Сила света i имеет единицу измерения. Что известно о силе света и формула ее расчета. Рекомендации по организации правильного освещения рабочего места

Картофель - вид многолетних клубненосных травянистых растений из рода Паслён. Клубни картофеля являются важным пищевым продуктом, в отличие от ядовитых плодов. Клубни картофеля имеют свойство зеленеть при хранении на свету, что является индикатором повышенного содержания соланина в них. Употребление в пищу одного позеленевшего клубня вместе с кожурой может привести к серьёзному отравлению. Другим индикатором повышенного содержания яда в картофеле является горьковатый вкус.

Ядовитые плоды картофеля

Клубни картофеля

Русское слово «картофель» произошло от нем. Kartoffel , которое, в свою очередь, произошло от итал. tartufo, tartufolo - трюфель. Картофель размножают вегетативно - небольшими клубнями или частями клубней. Они высаживаются на глубину от 5 до 10 см. Прорастание почек клубней в почве начинается при 5-8 °C (оптимальная температура для прорастания картофеля 15-20 °C). В естественных условиях встречается около 10 разновидностей вида картофель. Родина картофеля - Южная Америка, где до сих пор можно встретить дикорастущий картофель. Введение картофеля в культуру (сначала путём эксплуатации диких зарослей) было начато примерно 9-7 тысяч лет тому назад на территории современной Боливии. Индейцы не только употребляли картофель в пищу, но и поклонялись ему, считая одушевлённым существом. Утверждается, что в календаре инков существовал следующий способ определения дневного времени: мерилом служило время, затрачиваемое на варку картофеля - что приблизительно равнялось одному часу. То есть, в Перу говорили: прошло столько времени, сколько ушло бы на приготовление блюда из картофеля.

Аксо-мама, инкская богиня картофеля

В Европу (Испанию) картофель впервые был завезён, вероятно, испанским священником, историком и географом Сьеса де Леоном в 1551 году, при его возвращении из Перу. Первое свидетельство употребления картофеля в пищу также относится к Испании: в 1573 году он значится среди продуктов, закупленных для госпиталя Крови Иисусовой в Севилье. В дальнейшем культура распространилась в Италии, Бельгии, Германии, Нидерландах, Франции, Великобритании и других европейских странах. Сначала картофель был принят в Европе за декоративное растение, причём ядовитое. Окончательно доказал, что картофель обладает высокими вкусовыми и питательными качествами, французский агроном Антуан-Огюст Пармантье (1737-1813). С его подачи началось проникновение картофеля в провинции Франции, а затем и других стран. Ещё при жизни Пармантье это позволило победить во Франции частый прежде голод и вывести цингу. В честь Пармантье названо несколько блюд, основным ингредиентом которых является картофель.

Запеканка Пармантье из картофеля и фарша

Интересно, что, именно, неурожай картофеля, спровоцированный влиянием патогенного микроорганизма стал одной из причин массового голода, поразившего Ирландию в середине XIX века и подстегнувшего эмиграцию населения в Америку. Появление в России картофеля Императорское Вольное экономическое общество связывало с именем Петра I, который в конце XVII века прислал в столицу мешок клубней из Голландии якобы для рассылки по губерниям для выращивания. Тем не менее на протяжении всего XVIII века картофель в основном подавали только в аристократических домах. Из-за довольно частых случаев отравления плодами «чёртова яблока» крестьянское население картофель не принимало.

Монахи, сажающие картофель, на фотографии Прокудина-Горского, 1910 г.

В 1840-42 гг. по инициативе графа Павла Киселёва стали быстро увеличиваться площади, выделенные под картофель. Тиражом в 30 000 экземпляров по всей империи разослали бесплатные наставления по правильной посадке и выращиванию картофеля. «Картофельная революция» времён Николая I увенчалась успехом. К концу XIX века в России было занято под картофель более 1,5 млн га. К началу XX века этот овощ уже считался в России «вторым хлебом», то есть одним из основных продуктов питания.

