Уравнение линии на плоскости. Уравнение прямой, виды уравнения прямой на плоскости Понятие уравнения на плоскости

Линия на плоскости есть совокупность точек этой плоскости, обладающих определенными свойствами, при этом точки, не лежащие на данной линии, этими свойствами не обладают. Уравнение линии определяет аналитически выраженное соотношение между координатами точек, лежащих на этой линии. Пусть это соотношение задано уравнением

F(x,y )=0. (2.1)

Пара чисел, удовлетворяющая (2.1), – не произвольная: если х задано, то у не может быть каким угодно, значение у связано с х . При изменении х изменяется у , и точка с координатами (х,у ) описывает данную линию. Если координаты точки М 0 (х 0 ,у 0) удовлетворяют уравнению (2.1), т.е. F(х 0 ,у 0)=0 – верное равенство, то точка М 0 лежит на данной линии. Верно и обратное утверждение.

Определение. Уравнением линии на плоскости называется уравнение, которому удовлетворяют координаты любой точки, лежащей на этой линии, и не удовлетворяют координаты точек, не лежащих на этой линии .

Если известно уравнение некоторой линии, то исследование геометрических свойств этой линии можно свести к исследованию ее уравнения – в этом заключается одна из основных идей аналитической геометрии. Для исследования уравнений существуют хорошо разработанные методы математического анализа, которые упрощают изучение свойств линий.

При рассмотрении линий используется термин текущая точка линии – переменная точка М(х,у ), перемещающаяся вдоль этой линии. Координаты х и у текущей точки называются текущими координатами точки линии.

Если из уравнения (2.1) можно явным образом выразить у
через х , т. е. записать уравнение (2.1) в виде , то кривую, определяемую таким уравнением, называют графиком функции f(х) .

1. Дано уравнение: , или . Если х принимает произвольные значения, то у принимает значения, равные х . Следовательно, линия, определяемая этим уравнением, состоит из точек, равноотстоящих от координатных осей Ох и Оу – это биссектриса I–III координатных углов (прямая на рис. 2.1).

Уравнение , или , определяет биссектрису II–IV координатных углов (прямая на рис. 2.1).

0 х 0 х С 0 х

рис. 2.1 рис. 2.2 рис. 2.3

2. Дано уравнение: , где С – некоторая постоянная. Это уравнение можно записать иначе: . Этому уравнению удовлетворяют те и только те точки, ординаты у которых равны С при любом значении абсциссы х . Эти точки лежат на прямой, параллельной оси Ох (рис. 2.2). Аналогично, уравнение определяет прямую, параллельную оси Оу (рис. 2.3).

Не всякое уравнение вида F(x,y )=0 определяет линию на плоскости: уравнению удовлетворяет единственная точка – О(0,0), а уравнению не удовлетворяет ни одна точка на плоскости.

В приведенных примерах мы по заданному уравнению строили определяемую этим уравнением линию. Рассмотрим обратную задачу: составить по заданной линии ее уравнение.


3. Составить уравнение окружности с центром в точке Р(a,b ) и
радиусом R.

○ Окружность с центром в точке Р и радиусом R есть совокупность точек, отстоящих от точки Р на расстоянии R. Это значит, что для любой точки М, лежащей на окружности, МР= R, если же точка М не лежит на окружности, то МР ≠ R.. ●

10.1. Основные понятия

Линия на плоскости рассматривается (задается) как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние - R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять по­ложение точки плоскости заданием двух чисел - ее координат, а положе­ние линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x;y) = 0 с двумя переменными, которому удовлетворяют координаты x и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные x и у в уравнении линии называются текущими коорди­натами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(x 0 ; у 0) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбран­ной системе координат.

