Структура и свойства воды кратко. Строение воды. Структурированная вода - что это

Содержание: Необходимо различать, с одной стороны, воду и, с другой растворенные в ней вещества, обусловливающие химический, состав и минерализацию воды. Геологические судьбы раство­рителя и растворенного вещества могут идти своими, обособленными путями. Вода чаще всего попадает в земную кору и из атмосферы, а растворенное вещество заимствуется в основ­ном из горных пород и почв. Возьмем воду в чистом виде, без солей, и рассмотрим те ее особенности строения и свойства, от которых зависит растворяющая способность, воды.

Состав воды. Вода - химическое соединение кислорода и водорода, которое принято обозначать формулой Н 2 О. На самом деле во­да имеет более сложный состав. Обычный молекуляр­ный вес воды 18, но встречаются молекулы с молекулярным весом 19, 20, 21, 22. Эти молекулы состоят из более тяжелых атомов водорода и кислорода, имеющих атомные веса соот­ветственно более 1 и 16, У водорода два стабильных изотопа: протий (Н) и дейтерий (D); отношение Н: D =6800. Кроме того, известен тритий (Т) - радиоактивный изотоп с периодом полураспада 12,5 лет. У кислорода три стабильных изотопа: О 16 , О 17 , О 18. Молекулы воды могут состоять из различных устойчивых изотопов Н 2 О 16 , НDO 16 , D 2 О 16 , Н 2 О 18 , НDO 18 , D 2 О 18 , Н 2 О 17 , НDO 18 , D 2 О 17 .

Изотопная разновидность воды, в которой протий замещен дейтерием, называется тяжелой водой. Однако в природе до сих пор не открыта ни собственно легкая, ни тяжелая вода. Тяжелую воду в настоящее время приготовляют искусст­венно в больших количествах для различных технических це­лей Тяжелая вода отличается от обычной не только физиче­скими свойствами, но и физиологическим воздействием на организм.

Особый геохимический и практический интерес представ­ляет дейтерии (D). Электронная оболочка атома дейтерия, так же как и протия, состоит из одного электрона, но ею яд­ро - дейтон- примерно вдвое тяжелее и состоит из двух частиц - протона и нейтрона. Дейтерий применяется в совре­менной ядерной технике как взрывчатое вещество. В будущем он будет использоваться как горючее в термоядерных энерге­тических установках. Запасы термоядерной энергии дейтерия, имеющиеся в воде земных океанов, примерно в сто миллио­нов превосходят запасы энергии ископаемого топлива (угля, нефти, газа, торфа).

Различные по генезису природные воды имеют неодина­ковый изотопный состав. Одной из главных причин, создающих дифференциацию изотопов в природных водах, является процесс испарения Уп­ругость паров тяжелой воды несколько ниже упругости паров обычной, а так как процесс испарения является основным фактором круговорота воды, то обогащение вод тяжелыми изотопами в местах испарения и обеднение ими в местах кон денсации может вызвать заметную разницу в плотности воды.


Установлена следующая зако­номерность распределения изотопов водорода в поверхностных и атмосферных водах:

1. Пресные поверхностные воды рек, озер и других водое­мов, наполняющихся главным образом за счет атмосферных осадков, содержат дейтерия меньше, чем океанические воды.

2 Изотопный состав пресных поверхностных вод определяется физико-географическими условиями их нахождения.

Строение воды. Еще в двадцатых годах нашего века на основе учения о полярной структуре молекул воды были разработаны простейшие представления об ассоциации молекул в жидкой воде как результате взаимодействия диполей. Эти представления заключаются в следующем.

Одной из особенностей строения молекулы воды является несимметричное расположение атомов водорода вокруг атома кислорода они расположены не по прямой, проведенной через центр атома кислорода, а под некоторым углом (рис 1). Центры ядер атомов водорода расположены на расстояние 0,95 А от центра атома кислорода. Угол между линиями, соединяющими центры атомов кислорода и водорода, равен 105 0 . Связь между атомами кислорода и водорода в молекуле во­ды осуществляется электронами . Вследствие несимметрично­сти распределения электрических зарядов молекула воды об­ладает полярностью, т.е. имеет два полюса - положитель­ный и отрицательный, которые так же, как и магнит, создают вокруг нее силовые ноля.

Таким образом, для молекул воды характерно дипольных: строение (диполи). Их изображают в виде овалов, полюса которых имеют противоположные по знаку электрические заря­ды. При достаточном сближении молекулы воды начинают действовать друг на друга своими силовыми нолями. При этом положительно заряженный полюс одной молекулы притягива­ет отрицательно заряженный полюс другой. В результате мо­гут получиться агрегаты из двух, трех и, по-видимому, более молекул (рис. 2).