Фрагмент картины художника Аркадия Пластова (1893-1972) «Сбор картофеля»

В наши дни картофель культивируется в умеренной климатической зоне по всему земному шару; клубни картофеля составляют значительную часть пищевого рациона народов Северного полушария (русских, белорусов, поляков, канадцев). Продовольственная и сельскохозяйственная организация ООН объявила 2008 год «Международным годом картофеля». В 1995 году картофель стал первым овощем, выращенным в космосе.

Клубни картофеля в основном состоят из воды (около 76%) и крахмала (около 18%), а также в небольших количествах содержат сахара, белок, минеральные соли и витамины. Всем известно о широком использовании картофеля в кулинарии. Картофель варят как очищенным, так и неочищенным («в мундире»), что позволяет сохранить максимум полезных веществ. Его также готовят на углях или на пару, тушат, жарят во фритюре и без него. Картофель используется как в простых, так и в изысканных блюдах - для приготовления картофельного салата, картофельного пюре, супов, закусок вроде чипсов, дижестивов и даже десертов.

Разнообразие блюд из картофеля

Tрадиционно в кулинарии используются свежие клубни, но в последнее время наблюдается рост доли консервированных и (химически) обработанных продуктов в западных странах. Энергетическая ценность ста граммов отваренного в мундире картофеля составляет 76 килокалорий, что равноценно аналогичному количеству кукурузной каши, банану, но проигрывает равному количеству сухой фасоли, макаронным изделиям, рису и хлебу. Энергетическая ценность картофеля, приготовленного в жире многократоно возрастает (до 7 раз для чипсов). Причиной подобного являения является впитывание картофелем жиров, а также частичная потеря воды. А продолжительная тепловая обработка в присутствии жира, в особенности во фритюре, может привести к образованию акриламида, известного канцерогена.

Несмотря на аппетитность, картофель, приготовленнй во фритюре, полезным не назовешь

Приготовление в воде приводит к потере водорастворимых веществ, в частности витамина C, особенно при варке очищенного картофеля. При варке в течение 25-30 минут в кипящей воде, очищенный картофель теряет до 40 % витамина С, неочищенный - до 10 % (в последнем случае содержание витамина С составляет 13 мг на 100 г картофеля). Другие способы приготовления ещё сильнее влияют на содержание витаминов группы B и С; пюре теряет до 80 %, приготовленное во фритюре блюдо - 60 % витамина С.

Большинство рецептов картофельных блюд требует предварительной очистки клубней. В кожице и глазках содержится алкалоид соланин. Чистка позволяет избавиться от него, а также от незрелых частей клубня. Содержание питательных веществ и витаминов картофеля в значительной степени зависит от способа приготовления. Содержание витаминов определяется, в первую очередь, способом тепловой обработки. Поэтому правильный выбор способа приготовления является непременным условием приготовления питательного и вкусного блюда из картофеля. Один из рецептов приготовления традиционного русского блюда - блинов - предполагает использование картофеля вместо муки. Также пекут и картофельный хлеб. В современной Исландии популярна водка, сделанная из картофеля.

Картофельный хлеб

При стандартном пищевом рационе картофель - один из основных поставщиков калия в организм. Однако, чтобы сохранить содержащиеся в нём ценные вещества, нужно научиться правильно его готовить. Варить картофель рекомендуется в небольшом количестве воды: при варке в неё переходит большая часть витаминов. Также перед приготовлением не стоит держать картофель в воде в течение долгого времени. После долгого хранения на свету клубни зеленеют и становятся токсичными, непригодными к употреблению.

Баварский картофельный кнёдль во время приготовления

Свежий сок клубней и картофельный крахмал применяют в качестве обволакивающего и противовоспалительного средства при желудочно-кишечных заболеваниях: язве желудка и двенадцатиперстной кишки, а также гастрите с повышенной кислотностью желудочного сока. При изжоге полезно съесть мелко нарезанную сырую картофелину. При ожогах глаз ультрафиолетовым излучением от сварки помогает накладывание на веки сырого картофеля (нарезанного или натёртого.)

