Содержание атф в клетке. Образование энергии в клетке. При этом гликолиз является общей фазой для аэробного и анаэробного дыхания

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы. АТФ синтезируется путем окислительного и субстратного фосфорилирования. Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Субстратное фосфорилирование – непосредственная передача фосфорильной группы с макроэргической связью АДФ для синтеза АТФ.

Примеры субстратного фосфорилирования:

1. Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:


Взаимодействие промежуточного продукта цикла Кребса – макроэргического сукцинил-Ко-А – с АДФ с образованием одной молекулы АТФ.

Рассмотрим три основных этапа освобождения энергии и синтеза АТФ в организме.

Первый этап (подготовительный) включает переваривание и всасывание. На этом этапе освобождается 0,1% энергии пищевых соединений.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению. В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.



Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

Цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

Цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные. В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов. Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий.

Рассмотрим реакции цикла Кребса:

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А. Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:


IV. Это первая окислительно-восстановительная реакция.
Реакция катализируется α-оксоглутаратдегидрогеназным комплексом, состоящим из трех ферментов:

VII.

В сукциниле имеется связь, богатая энергией. Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

VIII. Это третья окислительно-восстановительная реакция:


В цикле Кребса образуются углекислый газ, протоны, электроны. Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н + и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н + и ē к О 2 , который поступает в организм в результате дыхания. В дыхательной цепи происходит образование АТФ. Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b 1 , с 1 , с, а, а 3).

Простетической группой цитохромов b 1 , с 1 , с является железосодержащий гем. Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н + .

В состав молекулы аденозинтрифосфата (АТФ) входят:

    аденин (относится к пуриновым основаниям),

    рибоза (пятиуглеродный сахар, относится к пентозам),

    три фосфатные группы (остатки фосфорной кислоты).

АТФ подвержен гидролизу, при котором происходит отщепление концевых фосфатных групп, и выделяется энергия . Обычно отщепляется только конечный фосфат, реже второй. В обоих случаях количество энергии достаточно большое (около 40 кДж/моль). Если происходит отщепление третьей группы выделяется только около 13 кДж. Поэтому говорят, что в молекуле АТФ два последних фосфата связаны макроэргической (высокоэнергетической) связью, которую обозначают знаком «~». Таким образом, строение АТФ можно выразить формулой:

Аденин – Рибоза – Ф ~ Ф ~ Ф

При отщеплении от АТФ (аденозинтрифосфата) одного остатка фосфорной кислоты образуется АДФ (аденозиндифосфат). При отщеплении двух остатков - АМФ (аденозинмонофосфат).

АТФ + H 2 0 = АДФ + H 3 PO 4 + энергия

Главная функция аденозинтрифосфата в клетке заключаются в том, что он является для нее универсальной формой для запаса высвобождаемой при дыхании энергии, когда АДФ путем фосфорилирования превращается в АТФ. Такая универсальность позволяет всем процессам, идущим в клетке с поглощением энергии, иметь одинаковый «химический механизм» для приема энергии от АТФ. Мобильность АТФ позволяет доставлять энергию в любой участок клетки.

АТФ образуется не только в процессе клеточного дыхания. Также он синтезируется в хлоропластах растений, в мышечных клетках с помощью креатинфосфата.

Кроме энергетической роли аденозинтрифосфат выполняет ряд других функций. Он используется наряду с другими нуклеозидтрифосфатам (гуанозидтрифосфатом) как сырье при синтезе нуклеиновых кислот, входит в состав ряда ферментов и др.

Синтез и распад АТФ в клетке происходит постоянно и в больших количествах.

Рассказы о биоэнергетике Скулачев Владимир Петрович

Где и как образуется АТФ?

Где и как образуется АТФ?

Первой системой, для которой выяснили механизм образования АТФ, оказался гликолиз - вспомогательный тип энергообеспечения, включающийся в условиях нехватки кислорода. При гликолизе молекула глюкозы расщепляется пополам и полученные обломки окисляются до молочной кислоты.

Такое окисление сопряжено с присоединением фосфорной кислоты к каждому из фрагментов молекулы глюкозы, то есть с их фосфорилированием. Последующий перенос фосфатных остатков с фрагментов глюкзы на АДФ дает АТФ.

Механизм образования АТФ при внутриклеточном дыхании и фотосинтезе долгое время оставался совершенно неясным. Было известно только, что ферменты, катализирующие эти процессы, встроены в биологические мембраны - тончайшие пленки (толщиной около одной миллионной доли сантиметра), состоящие из белков и фосфорилированных жироподобных веществ - фосфолипидов.