Такие группировки молекул воды называются дигидролями (Н 2 О) 2 и тригидролями (Н 2 О) . Следовательно, в воде одновременно присутствуют одиночные (моногидроли), двой­ные я тройные молекулы. Содержание их меняется в зависи­мость от температуры. Во льдe доминируют тройные молеку­лы, обладающие наибольшим объемом . При повышении тем­пературы скорость молекул возрастает, и силы притяжения между молекулами оказываются недостаточными для удер­жания их друг около друга. В жидком состоянии вода пред­ставляет смесь дигидролей, тригдролей и моногпдролей. По мере увеличения температуры тройные и двойные молекулы распадаются, и при 10О°С вода состоит главным образом из моногидролей.

Химически чистая вода обладает рядом свойств, резко отличающих ее от других природных тел.

1. При нагревании воды от 0 до 4°С объем воды не увеличивается, а уменьшается, и максимальная плотность ее достигается не в точке замерзания (0 0 С), а при 4 0 С (точнее 3,98 0).

2. Вода при замерзании расширяется, а не сжимается, как все другие тела, плотность ее уменьшается.

3. Температура замерзания воды с увеличением давления понижается, а не повышается, как этого следовало бы ожи­дать.

4. Удельная теплоемкость воды чрезвычайно велика по сравнению с теплоемкостью других тел.

5. Вследствие высокой диэлектрической постоянной вода обладает большей растворяющей и диссоциирующей способ­ностью, чем другие жидкости.

6. Вода обладает самым большим поверхностным натя­жением из всех жидкостей - 75 эрг/см 2 (глицерин - 65, ам­миак - 42, а все остальные ниже 30 эрг/см 2), за исключени­ем ртути - 436 эрг/см 2 .

Поверхностное натяжение и плотность определяют высо­ту, на которую может подняться жидкость в капиллярной си­стеме при фильтровании через пористые среды.

Причина перечисленных аномальных свойств воды заключается в особенностях строения ее молекул.

Вода как растворитель. Если поместить воду во внешнее электрическое поле, то молекулы ее иод действием поля стремятся расположиться в пространстве так, как показано на


Это явление назы­вается ориентационной поляризацией, которой обладают вещества с полярными молекулами. Высокая полярность моле­кул воды является одной из важнейших причин ее высокой активности при многих химических взаимодействиях. Она же служит причиной и электролитической диссоциации в во­де, солей, кислот и основании. С нею связана также и раство­римость электролитов в воде.

Растворение есть не только физический, но и химический процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя. Вода об­ладает способностью растворять многие вещества, т. е. да­вать с ними однородные физико-химические системы перемен­ного состава (растворы). Растворенные в природных водах, соли находятся: преимущественно в диссоциированном состоя­нии, в виде ионов. В твердом кристаллическом состоянии ион­ные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом слу­чае отсутствуют . Так, например, в галите, как эта определено рентгеновским структурным анализом, каждый ион Na + окружен шестью ионами С1 - , а каждый нон С1 - окружен шестью ионами натрия. Ионы взаимодействуют между собой, они притягивают друг друга (ионная связь).

В чем состоит механизм растворения? Молекулы воды в силу особенностей своего строения и возникающего из-за это­го вокруг них силового поля обладают способностью притяги­вать молекулы других веществ. Процесс растворения заклю­чается как раз во взаимодействии частиц растворяющегося вещества с частицами воды. При соприкосновении с водой какой-нибудь соли ноны, образующие ее кристаллическую ре­шетку, будут притягиваться противоположно заряженными частицами молекул воды. Например, при погружении в воду кристаллов галита ион натрия (катион) будет притягиваться, отрицательным полюсом, а ион хлора (анион) - положитель­ным полюсом молекулы воды (рис. 4). Чтобы ионы кристал­лической решетки оторвались друг от друга и перешли в ра­створ, необходимо преодолеть силу притяжения этой решетки. При растворении солей такой силой является притяжение ио­нов решетки молекулами воды, характеризумое так называе­мой энергией гидратации. Если при этом энергия гидратации будет по сравнению с энергией кристаллической решетки достаточно велика, ионы будут оторваны от последней и перейдут в раствор.

В зависимости от природы вещества при его растворении обычно происходит выделение или поглощение тепла. Ионы растворенного вещества притягивают и удерживают вокруг себя определенное число молекул воды, которые образуют оболочку, называемую гпдратной. Таким образом, в водном растворе ионы являются гидратированными, т. е. химически связанными с молекулами воды


При кристаллизации многих солей часть гидратной воды захватывается кристал­лическими решетками . Подобную кристаллизационную воду содержит гипс СаSO 4 *2H 2 O, мирабилит Na 2 SO 4 * 10H 2 O, бишофит MgCl 2 *6H 2 O, астраханит Na 2 SO 4 *MgSO 4 *4H 2 O, сода Na 2 СO 3 *10H2O. Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами.

Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся почти все соли, мно­гие минеральные кислоты, основания щелочных и щелочнозе­мельных металлов. Диссоциация сильного электролита, на­пример NаС1, изображается уравнением

NаС1 Nа + +С1 -

В кристалле галита нет молекул NаС1. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор. Молекулы в растворе отсутствуют. Поэтому лишь условно можно говорить о недиссоциированных молекулах растворов сильных электролитов. Это скорее будут ионные пары (Nа + +С1 -), т.е.