Маска для лица корейского производства

В народной медицине натёртый на тёрке свежий картофель используется при экземе и других поражениях кожи. Горячие варёные растёртые клубни картофеля употребляют при заболеваниях верхних дыхательных путей и лёгких. В этом случае быстрый положительный результат даёт вдыхание пара от горячего, только что сваренного картофеля. Картофель широко используется в домашней косметике. Из него делают питательные маски для кожи лица и рук. Также из картофеля получают крахмал.

В 2005 году лидером по производству картофеля был Китай, на 2-м месте с заметным отставанием - Россия и Индия. А по производству на душу населения - Беларусь.

История картофеля. Как появился картофель в России

Название картофеля происходит от итальянского слова трюфель и латинского терратубер - земляная шишка.

С картофелем связано немало интересных историй. Рассказывают, что в 16 веке некий адмирал английской армии, доставил из Америки неизвестный овощ, которым решил удивить приятелей. Знающий повар по ошибке поджарил не картофелины, а ботву. Блюдо, конечно, никому не понравилась. Разгневанный адмирал отдал распоряжение путем сжигания, уничтожить оставшийся кусты. Приказание выполнили, после чего в золе обнаружили спеченные картофелины. Не долго думая, спеченная картофель попала на стол. Вкус оценили достойно, понравилось всем. Таким образом, картофель получила свое признание в Англии.

Во Франции в начале 18 века цветы картофеля украшали жилет самого короля, а королева украшала ими свою прическу. Так блюда из картофеля ежедневно подавали королю к столу. Правда крестьян пришлось приучать к этой культуры хитростью. Когда картофель достигала, вокруг полей ставили охрану. Думая, что охраняют нечто ценное, крестьяне втихаря выкапывали картошку, варили и ели.

В России картофель приживалась не так легко и просто. Крестьяне считали за грех употреблять привезенных неизвестно откуда чертовое яблоко, и даже под страхом каторги отказывались их разводить. В 19 веке возникали так называемые картофельные бунты. Прошло достаточно много времени, пока в народе поняли, что картошка вкусная и питательная.

Этот овощ используют для приготовления закусок, салатов, супов и вторых блюд . Картофель содержит белки, углеводы, калий, балластные вещества, витамины А, В1, с. В 100 г картофеля 70 калорий.

Порядка пары тысяч лет до человеческой эры дикая картофель играла важную роль в жизни первых обитателей Анд. Кушанье, которое спасало от голода целые поселения, носило название "чуньо" и приготавливалось с проморожених, а потом просушенных картофелин дикого картофеля. В Андах до этого времени индейцы берегут пословицу: "Вяленое мясо без "чуньо" равнозначно жизни без любви". Также блюдо использовалось как единица обмена в торговле, так как "чуньо" обменивали на фасоль, бобы, кукурузу. "Чуньо" различалось двумя видами - белое ("тунта") и черное. Рецепт "чуньо" примерно такой: картофелины выкладывали под дождь, и оставляли мокнуть в течении суток. Как только картофель достаточно промок, его выкладывали сохнуть под палящим солнцем. Для скорейшего избавления от влаги картофелины после оттаивания раскладывали в месте, которое продувал ветер и аккуратно перетаптывали ногами. Чтобы кожура с картофелин лучше слезала, их помещали между специальными мятыми шкурами. Когда готовили черное "чуньо", почищенные в вышеописанный способ картофелины промывали водой, а когда готовили "тунта", то картофелины на протяжении нескольких недель опускали в водоем, после чего оставляли на солнце, для окончательной просушки. "Тунта" сохраняла форму картофелины и была очень легкая.