Мембраны - важнейший структурный компонент любой живой клетки. Внешняя мембрана клетки отделяет протоплазму от окружающей клетку среды. Клеточное ядро окружено двумя мембранами, которые образуют ядерную оболочку - преграду между внутренним содержимым ядра (нуклеоплазмой) и остальной частью клетки (цитоплазмой). Кроме ядра, в клетках животных и растений находят еще несколько структур, окруженных мембранами. Это эндоплазматическая сеть - система мельчайших трубочек и плоских цистерн, стенки которых образованы мембранами. Это, наконец, митохондрии - шарообразные или вытянутые пузырьки размером мельче ядра, но крупнее компонентов эндоплазматической сети. Диаметр митохондрии обычно около микрона, хотя иногда митохондрии образуют ветвящиеся и сетчатые структуры протяженностью в десятки микрон.

В клетках зеленых растений, помимо ядра, эндоплазматической сети и митохондрий, находят еще и хлоропласты - мембранные пузырьки более крупные, чем митохондрии.

Каждая из этих структур выполняет свою, специфическую биологическую функцию. Так, ядро - вместилище ДНК. Здесь происходят процессы, лежащие в основе генетической функции клетки, и начинается сложная цепь процессов, приводящая в конечном итоге к синтезу белка. Этот синтез завершается в мельчайших гранулах - рибосомах, большая часть которых связана с эндоплазматической сетью. В митохондриях происходят окислительные реакции, совокупность которых называется внутриклеточным дыханием. Хлоропласты отвечают за фотосинтез.

Клетки бактерий устроены проще. Обычно они имеют только две мембраны - внешнюю и внутреннюю. Бактерия - это как бы мешок в мешке, а точнее, очень мелкий пузырек с двойной стенкой. Здесь нет ни ядра, ни митохондрий, ни хлоропластов.

Существует гипотеза, что митохондрии и хлоропласты произошли из бактерий, захваченных клеткой более крупного и высокоорганизованного существа. Действительно, биохимия митохондрий и хлоропластов во многом напоминает бактериальную. Морфологически митохондрии и хлоропласты тоже в известном смысле подобны бактериям: они окружены двумя мембранами. Во всех трех случаях: в бактериях, митохондриях и хлоропластах - синтез АТФ происходит во внутренней мембране.

Долгое время считалось, что образование АТФ при дыхании и фотосинтезе протекает аналогично уже известному превращению энергии при гликолизе (фосфорилирование расщепляемого вещества, его окисление и перенос остатка фосфорной кислоты на АДФ). Однако все попытки экспериментально доказать эту схему оканчивались неудачей.

Атомы водорода, снятые с субстратов в цикле Кребса, в результате β -окисления ВЖК, а также пируватдегидрогеназной, глутаматдегидрогеназной и некоторых других реакций, поступают в дыхательную цепь ферментов (рис. 23), которая иначе называетсяэлектронотранспортной цепью .

Процесс переноса протонов и электронов (атом водорода = протон водорода (Н +) + электрон (e)) начинается с передачи атомов водорода с восстановленной формы НАД или ФАД.

Рис. 23. Схема электронотранспортной цепи

Восстановленный НАД отдает водороды на флавопротеин, ко-ферментом которого является ФМН, а восстановленный ФАД всегда передает водороды на кофермент Q. После кофермента Q по системе цитохромов осуществляется транспорт только электронов; роль конечного - терминального - акцептора электронов выполняет кислород. Перед тем как подробнее изучить работу электронотранспортной цепи, познакомимся с химическим строением отдельных ее компонентов.

Как отмечалось ранее, все компоненты электронотранспортной цепи являются ферментами, катализирующими окислительно-восстановительные процессы.

Флавопротеин является первым ферментом, акцептирующим протоны и электроны от первичной дегидрогеназы - фермента, снимающего атомы водорода непосредственно с субстрата. Кофер-ментом флавопротеина является ФМН. Со структурой и окислительно-восстановительными реакциями ФМН мы познакомились ранее (см. главу 4). Этот фермент тесно связан с железосерными белками.

Железосерные белки имеют небольшую молекулярную массу (порядка 10 кДа). Они содержат негеминовое железо, связанное с атомами серы остатков цистеина. На рис. 24 представлен лишь один из возможных вариантов комплекса атома железа с атомами серы, существующих в белках, содержащих негеминовое железо.


Рис. 24. Схема образования комплекса атома железа с атомами серы в железосерных белках

Эти белки участвуют в переносе протонов и электронов и, как предполагают, на нескольких стадиях. Однако до сих пор не ясен механизм, по которому железосерные белки претерпевают обратимое окисление-восстановление.