находящиеся близко друг около друга противоположно заряженные ионы (сбли­зившиеся до расстояния, равного сумме радиусов ионов). Это якобы недиссоциированные молекулы, или, как их называют, квазимолекулы.

Слабые электролиты при растворении в воде лишь ча­стично диссоциируют на ионы. К ним относятся почти все ор­ганические кислоты, некоторые минеральные кислоты, напри­мер Н 2 СО, Н 2 S, Н 2 SіО 3 , многие основания металлов. К сла­бым электролитам относится вода.

Кроме электролитов в растворе находятся и неэлектроли­ты, молекулы которых хотя и имеют гидратную оболочку, но "настолько прочны, что не распадаются на ионы (О 2 , N 2).

В зависимости от величины частиц растворенного всщества различают истинные и коллоидные растворы. Растворы называют истынними, когда растворенное вещество находится в них в ионизированном состоянии. В ионном растворе по принципу элктронейтральности всегда содержатся равные количества эквивалентов катионов и анионов. В природных условиях ионные растворы образуются при растворении простых солей.

Коллоидными называются такие растворы, в которых вещество находится не в ионизированном состоянии, а в виде групп молекул, так называемых «коллоидных частиц». Размеры частиц в коллоидных растворах лежат, примерно, в пределах от 10 до 2000 А В устойчивых коллоидных растворах частицы в большинстве случаев несут электрические заряды различные по величине, но одинаковые по знаку для всех частиц данной коллоидной системы. Коллоидные растворы называются золями. Золи способны переходить в гели, т.е. превращаться в студнеобразные массы в результате укрупнения коллоидных частиц (процесс коагуляции).

В природе коллоидные растворы могут быть органическими и неорганическими. Последние образуются преимущественно при гидролитическом расщеплении различных силикатов. Силикаты при гидролизе выделяют заключающиеся в них основания (щелочные и щелочноземельные металлы), дающие начало истинным растворам. Но, кроме того, при гидролизе в раствор переходят кремнй, железо, алюминий и другие металлы, образующие, большей частью, коллоидные растворы.

Многие вещества вступают с водой в реакцию обменного разложения, называемую гидролизом. При гидролизе имеет место сдвиг равновесия диссоциации воды Н О Н + ОН за счет связывания одного из ее ионов ионами растворенного вещества с образованием малодиссоциированного или труднорастворимого продукта. Следовательно, гидролиз – это химическое взаимодействие ионов растворенной соли с водой, сопровождающиеся изменением реакции среды. Ввиду обратимости гидролизаравновесие этого процесса зависит от всех тех фактров, которые вообще влияют на равновесие ионного обмена. В частности, оно сильно (иногда – практически нацело) сдвигается в сторону разложения соли, если продукты последнего (чаще всего в виде основных солей) труднорастворимые.

В природе явление гидролиза играют большую роль. Например, основной химической формой выветривания минералов магматических породявляется гидролиз.

Растворимость солей. В воде могут растворятся твердые, жидкие и газообразные вещества. По растворимости в воде все вещества делятся на три группы: 1) хорошо растворимые, 2) плохо растворимые и 3) практически не растворимые. Необходимо подчеркнуть, что абсолютно нерастворимых веществ нет.

Минерализацию природных вод создают обычно немногие простые соли: хлориды, сульфиды, гидрокарбонаты натрия, магния, кальция.

В кристале галита нет молекул NaCl. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор. Молекулы в растворе отсутствуют. Поэтому лишь условно можно говорить о недиссоциированных молекулах растворов сильных электролитов. Это скоее ионные пары (Na + Cl ), т.е. находящиеся близко друг около друга противоположно заряженные ионы. Это недиссоциированные молекулы, а квазимолекулы.

Слабые электролиты при растворении в воде лиш частично диссоциируют на ионы. К ним относятся почти все органические кристаллы, некоторые минеральные кислоты, например Н СО, Н S, Н SiO , многие основания металлов. К слабым электролитам относится вода.

Кроме электролитов в растворе находятся и неэлектролиты, молекулы которых хотя и имеютгидратную оболочку, но настолько прочны, что не распадаются на ионы (О , N ).

В зависимости от величины частиц растворенного вещества различают истинные и коллоидные растворы. Растворы называют истинными, когда растворенное вещество находится в них ионизированном состоянии.

Растворимость твердых веществ в воде зависит не толь­ко от их химической природы, но и от температуры, давления и от наличия в ней газов и примесей.

Растворимость хлористого натрия мало меняется при повышении температуры от до 60°С (из­менение растворимости дано в г на 100 мг воды). Раствори­мость же карбоната и сульфата натрия сильно возрастает.

На растворимость кремнекислоты температура оказывает большое влияние. В системе кремнекислота - вода, изучен­ной в интервале от 0 до 200°, зависимость растворимости от температуры носит линейный характер. В обычных усло­виях растворимость кремнекислоты очень низкая.