После такой обработки дикая картофель теряла горький привкус и долго сохранялась. Если возникает желание наслаждаться дикой картошкой, рецепт действителен и по сей день.

В Европе картофель приживалась трудно. Не принимая во внимание то, что испанцы были первыми европейцами, которые познакомились с этой культурой, Испания была одной из последних стран в Европе, которая по-настоящему оценила овощ. Во Франции первые упоминания об обработке картофеля датированные 1600 годом. Английцы впервые экспериментировали с посадкой картофеля еще в 1589 году.

В Россию картофель попал через прибалтийский порт, непосредственно из Пруссии примерно в 1757-1761 годах. Первый официальное ввоз картофеля связан с заграничным путешествием Петра I. Он отправил из Роттердама мешок картошки для Шереметьева и приказал разбрасывать картофелины по различным областям России. К сожалению, эта попытка не увенчалась успехом. Только при Екатерине II был издан приказ об отправке во все края Росии, на расплод так называемых земляных яблок, и уже минув 15 лет картошка была территории, достигнув Сибири и даже Камчатки. Однако внедрение картофеля в крестьянское хозяйство сопровождалось скандалами и жестокими административными взысканиями. Наблюдались случаи отравления, поскольку в пищу употребляли не картофелины, а зеленые ядовитые ягоды. Заговоры против картофеля усиливались даже самим названием, так как многим слышалось "крафт тойфельс", что переводится с немецкого как - чертова сила. Для увеличения темпов употребления картофеля, крестьянам разослали специальные инструкции о разведении и употребление "земляных яблок", что дало положительный результат. Начиная с 1840 года, посевные площади для картофеля начали интенсивно увеличиваться, а вскоре минув десятки лет разновидность картофеля достигла более тысячи сортов.

Любой кто начинает изучать характеристики светильников и отдельных видов ламп, обязательно сталкивается с такими понятиями как освещенность, световой поток и сила света. Что они означают и чем отличаются друг от друга?

Давайте попробуем простыми, понятными для всех словами, разобраться в этих величинах. Как они связаны между собой, их единицы измерения и каким образом все это дело можно замерить без специальных приборов.

Что такое световой поток

В старые добрые времена, основным параметром по которому выбирали лампочку в прихожую, на кухню, в зал, была ее мощность. Никто никогда и не задумывался спрашивать в магазине про какие-то люмены или канделы.

Сегодня с бурным развитием светодиодов и других видов ламп, поход в магазин за новыми экземплярами сопровождается кучей вопросов не только по цене, но и по их характеристикам. Одним из наиболее важных параметров является световой поток.

Говоря простыми словами, световой поток – это количество света, которое дает светильник.

Однако не путайте световой поток светодиодов по отдельности, со световым потоком светильников в сборе. Они могут существенно отличаться.

Надо понимать, что световой поток это всего лишь одна из множества характеристик источника света. Причем его величина зависит:

  • от мощности источника

Вот таблица этой зависимости для светодиодных светильников:

А это таблицы их сравнения с другими видами ламп накаливания, люминесцентных, ДРЛ, ДНаТ:

Лампочка накаливания Люминесцентная лампа Галогенная ДНаТ ДРЛ

Однако есть здесь и нюансы. Светодиодные технологии до сих пор еще развиваются и вполне возможен вариант, когда светодиодные лампочки одинаковой мощности, но разных производителей, будут иметь абсолютно разные световые потоки.

Просто некоторые из них ушли более вперед, и научились снимать с одного ватта больше люмен, чем другие.

Кто-то спросит, для чего нужны все эти таблицы? Для того, чтобы вас тупо не обманывали продавцы и производители.

На коробочке красиво напишут:

  • мощность 9Вт
  • светопоток 1000Лм
  • аналог лампы накаливания 100Вт

На что вы будете смотреть в первую очередь? Правильно, на то что более знакомо и понятно - показатели аналога лампы накаливания.

