взятый) в промежутке от 0 до :

косинус которой (которого) равен x :

cos(arccos x) = x , где -1 .

Например, arccos 0= , arccos .

Функция, обратная функции y = tg x в интервале - < x < , называется арктангенсом :

x = arctg y .

Функция, обратная функции y = ctg x в интервале (0, ), называется арккотангенсом :

x = arcctg y .

Обратные тригонометрические функции используются при решении тригонометрических уравнений.

Тригонометрическими называют уравнения, содержащие неизвестное под знаками тригонометрических функций.

Рассмотрим решения простейших из них:

sin x=a; cos x =a; tg x=a; ctg x=a.

Решить тригонометрическое уравнение – это значит найти все его корни.

Корнем тригонометрического уравнения называется такое значение входящего в него неизвестного, которое удовлетворяет этому уравнению.

Рассмотрим уравнение sin x=a.

При а =1 уравнение имеет решения .

При а

При уравнение sin x=a имеет бесконечное множество решений.

Период синуса равен 2π, поэтому достаточно найти все решения этого уравнения на отрезке длины 2π. Множество решений уравнения sinx=a имеет вид

Пример . Решить уравнение .

Решение . По формуле получаем:

Рассмотрим уравнение cos x =a .

При и это уравнение не имеет решений, так как .

При а =1 уравнение имеет решения .

При а = -1 уравнение имеет решения .

При а =0, .

Чтобы записать все решения этого уравнения, необходимо, учитывая периодичность косинуса, прибавить к каждому из найденных значений по 2πk. В итоге получим бесконечное множество решений

Пример . Решить уравнение .

Решение . Так как и , то

Рассмотрим уравнение tg x=a .

Период функции tg x равен π и каждое из своих значений функция принимает в промежутке длины π один раз. Выберем промежуток . По определению арктангенса, на этом промежутке решением уравнения будет . Чтобы записать все решения уравнения , необходимо к полученному решению прибавить числа вида . Следовательно, уравнение имеет решения

Пример . Решить уравнение .

Решение . Так как , то формула (3) в данном случае примет вид

Рассмотрим уравнение ctg x=a .

Период функции котангенс равен π, поэтому для нахождения всех решений этого уравнения необходимо найти их на любом отрезке длины π и прибавить к ним числа вида . Удобно взять промежуток . На нем по определению арккотангенса, . Следовательно, уравнение имеет решения

Пример . Решить уравнение .

Решение . Так как , то формула (4) в данном случае принимает вид

Примеры решения тригонометрических уравнений .

Существуют два общих метода решения тригонометрических уравнений – метод подстановки и метод разложения на множители . При решении уравнений методом подстановки очень важен выбор функции, через которую выражаются различные тригонометрические функции одного и того же неизвестного аргумента, входящие в уравнение. Предпочтение необходимо отдавать той функции, которая приводит к рациональному решению.

Рациональные уравнения , в которые входят cosx, sinx и постоянные, записываются в виде

Однородным тригонометрическим уравнением первой степени называется уравнение вида

Однородным тригонометрическим уравнением второй степени называется уравнение вида

Первое из этих уравнений имеет решения

Чтобы найти решение второго уравнения, разделим его почленно на cosx и получим

Пример . Решить уравнение

Решение . Перенесем второй член левой части уравнения в право, получим

Мы уже знаем, что если тангенсы равны, то их аргументы разнятся на величины πk , поэтому

Определения

Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

Рассмотрим два радиуса этой окружности: неподвижный (где точка) и подвижный (где точка). Пусть подвижный радиус образует с неподвижным угол.

Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом, называется синусом угла : .

Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом, называется косинусом угла : .

Таким образом, точка, являющаяся концом подвижного радиуса, образующего угол, имеет координаты.

Тангенсом угла называется отношение синуса этого угла к его косинусу: , .

Котангенсом угла называется отношение косинуса этого угла к его синусу: , .

Геометрический смысл тригонометрических функций

Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть, .

Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

Также подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

Свойства тригонометрических функций

Рассмотрим некоторые основные свойства тригонометрических функций. Остальные свойства будут рассмотрены в разделе, посвященном графикам тригонометрических функций.

Область определения и область значений

Как уже было сказано ранее, синус и косинус существуют для любых углов, т.е. областью определения этих функций является множество действительных чисел. По определению тангенс не существует для углов , а котангенс для углов, .

Поскольку синус и косинус являются ординатой и абсциссой точки на тригонометрической окружности, их значения лежат в промежутке. Областью значения тангенса и котангенса является множество действительных чисел (в этом нетрудно убедиться, глядя на оси тангенсов и котангенсов).