Кофермент Q или убихинон растворен в липидной части внутренней мембраны митохондрий. Убихинон может диффундировать как поперек, так и вдоль мембраны. Он является единственным, не связанным с белками компонентом цепи дыхания; по этой причине его нельзя отнести к ферментам. Кофермент Q принимает два протона водорода и два электрона от железосерных белков, превращаясь в гидрохинон:

Цитохромы представляют собой гемопротеины. В настоящее время известно около 30 различных цитохромов. Все они, в зависимости от своей способности поглощать свет, разделяются на классы, обозначаемые строчными буквами - а, b, с и т.д. Внутри каждого класса выделяют отдельные виды цитохромов, обозначая их цифровыми индексами - b , b 1 , b 2 и т.д.

Цитохромы отличаются друг от друга структурой тема, структурой полипептидной цепи и способом прикрепления тема к ней. На рисунке 25 показана структура тема, входящего в состав всех цитохромов b.

Цитохромы окрашены в красно-коричневый цвет; окраска обусловлена наличием катиона металла. Цитохромы классов b и с содержат в своем составе катионы железа, а цитохромы класса а - катионы меди.

Цитохромы а и a 3 образуют комплекс, который называют цито-хромоксидазой. Уникальная особенность комплекса а·а 3 заключается в том, что эта система цитохромов передает электроны непосредственно на кислород.

Перенос электронов по цепи цитохромов включает обратимые реакции:

Fe 3+ + e ----→ ←---- Fe 2+ и Сu 2+ + e ----→ ←---- Сu +

Познакомившись с характеристикой компонентов электронотранспортной цепи и с окислительно-восстановительными реакциями, протекающими в ней, перейдем к рассмотрению процесса, который является основным при аккумуляции энергии в форме АТФ.

Рис. 25. Структура тема цитохрома b

Механизм сопряжения дыхания с фосфорилированием АДФ. Транспорт протонов и электронов от восстановленного НАД к молекулярному кислороду представляет собой экзергонический процесс:

НАДН + Н + + ½О 2 → НАД + + Н 2 О + энергия

Если еще упростить запись этого процесса, то получим уравнение реакции горения водорода в кислороде, которое известно всем со школьной скамьи:

Н 2 + ½О 2 → Н 2 О + энергия

Разница состоит лишь в том, что при реакции горения энергия освобождается сразу полностью, а в цепи дыхания, благодаря тому что она разбита на несколько окислительно-восстановительных реакций, происходит поэтапное освобождение энергии. Эта энергия аккумулируется в фосфатных связях АТФ и используется для жизнедеятельности клеток.

Первым результатом работы электронотранспортной цепи является образование эндогенной воды, в молекуле которой атомы водорода являются водородами, снятыми с субстратов соответствующими дегидрогеназами, а атом кислорода - терминальным акцептором электронов (см. рис. 23). Приняв на себя 2 электрона, он превращается в реакционноспособный анион (О 2-), который сразу же взаимодействует с протонами водорода, "выброшенными" коферментом Q. Образование эндогенной воды происходит в матриксе митохондрий.

Механизм сопряжения дыхания с фосфорилированием АДФ был разработан английским биохимиком П. Митчеллом, гипотеза которого получила название протондвижущей или хемиосмотической. В нашей стране гипотеза П. Митчелла была развита в работах В.П. Скулачева.

Согласно хемиосмотической гипотезе энергия переноса протонов и электронов вдоль дыхательной цепи первоначально сосредоточивается в виде протонного потенциала, создающегося движением через мембрану заряженных протонов водорода. Транспорт протонов обратно через мембрану сопряжен с фосфорилированием АДФ, которое осуществляется протонзависимой АТФсинтазой (Н + = АТФаза).

Поскольку движущей силой синтеза АТФ является протонный потенциал, подробнее рассмотрим его образование.

Наряду с переносом протонов и электронов по цепи дыхания осуществляется дополнительный выброс протонов водорода из матрикса в межмембранное пространство. Протоны водорода возникают при диссоциации воды в матриксе:

Н 2 O -→ ←- H + + OH -

Перенос протонов водорода через внутреннюю мембрану митохондрий, как предполагают, осуществляется протонными транслоказами. В результате такого переноса мембрана со стороны матрикса заряжается отрицательно (за счет оставшихся отрицательно заряженных гидроксилов), а со стороны межмембранного пространства - положительно (за счет перекачки положительно заряженных протонов водорода). В результате такого распределения зарядов возникает электрический потенциал, обозначаемый Δψ (дельта пси). А за счет возникшей разницы в концентрации протонов водорода по обе стороны внутренней мембраны митохондрий создается химический градиент протонов, обозначаемый АрН. Оба возникших потенциала создают на мембране электрохимический трансмембранный градиент протонов (ΔμН +), следовательно ΔμН + = Δψ + ΔрН

Синтез АТФ. Мембрана, на которой создается электрохимический трансмембранный градиент протонов называетсяэнергизированной . Энергизированная мембрана стремится разрядиться за счет перекачки протонов из межмембранного пространства обратно в матрикс (рис. 26). Этот процесс осуществляется с помощью про-тонзависимой АТФазы.