Но с такой мощностью вам и близко не будет хватать прежнего света. Начнете ругаться на светодиоды и технологии их несовершенства. А дело то оказывается в недобросовестном производителе и его товаре.

  • от эффективности

То есть, насколько эффективно тот или иной источник преобразует электрическую энергию в световую. Например, обычная лампа накаливания имеет отдачу 15 Лм/Вт, а натриевая лампа высокого давления уже 150 Лм/Вт.

Получается, что это в 10 раз более эффективный источник, чем простая лампочка. При одной и той же мощности, вы имеете в 10 раз больше света!

Измеряется световой поток в Люменах – Лм.

Что такое 1 Люмен? Днем при нормальном свете, наши глаза больше всего чувствительны к зеленному цвету. К примеру, если взять два светильника с одинаковой мощностью синего и зеленого цвета, то для всех нас более ярким покажется именно зеленый.

Длина волны зеленого цвета равна 555 Нм. Такое излучение называется монохроматическим, потому что содержит в себе очень узкий диапазон.

Конечно, в реалии зеленый дополняется и другими цветами, чтобы в итоге можно было получить белый.

Но так как чувствительность человеческого глаза максимальна именно к зелени, то и люмены привязали к нему.

Так вот, световой поток в один люмен, как раз таки и соответствует источнику, который излучает свет с длиной волны 555 Нм. При этом мощность такого источника равняется 1/683 Вт.

Почему именно 1/683, а не 1 Вт для ровного счета? Величина 1/683 Вт возникла исторически. Изначально, основным источником света была обычная свечка, и излучение всех новых ламп и светильников как раз таки и сравнивались со светом от свечи.

В настоящее время эта величина 1/683 узаконена многими международными соглашениями и принята повсеместно.

Для чего нам нужна такая величина как световой поток? С ее помощью можно легко произвести расчет освещенности помещения.

Это напрямую влияет на зрение человека.

Отличие освещенности от светового потока

При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.

Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.

Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.

1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.

Допустим, у вас есть некая лампа со световым потоком в 1000 Лм. Внизу этой лампы стоит стол.

На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330

Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.

Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.

От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.

Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.

Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.

Расчет светового потока

А как узнать примерный светопоток в люменах, вообще без измерительных приборов? Здесь можно воспользоваться значениями светоотдачи и их пропорциональной зависимости к потоку.

В системе энергетических фотометрических величин аналогом силы света является сила излучения . По отношению к силе излучения сила света является редуцированной фотометрической величиной, полученной с использованием значений относительной спектральной световой эффективности монохроматического излучения для дневного зрения :

где - максимальное значение спектральной световой эффективности монохроматического излучения (фотометрический эквивалент излучения), равное 683 лм /Вт , а - спектральная плотность силы излучения, определяемая как отношение величины приходящейся на малый спектральный интервал, заключённый между и к ширине этого интервала:

Примеры

Сила света различных источников:

Примечания


Wikimedia Foundation . 2010 .

  • Яркость
  • Количество вещества

Смотреть что такое "Сила света" в других словарях:

    сила света - сила света: Физическая величина, определяемая отношением светового потока, распространяющегося от источника света внутри малого телесного угла, содержащего рассматриваемое направление, к этому углу. [ГОСТ 26148 84, статья 42] Источник …

    СИЛА СВЕТА - одна из осн. световых величин, характеризующая свечение источника видимого излучения в нек ром направлении. Равна отношению светового потока, распространяющегося от источника внутри элем. телесного угла, содержащего данное направление, к этому… … Физическая энциклопедия

    СИЛА СВЕТА - СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения силы света кандела (кд), равная силе света источника, испускающего в заданном направлении монохроматическое излучение с частотой… … Современная энциклопедия

    Сила света - СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения силы света – кандела (кд), равная силе света источника, испускающего в заданном направлении монохроматическое излучение с частотой… … Иллюстрированный энциклопедический словарь

