Признаки сходимости числовых рядов. Ряды для чайников. Примеры решений Верно ли обратное утверждение сходимости числового ряда

$\sum \limits _{n=1}^{\infty }a_{n} $, члены которого удовлетворяют трём условиям:

  1. $a_{n} >0,\, \, \, n\ge 1$, т.е. исходный ряд с положительными членами;
  2. члены ряда монотонно убывают, т.е. $a_{1} >a_{2} >\ldots >a_{n-1} >a_{n} >\ldots >0$;
  3. общий член ряда стремится к нулю: $\mathop{\lim }\limits_{n\to \infty } a_{n} =0$.

Пусть существует непрерывная, монотонно убывающая, определ ённая при $x\ge 1$ функция f(x), такая что $f\left(1\right)=a_{1} ,\, \, \, f\left(2\right)=a_{2} ,\, \, \, \ldots ;\, \, \, f\left(n\right)=a_{n} ,\, \, \, \ldots $, т.е. $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }f(n) $. Тогда, если несобственный интеграл $\int \limits _{1}^{+\infty }f\left(x\right){\rm d}x $ сходится, то ряд $\sum \limits _{n=1}^{\infty }a_{n} $ тоже сходится; если указанный интеграл расходится, то этот ряд расходится.

Замечание 1

Теорема остаётся верной и тогда, когда её условия выполняются не для всех членов ряда, а лишь начиная с k-го ($n\ge k$), в таком случае рассматривается интеграл $\int \limits _{k}^{+\infty }f\left(x\right)\, {\rm d}x $.

Замечание 2

Интегральный признак Коши существенно облегчает исследование сходимости ряда, так как позволяет свести этот вопрос к выяснению сходимости интеграла от удачно подобранной соответствующей функции $f(x)$, что легко выполняется, применяя методы интегрального исчисления.

Теорема 2 (радикальный признак Коши)

Пусть дан ряд с положительными членами $\sum \limits _{n=1}^{\infty }a_{n} ,\, \, \, a_{n} >0$ и пусть существует конечный предел $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l.$Тогда:

  1. если $l
  2. если $l>1$, ряд расходится,
  3. если $l=1$, то для выяснения сходимости ряда радикальный признак Коши не применим.

Доказательство

  1. Пусть существует $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l0$, то $l\ge 0$. Рассмотрим число q такое, что $l 0$ существует $N=N({\rm \varepsilon })\in $N, начиная с которого $\forall n \ge N$ выполняется неравенство $\left|\sqrt[{n}]{a_{n} } -l\right|

    $\sum \limits _{n=1}^{\infty }a_{n} =\, a_{1} +\, a_{2} +\ldots +\, a_{N} +\, a_{N+1} +a_{N+2} +...$ . (1)

    Составим новый ряд

    $\sum \limits _{k=0}^{\infty }q^{N+k} =q^{N} +\, q^{N+1} +q^{N+2} +\ldots $ (2)

    Ряд (2) представляет собой ряд геометрической прогрессии со знаменателем $q$: $0\le q

  2. Пусть существует $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l>1$. Начиная с некоторого $N=N({\rm \varepsilon })\in {\rm N}$ $\forall n\ge N$, $\, \, \sqrt[{n}]{a_{n} } >1\, \, \, \Rightarrow \, \, \, \, a_{n} >1$, т.е. $\mathop{\lim }\limits_{n\to \infty } a_{n} \ne 0$, тогда исходный ряд расходится по необходимому признаку сходимости.
  3. Если $\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =l=1$ (или не существует), то для выяснения сходимости ряда радикальный признак Коши не применим.

Теорема доказана.

Теорема 3 (признак Даламбера)

Пусть дан ряд с положительными членами $\sum \limits _{n=1}^{\infty }a_{n} \, \, \, (a_{n} >0) $, и существует конечный предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l$, тогда:

  1. ряд $\sum \limits _{n=1}^{\infty }a_{n} $ сходится, если $l
  2. ряд $\sum \limits _{n=1}^{\infty }a_{n} $ расходится, если $l>1$,
  3. если $l=1$, то для выяснения сходимости ряда признак Даламбера не применим.

Доказательство

  1. Пусть предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l$ существует и $0\le l 0$ существует $N({\rm \varepsilon })\in $N, начиная с которого $\forall n\ge N=N({\rm \varepsilon })$ выполняется неравенство $\left|\frac{a_{n+1}} {a_n}-l\right|

    Запишем исходный ряд $\sum \limits _{n=1}^{\infty }a_{n} \, \, \, (a_{n} >0) $ в виде: $\sum \limits _{n=1}^{\infty }a_{n} =a_{1} +a_{2} +\ldots +a_{N} +a_{N+1} +a_{N+2} \, +...$. Рассмотрим новый ряд $\sum \limits _{k=0}^{\infty }a_{N} \cdot q^{k} =a_{N} +qa_{N} +q^{2} a_{N} +\ldots $ . Этот ряд есть ряд геометрической прогрессии с $b_{1} =a_{N} $ и $0

  2. Пусть $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =l>1$. Рассмотрим число q такое, что $l>q>1$. ${\rm \varepsilon }=l-q>0$, из определения предела следует:$-{\rm \varepsilon } q > 1.$Таким образом, $a_{n+1} >a_n > 0$ и при $n\to \infty $ общий член ряда $a_{n} $ не стремится к 0, т.е. ряд $\sum \limits _{n=1}^{\infty }a_n $ расходится, так как не выполняется необходимое условие сходимости ряда. Вторая часть теоремы доказана.
  3. Если $l=1$,$\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $ равен единице или не существует, в этом случае для выяснения сходимости ряда признак Даламбера не применим.