Рис. 26. Синтез АТФ, сопряженный с электронотранспортной цепью

Н + -АТФаза встроена во внутреннюю мембрану митохондрий. Она похожа на гриб и состоит из двух белковых факторов F 0 и F 1 (рис. 27). Фактор F 0 пронизывает всю толщу внутренней мембраны митохондрий. Шаровидная часть, выступающая в матрикс митохондрий, - это фактор F 1 . Строение, свойства и функции этих белковых факторов совершенно разные.

Фактор F 0 состоит из трех гидрофобных полипептидных цепей разной структуры. Этот фактор выполняет функцию протонпроводящего канала, по которому протоны водорода попадают к фактору F 1 .

Фактор F 1 является водорастворимой частью Н + -АТФазы и представляет собой белковый комплекс, состоящий из девяти субъединиц пяти разных типов. Одна эпимолекула фактора F 1 содержит 3 α , 3β и по одной субъединице γ , δ , ε (α 3 β 3 γδε ). Фактор F 1 осуществляет синтез АТФ из АДФ и фосфорной кислоты. Центры связывания АДФ и АТФ находятся в субъединицах α и β каждая из которых может удерживать по одной молекуле АДФ или АТФ. Согласно данным рентгеноструктурного анализа центры связывания АДФ и АТФ находятся на стыке субъединиц α и β . Субъединица β выполняет каталитическую функцию в синтезе АТФ (рис. 27).


Рис. 27. Строение протонзависимой АТФазы

Существует несколько концепций, объясняющих механизм образования АТФ при посредстве Н + -АТФазы. Все концепции рассматривают протоны водорода, поступающие по протонпрово-дящему каналу к фактору F 1 , в качестве активаторов различных процессов, приводящих к образованию АТФ из АДФ и фосфорной кислоты.