К числу солей, понижающих свою растворимость с ростом температуры, относится Са SO 4 .

Как известно, растворимость данной соли уменьшается в присутствии другой соли, имеющей с ней одноименный ион, и, наоборот, повышается, если в растворе находятся неодноименные ионы. Например, пределы растворимости СаSO 4 в присутствии различных солеи сильно меняются. При наличии в растворе большого количества хлористого натрия (порядка 100 г/л) растворимость СаSO 4 , достигает 5-6 г/л

Из главнейших солей наинизшая растворимость у карбонатов щелочных земель, но она увеличивается в несколько раз, если вода содержит двуокись углерода (СО 2) Растворение идет по схеме:

СаСО 3 + Н 2 О + СО 2 Са(НСО 3) 2 Са ++ +2НСО 3 ;

MgСО 3 + Н 2 О + СО 2 Mg(НСО 3) 2 Mg ++ +2НСО 3 .

Реакции эти носят обратимый характер и протекают до наступления определенного равновесия. В результате указанных реакции в воде появляются гидрокарбонаты кальция и магния. Следует отметить, что ни гидрокарбонатов кальция, ни гидрокарбонатов магния в твердом виде не существует. Минерализация широко распространенных в природе гидро­карбонатных магниево-кальциевых вод обычно достигает 500-600 мг/л. В присутствии больших количеств СО 2 раство­римость Са(НСО 3) 2 и Mg(НСО 3) 2 может превосходить 1 г/л (углекислые минеральные воды).

При увеличении температуры растворимость гидрокарбонатов кальция н магния сильно уменьшается и при 100° падает до 0. При высокой температуре эти соли разлагаются с выделением СО 2 и выпадением карбонатов в осадок

Са(НСО 3) 2 →СаСО 3 +Н 2 О+СО 2 ;

Mg(НСО 3) 2 →MgСО 3 +Н 2 О+СО 2 ;

Отсюда следует, что гидрокарбонатные кальциевые и магниевые воды в глубинных условиях существовать не могут, а, стало быть, и не существуют такого состава термальные воды.

Обогащение вод солями совершается не только путем простого растворения. Природные растворы образуются так же при гидролитическом расщеплении некоторых минералов. К числу минералов, непосредственно в воде нерастворимых, но способных гидролитически расщепляться, относятся различные силикаты-алюмосиликаты, ферросиликаты и пр., - составляющие 75% всех минералов земной коры. Под влияни­ем воды и углекислоты при выветривании силикаты отдают в раствор основания Na + , K + , Ca ++ , Mg ++ . Указанные основания образуют, соединяясь с СО 2 , углекислые и двууглекислые соли или, при соответствующих условиях, сульфатные н хлоридные соли.

Основная литература: ОЛ 1 .

Дополнительная литература : ДЛ 5,7.

Контрольные вопросы:

1. Назовите природные основные изотопы?

2. Какие особые качества воды?

3. Как происходит процесс растворения галита?

4.Вещества по растворимости как подразделяются и называются?

Основное вещество, которое позволяет существовать жизни на планете – это вода. Она необходима в любом состоянии. Изучение свойств жидкости привело к образованию целой науки – гидрологии. Предмет изучения большинства ученых – это физические и химические свойства . Они понимают под этими свойствами: критические температуры, кристаллическую решетку, примеси и другие индивидуальные особенности химического соединения.

Вконтакте

Изучение

Формула воды известна каждому школьнику. Это три простых знака, но содержатся они в 75% от общей массы всего на планете.

Н2О – это два атома и один — . Структура молекулы имеет эмпирическую форму, поэтому свойства жидкости такие многообразные, несмотря на простой состав. Каждая из молекул находится в окружении соседей. Они связаны одной кристаллической решеткой.

Простота строения позволяет жидкости существовать в нескольких агрегатных состояниях. Ни одно вещество на планете не может этим похвастаться. Н2О очень подвижна, она уступает в этом свойстве лишь воздуху. Каждый осведомлен о круговороте воды, о том, что после испарения ее с поверхности земли, где-то далеко проходит дождь или снег. Климат регулируется именно благодаря свойствам жидкости, которая может отдавать тепло, а сама при этом практически не изменяет свою температуру.

Физические свойства

Н2О и ее свойства зависят от многих ключевых факторов. Основные из них:

  • Кристаллическая решетка. Строение воды, а точнее ее кристаллической решетки, обусловлено агрегатным состоянием. Она имеет рыхлое, но очень прочное строение. Снежинки показывают решетку в твердом состоянии, а вот в привычном – жидком, у воды нет четкости в строении кристаллов, они подвижны и изменчивы.
  • Строение молекулы – шар. Но влияние земного притяжения заставляет воду принимать форму сосуда, в котором находится. В космосе она будет геометрически правильной формы.
  • Реагирует вода с другими веществами, в том числе с теми, кто обладает неразделенными электронными парами, среди них спирт и аммиак.
  • Обладает высокой теплоемкостью и теплопроводностью , быстро нагревается и долго не остывает.
  • Еще со школы известно, что температура кипения — 100 градусов Цельсия. В жидкости появляются кристаллы при понижении до +4 градусов, а вот лед образуется при еще большем снижении. Температура кипения зависит от давления, в которое поместить Н2О. Есть эксперимент, при котором температура химического соединения достигает 300 градусов, при этом жидкость не кипит, а плавит свинец.
  • Еще одним важным свойством является поверхностное натяжение. Формула воды позволяет ему быть очень прочным. Ученые выяснили, чтобы разорвать его потребуется сила с массой больше 100 тонн.