Задача о нахождении точек пересечения двух линий, заданных урав­нениями F 1 (x 1 ;y 1) = 0 и F 2 (x 2 ;y} = 0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r; φ)=О называется уравнением данной линии в поляр­ной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где x и у - координаты произвольной точки М(х; у), лежащей на данной линии, а t - переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если x = t + 1, у = t 2 , то значению параметра t = 1 соот­ветствует на плоскости точка (3; 4), т. к. x = 1 + 1 = 3, у = 22 - 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим , а уравнения (10.1) - параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x;y) = 0, надо каким-либо способом из двух уравнений исключить параметр t.

Например, от уравнений путем подстановки t = х

во второе уравнение, легко получить уравнение у = х 2 ; или у-х 2 = 0, т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда возможен.

Линию на плоскости можно задать векторным уравнением r =r (t) , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор r =r (t) плоскости. При изменении параметра t конец вектора r =r (t) опишет некоторую линию (см. рис. 31).

Векторному уравнению линии r =r (t) в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения. I Векторное уравнение и параметрические уравнения I линии имеют механический смысл. Если точка перемеща- I ется на плоскости, то указанные уравнения называются уравнениями дви­жения, а линия - траекторией точки, параметр t при этом есть время. Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, не­которая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению (х-2) 2 +(у-3 ) 2 =0 соответствует не линия, а точка (2; 3); уравнению х 2 + у 2 + 5 = 0 на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение) вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

10.2. Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды её уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки N(0; b) пересечения с осью Оу и углом a между осью Ох и прямой (см. рис. 41).

Под углом а (0

Из определения тангенса угла следует равенство

Введем обозначение tg a=k , получаем уравнение

(10.2)

которому удовлетворяют координаты любой точки М(х;у) прямой. Мож­но убедиться, что координаты любой точки Р(х;у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число k = tga называется угловым коэффициентом прямой, а уравнение (10.2) - уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b = 0 и, следова­тельно, уравнение этой прямой будет иметь вид y=kx .

Если прямая параллельна оси Ох, то a = 0, следовательно, k = tga = 0 и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то , уравнение (10.2) теряет смысл, т. к. для нее угловой коэффициент не существует.

В этом случае уравнение прямой будет иметь вид

где a - абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой.

Рассмотрим уравнение первой степени относительно x и y в общем виде

(10.4)

где А, В, С - произвольные числа, причем А и В не равны нулю одно­временно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возмож­ны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = О, причем А ¹ 0 т. е. . Это есть уравнение прямой, параллельной оси Оу и проходящей через точку ·

Если B ¹ 0, то из уравнения (10.4) получаем . Это есть уравнение прямой с угловым коэффициентом |.

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой .

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду. Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем . Уравнению удовлетворяют координаты точки O(0;0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку и ее направление определяется угловым коэффициентом k. Уравнение этой прямой можно записать в виде , где b - пока неизвестная величина. Так как прямая проходит через точку , то координаты точки удовлетворяют уравнению прямой:. Отсюда . Подставляя значение b в уравнение, получим искомое уравнение прямой: , т. е.

(10.5)

Уравнение (10.5) с различными значениями k называют также уравнениями пучка прямых с центром в точке Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки и . Уравнения прямой, проходящей через точку M 1 , имеет вид

(10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку , то координаты этой точки должны удовлетворять уравнению (10.6): . Οтсюда находим . Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки M 1 и M 2 .

(10.7)

Предполагается, что в этом уравнении ·

Если x 2 = x 1 прямая, проходящая через точки и параллельна оси ординат. Ее уравнение имеет вид .

Если y 2 = y 1 то уравнение прямой может быть записано в виде , прямая M 1 M 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке , а ось Оу – в точке (см. рис. 42). В этом случае уравнение (10.7) примет вид

Это уравнение называется уравнением прямой в отрезках , так как числа α и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку перпендикулярно данному ненулевому вектору .