О СУТИ РАБОТ ГЕОРГИЯ ПЕТРАКОВИЧА ДОЛЖЕН ЗНАТЬ КАЖДЫЙ! ТЕРМОЯДЕР В КЛЕТКЕ Приведу полностью интервью с Георгием Петраковичем, опубликованное в журнале "Чудеса и приключения" № 12 за 1996 г., стр. 6-9. Специальный корреспондент журнала Вл. Иванов встретился с действительным членом Русского физического общества, врачом-хирургом Георгием Николаевичем Петраковичем, опубликовавшим сенсационные работы о термоядерных реакциях, происходящих в живых организмах, и превращениях в них химических элементов. Это намного фантастичнее самых смелых опытов алхимиков. Беседа посвящена подлинному чуду эволюции, главному из чудес живой природы. Мы не во всем согласны с автором смелой гипотезы. В частности, будучи материалистом, он, как нам кажется, исключает духовное начало из тех процессов, где оно, по всей видимости, должно присутствовать. Но все же гипотеза Г. Петраковича заинтересовала нас, потому что она пересекается с работами академика В. Казначеева о "холодном термояде" в живой клетке. Одновременно гипотеза перекидывает мостик к понятию ноосферы. В. Вернадского, указывая на источник, непрерывно подпитывающий ноосферу энергией. Гипотеза интересна и тем, что прокладывает научные пути к объяснению ряда загадочных явлений, таких как ясновидение, левитация, иридодиагностика и других. Мы просим извинить нас за некоторую ученую сложность беседы для неподготовленного читателя. Сам материал, к сожалению, по характеру своему не может быть подвержен значительному упрощению. КОРРЕСПОНДЕНТ. Сначала суть, соль чуда, несовместимого, казалось бы, с представлениями о живых организмах... Что за странная сила действует в нас, в клетках нашего тела? Все напоминает детективную историю. Сила эта была известна, если можно так выразиться, в другом качестве. Она действовала инкогнито, как бы под маской. Про нее говорили и писали так: ионы водорода. Вы поняли и назвали ее иначе: протоны. Это те же ионы водорода, голые ядра его атомов, заряженные положительно, но это одновременно и элементарные частицы. Биофизики не заметили, что Янус двулик. Не так ли? Можно об этом подробнее? Г.Н. ПЕТРАКОВИЧ. Живая клетка получает энергию в результате обычных химических реакций. Так считала наука о клеточной биоэнергетике. Как всегда, в реакциях принимают участие электроны, именно их переходы обеспечивают химическую связь. В мельчайших "пузырьках" неправильной формы - митохондриях клетки - происходит окисление с участием электронов. Это постулат биоэнергетики. Вот как представляет этот постулат ведущий биоэнергетик страны академик РАН В.П. Скулачев: "Чтобы поставить эксперимент по использованию ядерной энергии, природе пришлось создать человека. Что же касается внутриклеточных механизмов энергетики, то они извлекают энергию исключительно из электронных превращений, хотя энергетический эффект здесь неизмеримо мал по сравнению с термоядерными процессами." "Исключительно из электронных превращений..." Это заблуждение! Электронные превращения - это химия, и только. Именно термоядерные реакции лежат в основе клеточной биоэнергетики, и именно протон, он же ион водорода - тяжелая заряженная элементарная частница - является главным участником всех этих реакций. Хотя, разумеется, и электрон принимает определенное, и даже важное участие в этом процессе, но в иной роли, совершенно отличной от роли, предписанной ему учеными специалистами. И что самое удивительное: чтобы доказать все это, не надо, оказывается, проводить какие-либо сложные изыскания, исследования. Все лежит на поверхности, все представлено в тех же самых неоспоримых фактах, наблюдениях, которые сами же ученые и добыли своими тяжкими трудами. Надо лишь непредвзято и углубленно поразмышлять над этими фактами. Вот неоспоримый факт: известно, что протоны "выбрасываются" из митохондрий (термин широко используется специалистами, и в нем звучит пренебрежение к этим трудягам-частицам, словно речь идет об отходах, "мусоре") в пространство клетки (цитоплазму). Протоны движутся в нем однонаправлено, то есть никогда не возвращаются назад, в отличие от броуновского движения в клетке всех других ионов. И движутся они в цитоплазме с огромной скоростью, превышающей скорость движения любых других ионов во много тысяч раз, Ученые никак не комментируют это наблюдение, а задуматься над ним следовало бы серьезно. Если протоны, эти заряженные элементарные частицы, движутся в пространстве клетки с такой огромной скоростью и "целенаправленно", значит, в клетке есть какой-то механизм их ускорения. Несомненно, механизм ускорения находится в митохондрий, откуда изначально с огромной скоростью и "выбрасываются" протоны, но вот какого он характера... Тяжелые заряженные элементарные частицы, протоны, могут ускоряться только в высокочастотном переменном электромагнитном поле - в синхрофазотроне, например. Итак, молекулярный синхрофазотрон в митохондрий? как ни покажется странным, да: сверхминиатюрный природный синхрофазотрон находится именно в крохотном внутриклеточном образовании, в митохондрий! Протоны, попав в высокочастотное переменное электромагнитное поле, на все время пребывания в этом поле утрачивают свойства химического элемента водорода, но зато проявляют свойства тяжелых заряженных элементарных частиц." По этой причине в пробирке нельзя в полной мере повторить те процессы, которые постоянно происходят в живой клетке. Например, в пробирке исследователя протоны участвуют в окислении, а в клетке, хотя в ней и происходит