Интересно! Н2О, очищенная от примесей (дистиллированная), не может проводить ток. Это свойство оксида водорода появляется лишь при наличии растворенных в нем солей.

Другие особенности

Лед – это уникальное состояние, которое свойственно оксиду водорода. Он образует рыхлые связи, которые легко деформируются. Кроме того, расстояние между частицами значительно увеличивается, делая плотность льда намного ниже жидкости. Это позволяет водоемам не промерзать полностью в зимний период, сохраняя жизнь под слоем льда. Ледники – большой запас пресной воды.

Интересно! У Н2О есть уникальное состояние, которое называется явлением тройной точки. Это когда она находится сразу в трех своих состояниях. Возможно это условие, лишь при температуре 0,01 градус и давлении 610 Па.

Химические свойства

Основные химические свойства :

  • Разделяют воду по жесткости, от мягкой и средней — до жесткой. Этот показатель зависит от содержания солей магния и калия в растворе. Есть также такие , которые находятся в жидкости постоянно, а от некоторых можно избавиться кипячением.
  • Окисление и восстановление. Н2О влияет на процессы, изучаемые в химии, происходящие с другими веществами: одни она растворяет, с другими вступает в реакцию. Исход любого эксперимента зависит от правильного выбора условий, при которых он проходит.
  • Влияние на биохимические процессы. Вода основная часть любой клетки , в ней как в среде, происходят все реакции в организме.
  • В жидком состоянии впитывает в себя газы, которые неактивны. Их молекулы располагаются между молекулами Н2О внутри полостей. Так образуются клатраты.
  • При помощи оксида водорода образуются новые вещества, которые не связаны с окислительно-восстановительным процессом. Речь идет о щелочах, кислотах и основаниях.
  • Еще одна характеристика воды — это способность образовывать кристаллогидраты. Оксид водорода при этом остается в неизменном виде. Среди обычных гидратов можно выделить медный купорос.
  • Если через соединение пропустить электрический ток, то можно разложить молекулу на газы.

Важность для человека

Очень давно люди поняли неоценимое значение жидкости для всего живого и планеты в целом. Без нее человек не может прожить и недели. Какого же полезное действие от этого самого распространенного на Земле вещества?

  • Самое главное применение — это наличие в организме, в клетках, где проходят все важнейшие реакции.
  • Образование водородных связей благоприятно сказывается на живых существах, ведь при изменении температуры жидкость в теле не замерзает.
  • Человек давно применяет Н2О в бытовых нуждах, кроме приготовления пищи, это: стирка, уборка, купание.
  • Ни один промышленный завод не может работать без жидкости.
  • Н2О – источник жизни и здоровья , она является лекарством.
  • Растения используют ее на всех этапах своего развития и жизни. С ее помощью они производят кислород, такой необходимый для жизни живых существ, газ.

Кроме самых очевидных полезных свойств, их имеется еще очень много.

Важность воды для человека

Критическая температура

У Н2О, как и у всех веществ, есть температура, которая называется критической . Критическая температура воды определяется методом ее нагрева. До 374 градусов по Цельсию жидкость называют паром, она еще может превратиться обратно в привычное жидкое состояние, при определенном давлении. Когда температура вышей этой критической отметки, то вода как химический элемент, превращается в газ безвозвратно.

Применение в химии

Большой интерес у химиков Н2О вызывает благодаря основному своему свойству – умению растворять. Часто ученые ею очищают вещества, чем создают благоприятные условия для проведения экспериментов. Во многих случаях она является средой, в которой можно провести опытные испытания. Кроме того, Н2О сама участвует в химических процессах, влияя на тот или иной химический эксперимент. Она соединяется с неметаллическими и металлическими веществами.

Три состояния

Вода предстает перед людьми в трех состояниях, называемых агрегатными. Это жидкость, лед и газ. Вещество одно и то же по составу, но разное по свойствам. У

мение перевоплощаться – очень важная характеристика воды для всей планеты, таким образом, происходит ее круговорот.

Сравнивая все три состояния, человек чаще видит химическое соединение все же в жидком виде. Вода не имеет вкуса и запаха, а то, что ощущается в ней, это из-за наличия примесей, растворенных в ней веществ.

Основные свойства воды в жидком состоянии — это: огромная сила, позволяющая точить камни и рушить скалы, а также возможность принимать любую форму.