Возьмем на прямой произвольную точку М(х;у) и рассмотрим вектор (см. рис. 43). Поскольку векторы и перпендикулярны, то их скалярное произведение равно нулю: , то есть

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор , перпендикулярный прямой, на­зывается нормальным вектором этой прямой. Уравнение (10.8) можно переписать в виде

(10.9)

где А и B- координаты нормального вектора, - сво­бодный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно опреде­лить, указав расстояние ρ от полюса О до данной прямой и угол α между полярной осью ОΡ и осью l , проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки на данной прямой имеем:

С другой стороны,

Следовательно,

(10.10)

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием p и α (см. рис. 45). Рассмотрим прямоугольную систему координат . Введем полярную систему, взяв за полюс и за полярную ось. Уравнение прямой можно записать в виде

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: , . Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

(10.11)

Уравнение (10.11) называется нормальным уравнением прямой .

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель . Получим . Это уравнение долж­но обратиться в уравнение (10.11). Следо­вательно, должны выполняться равенства: , , . Из первых двух равенств находим,т. е. . Множитель λ называется нормирующим множителем . Согласно третьему равенству знак нормирующего множителя противоположен знаку свобод­ного члена С общего уравнения прямой.

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Скачать с Depositfiles

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Лекция № 7. Тема 1 : Линии на плоскости и их уравнения

1.1. Линии и их уравнения в декартовой системе координат

В аналитической геометрии линии на плоскости рассматриваются как геометрическое место точек (г.м.т.), обладающих одинаковым свойством, общим для всех точек линии.

Определение. Уравнение линии
– это уравнение с двумя переменными
х и у , которому удовлетворяют координаты любой точки линии и не удовлетворяют координаты никакой другой точки, не лежащей на данной линии.

Верно и обратное, т.е. любое уравнение у

вида , вообще говоря, в декартовой

системе координат (ДСК) определяет линию

как г.м.т., координаты которых удовлетворяют

этому уравнению. О х

Замечание 1. Не всякое уравнение вида определяет линию. Например, для уравнения
не существует точек, координаты, которых удовлетворяли бы этому уравнению. Такие случаи в дальнейшем рассматривать не будем.
Это случай так называемых мнимых линий.

Пример 1. Составить уравнение окружности радиуса R с центром в точке
.

Для любой точки , лежащей у М

на окружности, в силу определения R

окружности как г.м.т., равноудаленных

от точки , получаем уравнение х

1.2. Параметрические уравнения линий

Существует ещё один способ задавать линию на плоскости при помощи уравнений, которые называются параметрическими :

Пример 1. Линия задана параметрическими уравнениями

Требуется получить уравнение этой линии в ДСК.

Исключим параметр t . Для этого возведём обе части этих уравнений в квадрат и сложим

Пример 2. Линия задана параметрическими уравнениями


а

Требуется получить уравнение

этой линии в ДСК. — а а

Поступим аналогично, тогда получим

а

Замечание 2. Следует отметить, что параметром t в механике явля-ется время.

1.3. Уравнение линии в полярной системе координат

ДСК является не единственным способом определять положение точки и, следовательно, задавать уравнение линии. На плоскости часто целесо-образно использовать так называемую полярную систему координат (ПСК).

ПСК будет определена, если задать точку О – полюс и луч ОР, исхо-дящий из этой точки, который называется полярной осью. Тогда положение любой точки определяется двумя числами: полярным радиусом
и полярным углом – угол между

полярной осью и полярным радиусом.

Положительное направление отсчета

полярного угла от полярной оси

считается против часовой стрелки.

Для всех точек плоскости
, О Р

а для однозначности полярного угла считается
.

Если начало ДСК совместить с

полюсом, а ось Ох направить по

полярной оси, то легко убедиться у

в связи между полярными и

декартовыми координатами:


О х Р

Обратно,

(1)

Если уравнение линии в ДСК имеет вид , то в ПСК — Тогда из этого уравнения можно получить урав-нение в виде

Пример 3. Составить уравнение окружности в ПСК, если центр окружности находится в полюсе.

Используя формулы перехода (1) от ДСК к ПСК, получим

Пример 4. Составить уравнение окружности,

если полюс на окружности, а полярная ось у

проходит через диаметр.

Поступим аналогично

О 2 R х

R

Данное уравнение можно получить и

из геометрических представлений (см. рис.).