Четность/нечетность

Рассмотрим тригонометрические функции двух углов (который соответствует подвижному радиусу) и (который соответствует подвижному радиусу). Поскольку, значит точка имеет координаты. Поэтому, т.е. синус - функция нечетная; , т.е. косинус - функция четная; , т.е. тангенс нечетен; , т.е. котангенс также нечетен.

Промежутки знакопостоянства

Знаки тригонометрических функций для различных координатных четвертей следуют из определения этих функций. Следует отметить, что поскольку тангенс и котангенс являются отношениями синуса и косинуса, они положительны, когда синус и косинус угла имеют одинаковые знаки и отрицательны когда разные.

Периодичность


Периодичность синуса и косинуса основана на том факте, что углы, отличающиеся на целое количество полных оборотов, соответствуют одному и тому же взаимному расположению подвижного и неподвижного лучей. Соответственно и координаты точки пересечения подвижного луча и тригонометрической окружности будут одинаковы для углов, отличающихся на целое количество полных оборотов. Таким образом, периодом синуса и косинуса является и, где.

Очевидно, что также является периодом для тангенса и котангенса. Но существует ли меньший период для этих функций? Докажем, что наименьшим периодом для тангенса и котангенса является.

Рассмотрим два угла и. Оп геометрическому смыслу тангенса и котангенса, . По стороне и прилежащим к ней углам равны треугольники и, значит равны и их стороны, значит и. Аналогичным образом можно доказать, то, где. Таким образом, периодом тангенса и котангенса является.

Тригонометрические функции основных углов

Формулы тригонометрии

Для успешного решения тригонометрических задач необходимо владеть многочисленными тригонометрическими формулами. Тем не менее, нет необходимости заучивать все формулы. Знать наизусть нужно лишь самые основные, а остальные формулы нужно уметь при необходимости вывести.

Основное тригонометрическое тождество и следствия из него

Все тригонометрические функции произвольного угла связаны между собой, т.е. зная одну функции всегда можно найти остальные. Эту связь дают формулы, рассматриваемые в данном разделе.

Теорема 1 (Основное тригонометрическое тождество) . Для любого справедливо тождество

Доказательство состоит в применении теоремы Пифагора для прямоугольного треугольника с катетами, и гипотенузой.

Справедлива и более общая теорема.

Теорема 2 . Для того, чтобы два числа можно было принять за косинус и синус одного и того же вещественного угла, необходимо и достаточно, чтобы сумма их квадратов была равна единице:

Рассмотрим следствия из основного тригонометрического тождества.

Выразим синус через косинус и косинус через синус:

В данный формулах знак плюс или минус перед корнем выбирается в зависимости от четверти, в которой лежит угол.

Подставляя полученные выше формулы в формулы, определяющие тангенс и котангенс, получаем:

Разделив основное тригонометрическое тождество почленно на или получим соотвественно:

Эти соотношения можно переписать в виде:

Следующие формулы дают связь между тангенсом и котангенсом. Поскольку при, а при, то имеет место равенство:

Формулы приведения

С помощью формул приведения можно выразить значения тригонометрических функций произвольных углов через значения функций острого угла. Все формулы приведения могут быть обобщены с помощью следующего правила.

Любая тригонометрическая функция угла, по абсолютной величине равна той же функции угла, если число - четное, и ко-функции угла, если число - нечетное. При этом если функция угла, положительна, когда - острый положительный угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

Формулы суммы и разность углов

Теорема 3 . Для любых вещественных и справедливы следующие формулы:

Доказательство остальных формул основано на формулах приведения и четности/нечетности тригонометрических функций.

Что и требовалось доказать.

Теорема 4 . Для любых вещественных и, таких, что

1. , справедливы следующие формулы

2. , справедливы следующие формулы

Доказательство. По определению тангенса

Последнее преобразование получено делением числителя и знаменателя этой дроби на.

Аналогично для котангенса (числитель и знаменатель в этом случае делятся на):

Что и требовалось доказать.

Следует обратить внимание на тот факт, что правые и левые части последних равенств имеют разные области допустимых значений. Поэтому применение этих формул без ограничений на возможные значения углов может привести к неверным результатам.

Формулы двойного и половинного угла

Формулы двойного угла позволяют выразить тригонометрические функции произвольного угла через функции угла в два раза меньше исходного. Эти формулы являются следствиями формул суммы двух углов, если положить в них углы равными друг другу.

Последнюю формулу можно преобразовать с помощью основного тригонометрического тождества:

Таким образом, для косинуса двойного угла существует три формулы:

Следует отметить, что данная формула справедлива только при

Последняя формула справедлива при, .

Аналогично функциям двойного угла могут быть получены функции тройного угла. Здесь данные формулы приводятся без доказательства:

Формулы половинного угла являются следствиями формул двойного угла и позволяют выразить тригонометрические функции некоторого угла через функции угла в два раза больше исходного.