    сила света - (Iν) Физическая величина, определяемая отношением светового потока, распространяющегося от источника света внутри малого телесного угла, содержащего рассматриваемое направление, к этому углу. [ГОСТ 26148 84] Тематики оптика, оптические… … Справочник технического переводчика

    СИЛА СВЕТА - световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения в системе СИ кандела (кд) … Большой Энциклопедический словарь

    сила света - šviesos stipris statusas T sritis fizika atitikmenys: angl. light intensity vok. Lichtstärke, f rus. сила света, f; сила света источника, f pranc. intensité lumineuse, f; intensité lumineuse de la source, f … Fizikos terminų žodynas

    сила света - световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения в системе СИ кандела (кд). * * * СИЛА СВЕТА СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица… … Энциклопедический словарь

    сила света - šviesos stipris statusas T sritis Standartizacija ir metrologija apibrėžtis Vienas pagrindinių SI dydžių, apibūdinantis regimosios šviesos šaltinio švytėjimą kuria nors kryptimi. Jis išreiškiamas šviesos srauto ir erdvinio kampo, kuriame sklinda… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    сила света I V - 2.16 сила света IV: Отношение светового потока ФV, кд, исходящего от источника и распространяющегося внутри телесного угла ω, IV = ФV/ω. Единица измерения кд. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Сила предков. Непознанная природа (количество томов: 2) , Радуга Михаил. В комплект входят следующие книги. "Непознанная природа" . По мнению автора, нет ничего таинственней и загадочней явлений, которые встречаются нам в повседневной жизни. Наш мир, в ключевых… Купить за 470 руб
  • Сила цвета и цветотерапия: Используйте преобразующие силы света и цвета для здоровья и благополучия , Лилли Саймон и Сью. Цвет - это энергия света и универсальный язык общения всех существ. Любой цвет вызывает в нас перемены на всех существ. Любой цвет вызывает в нас перемены на всех уровнях - физическом,…

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

кандела свеча (немецкая) свеча (брит.) десятичная свеча пентановая свеча пентановая свеча (мощностью 10 св) свеча Хефнера единица Карселя свеча десятичная (французская) люмен/стерадиан свеча (международная)

Подробнее о силе света

Общие сведения

Сила света - это мощность светового потока внутри определенного телесного угла. То есть, сила света определяет не весь свет в пространстве, а только свет, излучаемый в определенном направлении. В зависимости от источника света, сила света уменьшается или увеличивается по мере изменения телесного угла, хотя иногда эта величина одинакова для любого угла, если источник равномерно распространяет свет. Сила света - физическое свойство света. Этим она отличается от яркости, так как во многих случаях, когда говорят о яркости, то подразумевают субъективное ощущение, а не физическую величину. Также, яркость не зависит от телесного угла, а воспринимается в общем пространстве. Один и тот же источник с неизменной силой света может восприниматься людьми как свет разной яркости, так как это восприятие зависит от окружающих условий и от индивидуального восприятия каждого человека. Также, яркость двух источников с одинаковой силой света может восприниматься по-разному, особенно если один дает рассеянный свет, а другой - направленный. В этом случае направленный источник будет казаться ярче, несмотря на то, что сила света обоих источников одинакова.

Сила света рассматривается как единица мощности, хотя она отличается от привычного понятия о мощности тем, что она зависит не только от энергии, излучаемой источником света, но и от длины световой волны. Чувствительность людей к свету зависит от длины волны и выражается функцией относительной спектральной световой эффективности. Сила света зависит от световой эффективности, которая достигает максимума для света с длиной волны в 550 нанометров. Это - зеленый цвет. Глаз менее чувствителен к свету с большей или меньшей длиной волны.

В системе СИ сила света измеряется в канде́лах (кд). Одна кандела приблизительно равна силе света, излучаемого одной свечой. Иногда также используются устаревшая единица, свеча (или международная свеча), хотя в большинстве случаев эта единица заменена канделами. Одна свеча примерно равна одной канделе.