Пример 5. Построить график линии

Перейдём к ПСК. Уравнение

примет вид
О

График линии построим с а

учётом его симметрии и ОДЗ

функции:

Данная линия называется лемнискатой Бернулли .

1.4. Преобразование системы координат.

Уравнение линии в новой системе координат

1. Параллельный перенос ДСК. у

Рассмотрим две ДСК, имеющие М

одинаковое направление осей, но

различные начала координат.

В системе координат Оху точка

относительно системы
О х

имеет координаты
. Тогда имеем

и

В координатной форме полученное векторное равенство имеет вид

или
. (2)

Формулы (2) представляют собой формулы перехода от «старой» системы координат Оху к «новой» системе координат и наоборот.

Пример 5. Получить уравнение окружности выполнив параллельный перенос системы координат в центр окружности.

Из формул (2) следует
у О

1 0 . Полярная система координат . Будем говорить, что на плоскости введена полярная система координат, если на ней выбрана точкаO – полюс, луч, выходящий из полюсаO – полярная ось и масштабный отрезок.

Пусть M – произвольная точка плоскости, не совпадающая с полюсомO (рис.3.4 хх). Первой полярной координатой точкиM (полярным радиусом) называется расстояние от точкиM до полюсаO . второй полярной координатой точкиM (или амплитудой) называется уголот полярной оси (луча
) до лучаOM . Для точкиO считают
,– произвольное число.

Из определения полярных координат и их геометрического смысла следует, что

Значения второй координаты, лежащие в пределах
называют главные значением угла.

Замечание . В полярной системе координат нет взаимно однозначного соответствия между точками плоскости и упорядоченной парой чисел (,):(,) соответствует единственная точка плоскости, но
соответствует бесчисленное множество пар (,+
).

Задать точку M в полярной системе координат означает задать два числаи:M (,).

Установим связь между декартовыми и полярными координатами (одной и той же) точки M .

Для этого введем оси
и
как показано на рис.3.5 хх. Масштабный отрезок полярной системы
примем и за масштабный отрезок декартовой системы
.

Пусть
– декартовы,
– полярные координаты некоторой точкиM . Тогда

и обратно,

По формулам (3.2) переходят от полярных координат к декартовым, по (3.2’) – от декартовых координат к полярным.

2 0 . Понятие линии и ее уравнения. Понятие линии является одним из самых трудных понятий математики. Общее определение линии дается в топологии (одном из разделов математики). Получено оно было в двадцатые годы прошлого столетия советским математиком П.С.Урысоном.

Здесь мы не будем заниматься определением линии ; дадим лишь определение того, что называетсяуравнением линии .

Определение 1 . Уравнением линии (обозначают (L ), либоL – без скобок) в декартовой системе координат называется уравнение

, (3.3)

которому удовлетворяют координаты
всех точек
и только координаты таких точек (то есть координаты точек, не лежащих на линииL , не удовлетворяют (3.3) – не обращают его в тождество).

В частности, уравнение линии L может иметь вид:

. (3.3’)

Определение 2 . Уравнением линии в полярной системе координат называется уравнение

, (3.4)

которому удовлетворяют полярные координаты
всех точек
и только координаты таких точек.

В частности, уравнение линии L в полярных координатах может иметь вид:

. (3.4’)

Определение 3 . Параметрическими уравнениями линииL в декартовой системе координат называются уравнения вида

(3.5)

где функции
и
имеют одну и ту же область определения – промежутокT .
соответствует точка
рассматриваемой линииL и
соответствует некоторому значению
(то есть

такое, что
и
будут координатами точкиM ).

Замечание 1 . Аналогично определяются параметрические уравнения линии в полярных координатах.

Замечание 2 . В курсе аналитической геометрии (на плоскости) рассматриваются две основные задачи:

1) известны геометрические свойства некоторой линии на плоскости; составить ее уравнение;

2) известно уравнение линии L ; построить эту линию, установить ее геометрические свойства.