свободно-радикальное окисление, перекиси не образуются. Клеточное электромагнитное поле "выносит" протоны из живой клетки, не давая им возможности вступать в реакцию с кислородом. Между тем ученые руководствуются именно "пробирочным" опытом, когда исследуют процессы в живой клетке. Ускоренные в поле протоны легко ионизируют атомы и молекулы, "выбивая" из них электроны. При этом молекулы, становясь свободными радикалами, приобретают высокую активность, а ионизированные атомы (натрия, калия, кальция, магния и других элементов) образуют в мембранах клетки электрические и осмотические потенциалы (но уже вторичного, зависимого от протонов, порядка). КОРРЕСПОНДЕНТ. Самое время обратить внимание наших читателей на то, что невидимая глазу живая клетка сложнее любой гигантской установки, а происходящее в ней не поддается пока даже приблизительному воспроизведению. Быть может, галактики - в другом масштабе, разумеется, - простейшие объекты Вселенной, точно так же, как клетки - элементарные объекты растения или животного. Быть может, уровни наших знаний о клетках и галактиках примерно эквивалентны. Но самое поразительное, что термояду Солнца и других звезд соответствует холодный термояд живой клетки или, точнее, отдельных ее участков. Аналогия полная. Все знают о горячем термояде звезд. Но о холодном термояде живых клеток можете рассказать только вы. Г.Н. ПЕТРАКОВИЧ. Попробуем представить самые важные события на этом уровне. Являясь тяжелой заряженной элементарной частицей, масса которой превышает массу электрона в 1840 раз, протон входит в состав всех без исключения ядер атомов. Будучи ускоренным в высокочастотном переменном электромагнитном поле и находясь с этими ядрами в одном поле, он способен передать им свою кинетическую энергию, являясь наилучшим переносчиком энергии от ускорителя к потребителю - атому. Взаимодействуя в клетке с ядрами атомов-мишеней, он передает им по частям - путем упругих столкновений - приобретенную им при ускорении кинетическую энергию. А потеряв эту энергию, в итоге захватывается ядром ближайшего атома (неупругое столкновение) и входит составной частью в это ядро. А это и есть путь к превращению элементов. В ответ на полученную при упругом столкновении с протоном энергию из возбужденного ядра атома-мишени выбрасывается свой квант энергии, свойственный лишь ядру этого конкретного атома, со своей длиной и частотой волны. Если такие взаимодействия протонов происходят со многими ядрами атомов, составляющих, например, какую-либо молекулу; то происходит выброс уже целой группы таких специфических квантов в определенном спектре частот. Иммунологи считают, что тканевая несовместимость в живом организме проявляется уже на молекулярном уровне. По-видимому, отличие в живом организме "своей" белковой молекулы от "чужой" при их абсолютной химической одинаковости происходит по этим самым специфическим частотам и спектрам, на которые по-разному реагируют "сторожевые" клетки организма - лейкоциты. КОРРЕСПОНДЕНТ. Интересный попутный результат вашей протонно-ядерной теории! Еще интересней процесс, о котором мечтали алхимики. Физики указали на возможность получения новых элементов в реакторах, но это очень сложно и дорого для большинства веществ. Несколько слов - о том же на уровне клетки... Г.Н. ПЕТРАКОВИЧ. Захват потерявшего кинетическую энергию протона ядром атома-мишени изменяет атомное число этого атома, т.е. атом-"захватчик" способен при этом изменить свою ядерную структуру и стать не только изотопом данного химического элемента, но и вообще, учитывая возможность многократного "захвата" протонов, занять иное, чем прежде, место в таблице Менделеева: и в ряде случаев - даже не самое ближайшее к прежнему. По существуречь идет о ядерном синтезе в живой клетке. Надо сказать, такие идеи уже будоражили умы людей: уже были публикации о работах французского ученого Л. Керврана, обнаружившего такую ядерную трансформацию при исследовании кур-несушек. Правда, Л. Кервран считал, что этот ядерный синтез калия с протоном, с последующим получением кальция, осуществляется с помощью ферментативных реакций. Но, исходя из сказанного выше, проще этот процесс представить как следствие межядерных взаимодействий. Справедливости ради следует сказать, что М.В. Волькенштейн вообще считает опыты Л. Керврана первоапрельской шуткой веселых американских ученых коллег. Первая мысль о возможности ядерного синтеза в живом организме высказана в одном из фантастических рассказов Айзека Азимова. Так или иначе, отдавая должное и тому, и другому, и третьему, можно заключить, что согласно излагаемой гипотезе, межядерные взаимодействия в живой клетке вполне возможны. И не будет в том помехой кулоновский барьер: природа сумела обойти этот барьер без высоких энергий и температур, мягко и нежно, КОРРЕСПОНДЕНТ. Вы считаете, что в живой клетке возникает вихревое электромагнитное поле. Оно удерживает протоны как бы в своей сетке и разгоняет их, ускоряет. Поле это излучают, генерируют электроны атомов железа. Есть группы из четырех таких атомов. Они называются у специалистов так: гемы. Железо в них двух- и трехвалентно. И обе эти формы обмениваются электронами, перескоки которых и порождают поле. Частота его невероятно велика, по вашей оценке 1028 герц. Она намного превосходит частоту видимого света, порождаемого обычно тоже перескоками электронов с одного атомного уровня на другой. Не считаете ли вы, что эта оценка частоты поля в клетке вами очень завышена? Г.