Если измерять силу света, используя плоскость, которая показывает распространение света, как на иллюстрации, то видно, что величина силы света зависит от направления на источник света. Например, если принять направление максимального излучения светодиодной лампы за 0°, то измеренная сила света в направлении 180° будет намного ниже, чем для 0°. Для рассеянных источников величина силы света для 0° и 180° не будет сильно отличаться, а возможно будет одинаковой.

На иллюстрации свет, распространяемый двумя источниками, красным и желтым, охватывают равную площадь. Желтый свет - рассеянный, подобно свету свечи. Его сила - примерно 100 кд, независимо от направления. Красный - наоборот, направленный. В направлении 0°, там, где излучение максимально, его сила равна 225 кд, но эта величина быстро уменьшается при отклонениях от 0°. Например, сила света равна 125 кд при направлении на источник 30° и всего 50 кд при направлении 80°.

Сила света в музеях

Сотрудники музеев измеряют силу света в музейных помещениях, чтобы определить оптимальные условия, позволяющие посетителям рассмотреть выставленные работы, и в то же время, обеспечить щадящий свет, наносящий как можно меньше вреда музейным экспонатам. Музейные экспонаты, содержащие целлюлозу и красители, особенно из натуральных материалов, портятся от продолжительного воздействия света. Целлюлоза обеспечивает прочность изделий из ткани, бумаги и дерева; часто в музеях встречается много экспонатов именно из этих материалов, поэтому свет в экспозиционных залах представляет большую опасность. Чем сильнее сила света, тем больше портятся музейные экспонаты. Кроме разрушения, свет также обесцвечивает материалы с целлюлозой, такие как бумага и ткани, или вызывает их пожелтение. Иногда бумага или холст, на которых написаны картины, портятся и разрушаются быстрее, чем краска. Это особенно проблематично, так как краски на картине восстановить проще, чем основу.

Вред, наносимый музейным экспонатам, зависит от длины световой волны. Так, например, свет в оранжевом спектре наименее вреден, а синий свет - самый опасный. То есть, свет с большей длиной волны безопаснее, чем свет с более короткими волнами. Многие музеи используют эту информацию и контролируют не только общее количество света, но и ограничивают синий свет, используя светло-оранжевые фильтры. При этом стараются выбирать фильтры настолько светлые, что они хоть и фильтруют синий свет, но позволяют посетителям в полной мере насладиться работами, выставленными в экспозиционном зале.

Важно не забывать, что экспонаты портятся не только от света. Поэтому трудно предсказать, основываясь только на силе света, как быстро происходит разрушение материалов, из которых они сделаны. Для долгосрочного хранения в музейных помещениях необходимо не только использовать слабое освещение, но и поддерживать низкую влажность, а также низкое количество кислорода в воздухе, по крайней мере, внутри выставочных витрин.

В музеях, где запрещают фотографировать со вспышкой, часто ссылаются именно на вред света для музейных экспонатов, особенно ультрафиолетового. Это практически необоснованно. Так же как и ограничение всего спектра видимого света намного менее эффективно, по сравнению с ограничением синего света, так и запрет на вспышки мало влияет на степень повреждения экспонатов светом. Во время экспериментов исследователи заметили небольшие повреждения на акварели, вызванные профессиональной студийной вспышкой только после более миллиона вспышек. Вспышка каждые четыре секунды на расстоянии 120 сантиметров от экспоната практически равносильна свету, который обычно бывает в экспозиционных залах, где контролируют количество света и фильтруют синий свет. Те, кто фотографируют в музеях, редко используют такие мощные вспышки, так как большинство посетителей - не профессиональные фотографы, и фотографируют на телефоны и компактные камеры. Каждые четыре секунды вспышки в залах работают редко. Вред от испускаемых вспышкой ультрафиолетовых лучей также в большинстве случаев невелик.