Пример 1

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \frac{n}{2^{n} } $.

Решение. Обозначим $\frac{n}{2^{n} } =a_{n} $, $a_{n} >0$; найдём $a_{n+1} =\frac{n+1}{2^{n+1} } $. Составим предел $l=\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{(n+1)\cdot 2^{n} }{2^{n} \cdot 2\cdot n} =\frac{1}{2} \mathop{\lim }\limits_{n\to \infty } \frac{n+1}{n} =\frac{1}{2}

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \frac{n}{2^{n} } $сходится.

Пример 2

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \frac{n!}{5^{n} } $.

Решение. Обозначим $\frac{n!}{5^{n} } =a_{n} ,a_{n} >0$; найдём $a_{n+1} =\frac{(n+1)!}{5^{n+1} } $. Составим предел

т.е. по признаку Даламбера ряд расходится.

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \frac{n!}{5^{n} } $ расходится.

Пример 3

Исследовать на сходимость ряд $\sum \limits _{n=1}^{\infty }\, \left(\frac{n}{2n+1} \right)^{n} $

Решение. Обозначим $\left(\frac{n}{2n+1} \right)^{n} =a_{n} ,^{} a_{n} >0$. Составим предел:

$l=\mathop{\lim }\limits_{n\to \infty } \sqrt[{n}]{a_{n} } =\mathop{\lim }\limits_{n\to } \frac{n}{2n+1} =\frac{1}{2}

Ответ: ряд $\sum \limits _{n=1}^{\infty }\, \left(\frac{n}{2n+1} \right)^{n} $сходится.

Определение 1.1. Числовым рядом с общим членом называют последовательность чисел соединенных знаком сложения, т. е. выражение вида:

Такой ряд записывают также в виде

Пример 1.1. Если то ряд имеет вид:

Иногда при записи ряда выписывают только несколько его первых членов. Это делают лишь тогда, когда закономерность, характерная для членов ряда, легко усматривается. Строго говоря, такой способ задания ряда не является математически корректным, так как получение формулы общего члена по нескольким первым членам ряда - задача, не имеющая однозначного решения.

Пример 1.2. Напишем одну из возможных формул для общего члена ряда, зная его первые 4 члена:

Решение. Рассмотрим сначала последовательность числителей 2, 5, 8, 11. Они образуют арифметическую прогрессию, первый член которой равен 2, а разность равна 3. Это позволяет в качестве общего выражения для числителя взять формулу общего члена арифметической прогрессии: Знаменатели 2, 6, 18, 54 образуют геометрическую прогрессию с

первым членом 2 и знаменателем 3. В качестве их общего выражения можно взять формулу общего члена геометрической прогрессии Итак, общий член ряда будет иметь следующий вид:

Следует отметить, что в качестве общего члена можно было бы принять и более сложное выражение

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится

Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

Необходимый признак сходимости ряда

ТЕОРЕМА 1

Если ряд сходится, то его общий член стремится к нулю при
, т.е.
.

Кратко : если ряд сходится, то его общий член стремится к нулю.

Доказательство. Пусть ряд сходится и его сумма равна . Для любого частичная сумма



.

Тогда . 

Из доказанного необходимого признака сходимости вытекает достаточный признак расходимости ряда: если при
общий член ряда не стремится к нулю, то ряд расходится.

Пример 4.

Для этого ряда общий член
и
.

Следовательно, данный ряд расходится.

Пример 5. Исследовать на сходимость ряд

Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при
, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

Знакоположительные числовые ряды

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2 (Критерий сходимости знакоположительного ряда)

Для сходимости знакоположительного ряда необходимо и достаточно, чтобы все его частичные суммы были ограничены сверху одним и тем же числом.

Доказательство. Так как для любого
, то, т.е. последовательность
– монотонно возрастающая, поэтому для существования предела необходимо и достаточно ограничение последовательности сверху каким-либо числом.

Эта теорема в большей степени имеет теоретическое, чем практическое значение. Далее приведены другие признаки сходимости, имеющие большее применение.

Достаточные признаки сходимости знакоположительных рядов

ТЕОРЕМА 3 (Первый признак сравнения)

Пусть даны два знакоположительных ряда:

(1)

(2)

причем, начиная с некоторого номера
, для любого
выполняется неравенство
Тогда:

Схематическая запись первого признака сравнения:

сход.сход.

расх.расх.

Доказательство. 1) Так как отбрасывание конечного числа членов ряда не влияет на его сходимость, докажем теорему для случая
. Пусть для любого
имеем


, (3)

где
и
- соответственно частичные суммы рядов (1) и (2).