Н. ПЕТРАКОВИЧ. Отнюдь нет. КОРРЕСПОНДЕНТ. Ваш ответ мне понятен. Ведь именно очень высокие частоты и соответствующие им малые длины волн связаны с большой энергией квантов. Так, ультрафиолет с его короткими волнами действует сильнее, чем обычные лучи света. Для разгона протонов нужны очень _ короткие волны. Возможны ли проверки самой схемы ускорения протонов и частоты внутриклеточного поля? Г.Н. ПЕТРАКОВИЧ. Итак, открытие: в митохондриях клеток генерируется сверхвысокочастотный, сверхкоротковолновый переменный электрический ток и по законам физики, соответственно ему - сверхкоротковолновое и сверхвысокочастотное переменное электромагнитное поле. Самое коротковолновое и самое высокочастотное из всех переменных электромагнитных полей в природе. Еще не созданы приборы, которыми можно было бы измерить такую высокую частоту и такую короткую волну, поэтому таких полей пока для нас как бы вовсе не существует. И открытия пока что не существует... Тем не менее вновь обратимся к законам физики. По этим законам точечные переменные электромагнитные поля самостоятельно не существуют, они мгновенно, со скоростью света сливаются между собой путем синхронизации и резонанса, значительно увеличивающим напряжение такого поля. Сливаются точечные электромагнитные поля, образуемые в электромагнитике перемещающимися электронами, далее сливаются все поля уже митохондрии. Образуется объединенное сверхвысокочастотное, сверхкоротковолновое переменное поле для всей митохондрии. В этом поле и удерживаются протоны. Но митохондрии в одной клетке не две и не три - в каждой клетке их насчитывается десятки, сотни, а в некоторых - даже тысячи, и в каждой из них образуется это сверхкоротковолновое поле; и эти поля устремляются к слиянию между собой, все с той же синхронизацией и эффектом резонанса, но уже во всем пространстве клетки - в цитоплазме. Вот это стремление переменного электромагнитного поля митохондрии к слиянию с другими такими же полями в цитоплазме есть та самая "тягловая сила", та энергия, что с ускорением "выбрасывает" протоны из митохондрии в пространство клетки. Так срабатывает внут-римитохондриальный "синхрофазотрон". Следует помнить, что протоны движутся к ядрам атомов-мишеней в клетке в значительно усиленном поле - настолько коротковолновом, что оно легко, как по волноводу, пройдет между ближайшими атомами даже в металлической решетке. Это поле легко "пронесет" с собой протон, размеры которого в сотню тысяч раз меньше любого атома, и настолько высокочастотно, что оно нисколько не потеряет при этом своей энергии. Такое обладающее сверхпроницаемостью поле возбудит и те протоны, которые входят в состав ядра атома-мишени. И главное - это поле приблизит к ним "налетающий" протон настолько, что позволит этому "налетающему" отдать ядру часть своей кинетической энергии. Самое большое количество энергии выделяется при альфа-распаде. При этом из ядра с огромной скоростью выбрасываются альфа-частицы, представляющие собой прочно связанные два протона и два нейтрона (то есть ядра атомов гелия). В отличие от ядерного взрыва при "холодном термояде" в зоне реакции не происходит накопления критической массы. Распад или синтез могут немедленно прекратиться. Не наблюдается радиации, поскольку альфа-частицы вне электромагнитного поля немедленно превращаются в атомы гелия, а протоны - в молекулярный водород, воду или перекиси. В то же время организм способен сам себе путем "холодного термояда" создавать необходимые ему химические элементы из других химических элементов, нейтрализовать вредные для него вещества. В зоне свершения "холодного термояда" формируются голо граммы, отражающие взаимодействия протонов с ядрами атомов-мишеней. В конечном итоге эти голограммы в неискаженном виде выносятся электромагнитными полями в ноосферу и становятся основой энергоинформационного поля ноосферы. Человек способен произвольно, с помощью электромагнитных линз, роль которых в живом организме выполняют молекулы-пьезокристаллы, фокусировать энергию протонов, и особенно альфа-частиц, в мощные пучки. При этом демонстрируя потрясающие воображение феномены: поднятие и передвижение неимоверных тяжестей, хождение по раскаленным камням и углям, левитацию, телепортацию, телекинез и многое другое. Не может такого быть, чтобы в мире все исчезало бесследно, наоборот, следует думать, что существует некий всемирный "банк", всемирное биополе, с которым сливались и сливаются поля всех живших и живущих на Земле. Это биополе может быть представлено сверхмощным, сверхвысокочастотным, сверхкоротковолновым и сверхпроникающим переменным электромагнитным полем вокруг Земли (и тем самым - вокруг и через нас). В этом поле в идеальном порядке удерживаются ядерные заряды протонных голографических "фильмов" о каждом из нас - о людях, о бактериях и слонах, о червяках, о траве, планктоне, саксауле, живших когда-то и живущих ныне. Живущие ныне и поддерживают энергией своего поля это биополе. Но только редкие единицы имеют доступ к его информационным сокровищам. Это память планеты, ее биосферы. Непознанное еще всемирное биополе обладает колоссальной, если не беспредельной, энергией, все мы купаемся в океане этой энергии, но не чувствуем ее, как не чувствуем окружающий нас воздух, и потому не чувствуем, что она вокруг нас есть... Роль ее будет возрастать. Это наш резерв, наша поддержка. КОРРЕСПОНДЕНТ. Само по себе это поле планеты, однако, не заменит рабочие руки и творческий ум. Оно лишь создает предпосылки для проявления человеческих способностей. Г.