Сила света светильников

Свойства светильников принято описывать с помощью силы света, которая отличается от светового потока - величины, определяющей общее количество света, и показывающей насколько ярок этот источник в общем. Силу света удобно использовать для определения световых свойств светильников, например, светодиодных. При их покупке информация о силе света помогает определить с какой силой и в каком направлении будет распространяться свет, и подходит ли такой светильник покупателю.

Распределение силы света

Кроме самой силы света, понять, как будет вести себя лампа, помогают кривые распределения силы света. Такие диаграммы углового распределения силы света представляют собой замкнутые кривые на плоскости или в пространстве, в зависимости от симметрии лампы. Они охватывают всю область распространения света этой лампы. На диаграмме видно величину силы света в зависимости от направления ее измерения. График обычно строят либо в полярной, либо в прямоугольной системе координат, в зависимости от того, для какого источника света строится график. Его часто помещают на упаковке ламп, чтобы помочь покупателю представить, как будет себя вести лампа. Эти сведения важны дизайнерам и светотехникам, особенно тем, кто работает в области кинематографа, театра, и организации выставок и представлений. Распределение силы света также влияет на безопасность во время вождения, поэтому инженеры, разрабатывающие освещение для транспортных средств, используют кривые распределения силы света. Им необходимо соблюдать строгие правила, регулирующие распределение силы света в фарах, чтобы обеспечить максимальную безопасность на дорогах.

Пример на рисунке - в полярной системе координат. A - центр источника света, откуда свет распространяется в разные стороны, B - сила света в канделах, и C - угол измерения направления света, причем 0° - направление максимальной силы света источника.

Измерение силы и распределения силы света

Силу света и ее распределение измеряют специальными приборами, гониофотометрами и гониометрами . Существует несколько типов этих приборов, например с подвижным зеркалом, что позволяет измерять силу света под разными углами. Иногда вместо зеркала двигается сам источник света. Обычно эти устройства большие, с расстоянием между лампой и сенсором, измеряющем силу света, достигающим 25 метров. Некоторые устройства состоят из сферы с измерительным прибором, зеркалом и лампой внутри. Не все гониофотметры - большие, бывают и маленькие, которые двигаются вокруг источника света во время измерения. При покупке гониофотометра решающую роль, кроме прочих показателей, играют его цена, размер, мощность, и максимальный размер источника света, который он может измерить.

Угол половинной яркости

Угол половинной яркости, иногда также называемый углом свечения - одна из величин, помогающих описать источник света. Этот угол показывает, насколько направлен или рассеян источник света. Его определяют как угол светового конуса, при котором сила света источника равна половине его максимальной силы. В примере на рисунке максимальная сила света источника - 200 кд. Попробуем определить с помощью этого графика угол половинной яркости. Половина силы света источника равна 100 кд. Угол, при котором сила света луча достигает 100 кд., то есть угол половинной яркости, равен на графике 60+60=120° (половина угла изображена желтым цветом). Для двух источников света с одинаковым общим количеством света, более узкий угол половинной яркости означает, что его сила света больше, по сравнению со вторым источником, для углов между 0° и углом половинной яркости. То есть, у направленных источников - более узкий угол половинной яркости.

Преимущества есть и у широких, и у узких углов половинной яркости, и какой из них следует предпочесть - зависит от области применения этого источника света. Так, например, для подводного плавания стоит выбрать фонарь с узким углом половинной яркости, если в воде хорошая видимость. Если же видимость плохая, то не имеет смысла использовать такой фонарь, так как он только напрасно тратит энергию. В этом случае лучше подойдет фонарь с широким углом половинной яркости, который хорошо рассеивает свет. Также такой фонарь поможет во время фото и видео съемки, потому что он освещает более широкое пространство перед камерой. В некоторых фонарях для ныряния можно вручную настроить угол половинной яркости, что удобно, так как ныряльщики не всегда могут предвидеть, какая будет видимость там, где они ныряют.

Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.