Мелкие частицы при замерзании сокращают скорость своего движения и увеличивают дистанцию, поэтому структура льда пористая и по плотности ниже жидкости. Лед применяется в холодильных установках, для различных бытовых и промышленных целей. В природе лед несет лишь разрушения, выпадая в виде града или лавины.

Газ – еще одно состояние, который образуется, когда не достигается критическая температура воды. Обычно при температуре больше 100 градусов, или испаряясь с поверхности. В природе это облака, туманы и испарения. Большую роль искусственное газообразование сыграло в техническом прогрессе в 19 веке, когда были изобретены паровые двигатели.

Количество вещества в природе

75% — такая цифра покажется огромной, но это вся вода на планете, даже та, которая находится в разных агрегатных состояниях, в живых существах и органических соединениях. Если же учесть лишь жидкое, то есть воду, находящуюся в морях и океанах, а также в твердую – в ледниках, то процент становится 70,8%.

Распределение процентного содержания примерно такое:

  • моря и океаны – 74,8%
  • Н2О пресных источников, распределенная неравномерно по планете, в ледниках составляет — 3,4%, а в озерах, болотах и реках лишь 1,1%.
  • На подземные источники приходится примерно 20,7% от всего количества.

Характеристика тяжелой воды

Природное вещество – водород встречается в виде трех изотопов , в таком же количестве форм есть и кислород. Это позволяет выделять кроме обычной питьевой воды еще дейтериевую и тритиевую.

Дейтериевая имеет самую устойчивую форму, она встречается во всех природных источниках, но в очень малом количестве. Жидкость с такой формулой обладает рядом отличий от простой и легкой. Так, образование кристаллов в ней начинается уже при температуре 3,82 градуса. А вот температура кипения немного выше — 101,42 градуса Цельсия. У нее больше плотность и способность к растворению веществ значительно снижена. Кроме того, ее обозначают другой формулой (D2O).

Живые системы реагируют на такое химическое соединение плохо. Лишь некоторые виды бактерий смогли в нем приспособиться к жизни. Рыбы и вовсе не выдержали такого эксперимента. В организме человека, дейтерий может находиться несколько недель, а после выводится, не причиняя вреда.

Важно! Пить дейтериевую воду – нельзя!

Уникальные свойства воды. – просто.

Вывод

Широкое применение тяжелая вода нашла в ядерной и атомной промышленности, а обычная — в повсеместном.

Молекула воды Н2О состоит из одного атома кислорода, связанного ковалентной связью с двумя атомами водорода.

В молекуле воды главным действующим лицом является атом кислорода.

Поскольку атомы водорода друг от друга заметно отталкиваются, угол между химическими связями (линиями, соединяющими ядра атомов) водород - кислород не прямой (90°), а немного больше - 104,5°.

Химические связи в молекуле воды – полярные, так как кислород подтягивает к себе отрицательно заряженные электроны, а водород - положительно заряженные электроны. В результате вблизи атома кислорода скапливается избыточный отрицательный заряд, а у атомов водорода - положительный.

Поэтому вся молекула воды является диполем, то есть молекулой с двумя разноименными полюсами. Дипольная структура молекулы воды во многом определяет ее необычные свойства.

Молекула воды – это диамагнетик.

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - тетраэдр. Таково строение самой молекулы воды.

При изменении состояния молекулы воды длина сторон и угол между ними изменяются в тетраэдре.

Например, если молекула воды находится в парообразном состоянии, то угол, образованный ее сторонами, равняется 104°27". В водном состоянии угол составляет 105°03". И в состоянии льда угол равен 109,5°.

Геометрия и размеры молекулы воды для различных состояний
а - для парообразного состояния
б - для низшего колебательного уровня
в - для уровня, близкого к образованию кристалла льда, когда геометрия молекулы воды соответствует геометрии двух египетских треугольников с соотношением сторон 3: 4: 5
г - для состояния льда.

Если разделить пополам эти углы, то получим углы:
104°27": 2 = 52°13",
105°03": 2 = 52°31",
106°16": 2 = 53°08",
109,5°: 2 = 54°32".

Значит, среди геометрических рисунков молекулы воды и льда находится знаменитый египетский треугольник, в основу построения которого заложены соотношения золотой пропорции - длины сторон относятся как 3:4:5 с углом 53°08".

Молекула воды приобретает строение золотой пропорции на пути, когда вода переходит в лед, и наоборот, когда лед тает. Очевидно, за это состояние и ценится талая вода, когда ее структура в построении имеет пропорции золотого сечения.

Теперь становится понятным, что знаменитый египетский треугольник с соотношением сторон 3:4:5 "взят" из одного из состояний молекулы воды. Сама же геометрия молекулы воды образована двумя египетскими прямоугольными треугольниками, имеющими общий катет равный 3.

Молекула воды, имеющая в основе соотношение золотой пропорции, является физическим проявлением Божественной Природы, которая участвует в создании жизнь. Именно поэтому в земной природе заложена та гармония, которая присуща всему космосу.