Рассмотрим примеры.

Пример 1 . Найти уравнение окружностиL радиусаR , центр которой находится в точке
(рис.3.6 хх).

Замечание. Прежде, чем переходить к решению задачи, сделаем замечание (которому надо следовать и в дальнейшем): решение задачи на определение геометрического места точек начинается с введения произвольной («текущей») точки с координатами
этого геометрического места.

Решение . Пусть точка
– произвольная точка окружностиL . По определению, окружность есть геометрическое место точек, равноудаленных от фиксированной точки – ее центра:CM = R . По формуле (2.31) (в ней надо положить
) находим:

(3.6)

.– уравнение искомой окружности.

Если центр С лежит в начале координат, то
и уравнение

(3.6’)

есть уравнение такой окружности.

Пример 2 . Пусть криваяL задана уравнением:
. Построить эту кривую; установить, проходит ли она через точку
? через точку
?

Решение . Преобразуем левую часть данного уравнения, выделив в ней полные квадраты:или
– это уравнение определяет окружность с центром в точке
радиуса
.

Координаты точки
удовлетворяют уравнению окружности:– точкаO лежит на окружности; координаты же точки
не удовлетворяют уравнению окружности.

Пример 3 . Найти геометрическое место точек, отстоящих от точки
вдвое дальше, чем от точки
.

Решение . Пусть
– текущая точка (искомого) геометрического места. Тогдаи из условия задачи пишем уравнение:.

Возведем это равенство в квадрат и преобразуем:

– искомое место есть окружность с центром в точке
и радиусомR =10.

Приведем примеры на определение уравнений линий в полярной системе координат.

Пример 4 . Составить уравнение окружности радиусаR с центром в полюсеO .

Решение . Пусть
есть произвольная точка окружностиL (рис.3.7 хх). Тогда
или

(3.7)

– этому уравнению удовлетворяют точки, лежащие на окружности L , и не удовлетворяют точки, не лежащие на ней.

Пример 5 . Составить уравнение прямой, проходящей через точку
параллельно полярной оси (рис.3.8 хх).

Решение . Из прямоугольного треугольникаOAM следует, что
– имеем уравнение прямой в полярной системе координат.

Замечание . Уравнение прямой в декартовой системе координат:
; подставляя
из (3.2), получим
или
.

Пример 6 . Построить кривую.

Решение . Заметим, что кривая симметрична относительно полярной оси:
=
=
=
. Поэтому если точка
, то и точка
.

Даем полярному углу различные значения от=0 до=и определяем соответствующие этим углам значения. Запишем это в виде таблицы 1.

Таблица 1.

Из точки O проводим лучи
,
,…,
,
и откладываем на них отрезки
,
,…,
,
. Через полученные точки
,
,…,
,
проводим плавную линию – получим верхнюю половину кривой. Нижнюю достраиваем симметричным отражением верхней относительно полярной оси.

Полученная замкнутая кривая (рис.3.9 хх) называется кардиоидой (сердцеобразной).

Пример 7 . Записать уравнение линии
(равнобочной гиперболы) в полярной системе координат.

Решение . Заменяяx иy по формулам (3.2), получим, и
есть уравнение заданной линии в полярной системе координат.

Пример 8 . Записать уравнение кривой
в прямоугольной декартовой системе координат.

Решение . Запишем уравнение кривой в виде
. По формулам (3.2’) преобразуем его к виду
; возводя это равенство в квадрат, после несложных преобразований придем к уравнению
– эта кривая называется параболой (см. ниже).

Пример 9 . Приведем пример на параметрическое задание кривой. Пусть дана окружность радиусаR с центром в начале координат и пусть
– декартовы координаты текущей точкиM :M
. Пусть, далее,
– полярные координаты той же точки. По формулам (3.2) тогда

где параметр t принимает все значения от 0 до
, есть параметрическое уравнение искомой окружности.

Если центр С окружности взят в точке с координатами
, то, как нетрудно показать, формулы

дают параметрические уравнения соответствующей окружности.