Если ряд (2) сходится, то существует число
. Поскольку при этом последовательность
- возрастающая, ее предел больше любого из ее членов, т.е.
для любого . Отсюда из неравенства (3) следует
. Таким образом, все частичные суммы ряда (1) ограничены сверху числом . Согласно теореме 2 этот ряд сходится.

2) Действительно, если бы ряд (2) сходился, то по признаку сравнения сходился бы и ряд (1). 

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:


3) - ряд Дирихле (он сходится при
и расходится при
).

Кроме этого часто используют ряды, которые можно получить с помощью следующих очевидных неравенств:


,

,
,
.

Рассмотрим на конкретных примерах схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 6. Исследовать ряд
на сходимость.

Шаг 1. Проверим знакоположительность ряда:
для

Шаг 2. Проверим выполнение необходимого признака сходимости ряда:
. Так как
, то

(если вычисление предела вызывает трудности, то этот шаг можно пропустить).

Шаг 3. Используем первый признак сравнения. Для этого подберем для данного ряда ряд-эталон. Так как
, то в качестве эталона можно взять ряд
, т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени
. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 7. Исследовать ряд
на сходимость.

1) Данный ряд знакоположительный, так как
для

2) Необходимый признак сходимости ряда выполняется, ибо

3) Подберем ряд-эталон. Так как
, то в качестве эталона можно взять геометрический ряд

. Этот ряд сходится, следовательно, сходится и исследуемый ряд.

ТЕОРЕМА 4 (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел
, то
ряды сходятся или расходятся одновременно.

Доказательство. Пусть ряд (2) сходится; докажем, что тогда сходится и ряд (1). Выберем какое-нибудь число , большее, чем . Из условия
вытекает существование такого номера , что для всех
справедливо неравенство
, или, что то же,

(4)

Отбросив в рядах (1) и (2) первые членов (что не влияет на сходимость), можно считать, что неравенство (4) справедливо для всех
Но ряд с общим членом
сходится в силу сходимости ряда (2). Согласно первому признаку сравнения, из неравенства (4) следует сходимость ряда (1).

Пусть теперь сходится ряд (1); докажем сходимость ряда (2). Для этого следует просто поменять ролями заданные ряды. Так как

то, по доказанному выше, из сходимости ряда (1) должна следовать сходимость ряда (2). 

Если
при
(необходимый признак сходимости), то из условия
, следует, чтои– бесконечно малые одного порядка малости (эквивалентные при
). Следовательно, если дан ряд , где
при
, то для этого ряда можно брать ряд-эталон , где общий член имеет тот же порядок малости, что и общий член данного ряда.

При выборе ряда-эталона можно пользоваться следующей таблицей эквивалентных бесконечно малых при
:

1)
; 4)
;

2)
; 5)
;

3)
; 6)
.

Пример 8. Исследовать на сходимость ряд

.


для любого
.

Так как
, то возьмем в качестве ряда-эталона гармонический расходящийся ряд
. Поскольку предел отношения общих членовиконечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

Пример 9.
по двум признакам сравнения.

Данный ряд знакоположительный, так как
, и
. Поскольку
, то в качестве ряда-эталона можно брать гармонический ряд. Этот ряд расходится и следовательно, по первому признаку сравнения, исследуемый ряд также расходится.

Так как для данного ряда и ряда-эталона выполняется условие
(здесь использован 1-й замечательный предел), то на основании второго признака сравнения ряд
– расходится.

ТЕОРЕМА 5 (Признак Даламбера)

существует конечный предел
, то ряд сходится при
и расходится при
.

Доказательство. Пусть
. Возьмем какое-либо число, заключенное между и 1:
. Из условия
следует, что начиная с некоторого номера выполняется неравенство

;
;
(5)

Рассмотрим ряд

Согласно (5) все члены ряда (6) не превосходят соответствующих членов бесконечной геометрической прогрессии
Поскольку
, эта прогрессия является сходящейся. Отсюда в силу первого признака сравнения вытекает сходимость ряда

Случай
рассмотрите самостоятельно.

Замечания :


следует, что остаток ряда

.

    Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 10. Исследовать на сходимость ряд по признаку Даламбера.

Данный ряд знакоположительный и

.

(Здесь при вычислении дважды применено правило Лопиталя).

то по признаку Даламбера данный ряд сходится.

Пример 11. .

Данный ряд знакоположительный и
. Поскольку

то данный ряд сходится.

ТЕОРЕМА 6 (Признак Коши)

Если для знакоположительного ряда существует конечный предел
, то при
ряд сходится, а при
ряд расходится.

Доказательство аналогично теореме 5.

Замечания :


Пример 12. Исследовать на сходимость ряд
.

Данный ряд знакоположительный, так как
для любого
. Поскольку вычисление предела
вызывает определенные трудности, то проверку выполнимости необходимого признака сходимости ряда опускаем.

то по признаку Коши данный ряд расходится.

ТЕОРЕМА 7 (Интегральный признак сходимости Маклорена - Коши)

Пусть дан ряд

члены которого положительны и не возрастают:

Пусть, далее
- функция, которая определена для всех вещественных
, непрерывна, не возрастает и