И поэтому древние египтяне обожествляли числа 3, 4, 5, а сам треугольник считали священным и старались заложить его свойства, его гармонию в любую конструкцию, дома, пирамиды и даже в разметку полей. Кстати, украинские хаты строились тоже с применением соотношения золотой пропорции.

В пространстве молекула воды занимает некоторый объем, и покрыта электронной оболочкой в виде вуали. Если представить вид гипотетической модели молекулы в плоскости, то она похожа на крылья бабочки, на Х-образную хромосому, в которой записана программа жизни живого существа. И это является показательным фактом того, что сама вода - это обязательный элемент всего живого.

Если представить вид гипотетической модели молекулы воды в объеме, то она передает форму треугольной пирамиды, у которой имеется 4 грани, а у каждой грани по 3 ребра. В геометрии треугольная пирамида называется тетраэдром. Такое строение свойственно кристаллам.

Таким образом, молекула воды образует прочную уголковую структуру, которую она сохраняет даже, когда находится в парообразном состоянии, на грани перехода в лед, и когда превращается в лед.

Если "скелет" молекулы воды так устойчив, то и его энергетическая "пирамида" - тетраэдр тоже стоит непоколебимо.

Такие структурные свойства молекулы воды в различных условиях объясняются прочными связями между двумя атомами водорода и одним атомом кислорода. Эта связь примерно в 25 раз сильнее, чем связь между соседними молекулами воды. Поэтому легче отделить одну молекулу воды от другой, например, при нагревании, чем разрушить саму молекулу воды.

За счет ориентационных, индукционных, дисперсионных взаимодействий (сил Ван-дер-Ваальса) и водородных связей между атомами водорода и кислорода соседних молекул молекулы воды способны образовывать как случайные ассоциаты, т.е. не имеющие упорядоченной структуры, так и кластеры – ассоциаты, имеющие определенную структуру.

Согласно статистическим данным, в обычной воде находится случайных ассоциатов - 60% (деструктурированная вода) и кластеров - 40% (структурированная вода).

В результате исследований, проведенных российским ученым С. В. Зениным, были обнаружены стабильные долгоживущие кластеры воды.

Зенин установил, что молекулы воды первоначально образуют додекаэдр. Четыре додекаэдра соединяясь, образует основной структурный элемент воды - кластер, состоящий из 57 молекул воды.

В кластере додекаэдры имеют общие грани, а их центры образуют правильный тетраэдр. Это объёмное соединение молекул воды, в том числе гексамеров, которое имеет положительные и отрицательные полюса.

Водородные мостики позволяют молекулам воды объединяться самыми различными способами. Благодаря этому в воде наблюдается бесконечное разнообразие кластеров.

Кластеры могут взаимодействовать друг с другом за счет свободных водородных связей, что приводит к появлению структур второго порядка в виде шестигранников. Они состоят из 912 молекул воды, которые практически не способны к взаимодействию. Время существования такой структуры весьма велико.

Эту структуру, похожую на маленький острый кристаллик льда из 6 ромбических граней, С.В. Зенин назвал "основным структурным элементом воды”. Многочисленные эксперименты подтвердили; в воде - мириады таких кристалликов.

Эти кристаллики льда почти не взаимодействуют друг с другом, поэтому не образуют более сложных устойчивых конструкций и легко скользят гранями относительно друг друга, создавая текучесть. В этом смысле вода напоминает переохлажденный раствор, который никак не может кристаллизоваться.

Состав воды можно выяснить с помощью реакции разложения электрическим током. Образуется два объема водорода на один объем кислорода (объем газа пропорционален количеству вещества):

2H 2 O = 2H 2 + O 2

Вода состоит из молекул. Каждая молекула содержит два атома водорода, соединенные ковалентными связями с одним атомом кислорода. Угол между связями около 105°:
O - H
H

Поскольку кислород является более электроотрицательным элементом (сильным окислителем), общая электронная пара ковалентной связи смещается к атому кислорода, на нем образуется частичный отрицательный заряд δ−, на атомах водорода - частичный положительный δ+. Соседние молекулы притягиваются друг к другу противоположными зарядами - это обуславливает сравнительно высокую температуру кипения воды.

Вода при комнатной температуре - бесцветная прозрачная жидкость. Температура плавления 0º C, температура кипения при атмосферном давлении - 100° С. Чистая вода не проводит электрический ток.

Интересной особенностью воды является то, что она имеет наибольшую плотность 1 г/см 3 при температуре около 4° С . При дальнейшем понижении температуры плотность воды снижается. Поэтому с наступлением зимы верхние замерзающие слои воды становятся легче и не погружаются вниз. Лед образуется на поверхности. Промерзания водоема до дна обычно не происходит (к тому же лед тоже имеет плотность меньше воды и плавает на поверхности).

Химические свойства :

К основным загрязнителям природной воды относятся сточные воды промышленных предприятий, содержащие соединения ртути, мышьяка и других токсичных элементов. Стоки животноводческих комплексов, городов могут содержать отходы, вызывающие бурное развитие бактерий. Большую опасность для природных водоемов представляет неправильное хранение (не обеспечивающее защиту от атмосферных осадков) или применение удобрений и ядохимикатов, смываемых в водоемы. Транспорт, особенно водный, загрязняет водоемы нефтепродуктами и бытовым мусором, выбрасываемым недобросовестными людьми прямо в воду.