Н. ПЕТРАКОВИЧ. Еще один аспект темы. Наши глаза, если и не зеркало души, то прозрачные их среды -зрачок и радужка - все же являются экранами для постоянно исходящего из нас топографического "кино". Через зрачки пролетают "цельные" голограммы, а в радужках протоны, несущие в себе значительный заряд кинетической энергии, непрерывно возбуждают молекулы в глыбках пигмента. Они будут возбуждать их до тех пор, пока в клетках, "пославших" к этим молекулам свои протоны, будет все в порядке. Погибнут клетки, еще что-то случится с ними, с органом - тотчас изменится структура в глыбках пигментов. Это четко зафиксируют опытные иридодиагносты: они уже точно - по проекциям в радужке - знают, какой орган заболел и даже чем. Ранняя и точная диагностика! Некоторые медики не очень благосклонно относятся к своим коллегам-иридодиагностам, считая их чуть ли не шарлатанами. Напрасно! Иридодиагностике, как простому, общедоступному, дешевому, легко переводимому на математический язык, а главное - точному и раннему методу диагностики различных болезней уже в ближайшем будущем светит "зеленый свет". Единственным недостатком метода было отсутствие теоретической базы. Фундамент ее изложен выше. КОРРЕСПОНДЕНТ. Думаю, для наших читателей нужно бы пояснить процесс образования голограмм каждого индивида. Вы это сделаете лучше меня. Г.Н. ПЕТРАКОВИЧ. Представим себе взаимодействия ускоренных протонов с какой-либо крупной объемной (трехмерной) молекулой в клетке, происходящие очень быстро. На такие взаимодействия с ядрами атомов-мишеней, составляющих эту крупную молекулу, будет израсходовано множество протонов, что оставит, в свою очередь, в пучке протонов тоже объемный, но "негативный" след в виде вакуума, "дырок". Этот след и будет самой настоящей голограммой, воплотившей в себе и сохранившей часть прореагировавшей с протонами структуры самой молекулы. Серия голограмм (что и происходит "в натуре") отобразит и сохранит не только физический "облик" молекулы, но и порядок физических и химических превращений отдельных ее частей и всей молекулы в целом за определенный промежуток времени. Такие голограммы, сливаясь в более крупные объемные изображения, могут отобразить жизненный цикл всей клетки, множества соседних клеток, органов и частей тела - всего тела. Есть еще одно следствие. Вот оно. В живой природе, независимо от сознания, мы общаемся прежде всего полями. При таком общении, войдя в резонанс с другими полями, мы рискуем утратить, частично или полностью, свою индивидуальную частоту (как и чистоту), и если в общении с зеленой природой это означает "раствориться в природе", то в общении с людьми, особенно с теми, кто обладает сильным полем, это значит частично или полностью утратить свою индивидуальность - стать "зомби" (по Тодору Дичеву). Технических аппаратов "зомбирования" по программе нет и вряд ли они когда-либо будут созданы, но воздействия одного человека на другого в этом плане вполне возможны, хотя, с позиций морали, недопустимы. Оберегая себя, над этим следует задуматься, особенно когда дело касается шумных коллективных действий, в которых всегда преобладает не разум и даже не истинное чувство, но фанатизм - печальное дитя злонамеренного резонанса. Поток протонов может только увеличиваться за счет слияния с другими потоками, но никак, в противовес, например, электронному потоку, не смешиваться - и тогда он может нести в себе полную информацию уже о целых органах и тканях, в том числе - и о таком специфическом органе, как мозг. По-видимому, мы мыслим программами, и эти голограммы способны передавать потоком протонов через взгляд - тому доказательство не только "выразительность" нашего взгляда, но и то, что животные способны усваивать наши голограммы. В подтверждение этому можно сослаться на опыты известного дрессировщика В.Л. Дурова, в которых принимал участие и академик В.М. Бехтерев. В этих опытах собакам специальной комиссией сиюминутно придумывались какие-либо посильные им задания, В.Л. Дуров тут же "гипнотическим взглядом" передавал собакам эти задания (при этом, как он говорил, он сам как бы становился "собакой" и вместе с ними мысленно выполнял задания), и собаки в точности выполняли все предписания комиссии. Кстати, и фотографирование галлюцинаций можно связать с голографическим мышлением и передачей образов потоком протонов через взгляд. Очень важный момент: несущие информацию протоны своей энергией "метят" белковые молекулы своего тела, при этом каждая "меченая" молекула приобретает свой собственный спектр, и этим спектром она отличается от точно такой же по химическому составу молекулы, но принадлежащей "чужому" телу. Принцип несовпадения (или совпадения) по спектру молекул белка лежит в основе иммунных реакций организма, воспаления, а также тканевой несовместимости, о чем мы уже упоминали. Механизм обоняния тоже построен на принципе спектрального анализа возбужденных протонами молекул. Но в этом случае протонами облучаются все находящиеся во вдыхаемом через нос воздухе молекулы вещества с мгновенным анализом их спектра (механизм очень близок к механизму цветоощущения). Но есть "работа", которую выполняет только высокочастотное переменное электромагнитное поле - это работа "второго", или "периферического", сердца, о котором в свое время много писали, но механизм которого еще никто не раскрыл. Это особая тема для разговора. Продолжение следует...