Для охраны вод необходимо вводить замкнутое водоснабжение промышленных предприятий, комплексную переработку сырья и отходов, строительство очистных сооружений, экологическое воспитание населения.

* Для электролиза воды используются растворы солей

2. Опыт. Распознавание соли угольной кислоты среди трех предложенных солей.

Качественной реакцией на карбонаты служит взаимодействие с кислотами, сопровождающееся бурным выделением углекислого газа:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2

или, в ионном виде:

CO 3 2− + 2H + = H 2 O + CO 2

Доказать, что выделяется именно оксид углерода (IV), можно, пропуская его через раствор известковой воды, что вызывает её помутнение:

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O

Чтобы распознать соль угольной кислоты, добавляем во все три пробирки немного кислоты (чтобы не вылилась через край при «вскипании»). Где будет выделяться бесцветный газ без запаха, там находится карбонат.

Вода может находиться в трех агрегатных состояниях -- газообразном, жидком и твердом. В каждом из этих состояний структура воды неодинакова. В зависимости от состава находящихся в ней веществ вода приобретает новые свойства. Твердое состояние воды также бывает, по крайней мере, двух типов: кристаллическое -- лед и некристаллическое -- стеклообразное, аморфное (состояние витрификации). При мгновенном замораживании с помощью, например, жидкого азота молекулы не успевают построиться в кристаллическую решетку, и вода приобретает твердое стеклообразное состояние. Именно это свойство воды позволяет замораживать без повреждения живые организмы, такие, как одноклеточные водоросли, листочки мха Мпіuт, состоящие из двух слоев клеток. Замораживание же с образованием кристаллической воды приводит к повреждению клеток.

Для кристаллического состояния воды характерно большое разнообразие форм. Давно замечено, что кристаллические структуры воды напоминают радиолярии, листья папоротника, цисты. По этому поводу А. А. Любищев высказал предположение, что законы кристаллизации в чем-то сходны с законами образования живых структур.

Физические свойства воды. Вода -- самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

Плотность. Все вещества увеличивают объём при нагревании, уменьшая при этом плотность. Однако при давлении 0,1013 МПа (1 атм.) у воды в интервале от 0 до 4 0 С при увеличении температуры объём уменьшается и максимальная плотность наблюдается (при этой температуре 1 см 3 воды имеем массу 1г). При замерзании объем воды резко возрастает на 11%, а при таянии льда при 0°С так же резко уменьшается. С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм.) на 1 0 С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 0 С плотность жидкой воды понижается на 4% (при 4°С плотность ее равна 1).

Точки кипения и замерзания (плавления). При давлении 0,1013 МПа (1 атм.) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодической системы Менделеева. В ряду Н2Те, H2Se, H2S и т.д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются. При соблюдении этого правила вода должна была бы иметь точки замерзания между -- 90 и -- 120°С, а кипения -- между 75 и 100 °С. Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) -- падает (прил.1).

Теплота плавления. Скрытая теплота плавления льда очень высока -- около 335 Дж/г (для железа -- 25, для серы -- 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от -- 1 до -- 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

Теплоемкость. Величина теплоемкости воды (т.е. количество теплоты, необходимое для повышения температуры на 1 °С) в 5 --30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме того, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35°С падает (затем начинает возрастать). Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

Вода как растворитель. Полярность молекулы воды обусловливает ее свойство растворять вещества лучше, чем другие жидкости. Растворение кристаллов неорганических солей осуществляется благодаря гидратации входящих в их состав ионов. Хорошо растворяются в воде органические вещества, с карбоксильными, гидроксильными. Карбонильными и с другими группами, которых вода образует водородные связи. (прил. 1)

Вода в растении находится как в свободном, так и в связанном состоянии (прил.2). Свободная вода - подвижна, она имеет практически все физико-химические свойства чистой воды, хорошо проникает через клеточные мембраны. Существуют специальные мембранные белки, образующие внутри мембраны каналы, проницаемые для воды (аквапорины). Свободная вода вступает в различные биохимические реакции, испаряется в процессе транспирации, замерзает при низких температурах.

Связанная вода - имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до - 10°С.

Связанная вода в растениях бывает:

1) Осмотически - связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода - связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества - ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода - включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки.

Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а растворенные вещества (минеральные соли, сахара, органические кислоты и др.) - осмотически-связанной. Некоторые исследователи считают, что вся вода в клетке в той или иной степени связана. Физиологи условно понимают под связанной водой ту, которая не замерзает при понижении температуры до-10 °С. Важно отметить, что всякое связывание молекул воды (добавление растворенных веществ, гидрофобные взаимодействия и др.) уменьшает их энергию. Именно это лежит в основе снижения водного потенциала клетки по сравнению с чистой водой.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а, следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.