Уравнения метод замены. Интегрирование методом замены переменной

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Математика – это скважина, через которую логический ум может подглядывать за идеальным миром.

Кротов Виктор

В школе ведущее место в курсе алгебры занимают рациональные уравнения. Именно на их изучение времени отводится больше, чем на любые другие темы. Связано это в первую очередь с тем, что уравнения имеют не только важное теоретическое значение, но и служат многим практическим целям. Огромное количество задач реального мира сводятся именно к решению различных уравнений, и только после того, как вы овладеете способами их решения, вы найдете ответы на различные вопросы науки и техники.

Для формирования умения решать рациональные уравнения самостоятельная работа ученика имеет огромное значение. Однако перед тем как переходить именно к самостоятельной работе, необходимо четко знать и уметь применять на практике все возможные методы решения рациональных уравнений.

Рассмотрим подробно на примерах метод замены переменных для решения рациональных уравнений.

Пример 1.

Решить уравнение (2x 2 – 3x + 1) 2 = 22x 2 – 33x + 1.

Решение.

Перепишем уравнение в виде

(2x 2 – 3x + 1) 2 = 11(2x 2 – 3x) + 1. Сделаем замену. Пусть 2x 2 – 3x = t, тогда уравнение примет вид:

(t + 1) 2 = 11t + 1.

Теперь раскроем скобки и приведем подобные, получим:

t 2 + 2t + 1 = 11t + 1;

В получившемся неполном квадратном уравнении вынесем общий множитель за скобки, будем иметь:

t = 0 или t = 9.

Теперь необходимо сделать обратную замену и решить каждое из полученных уравнений:

2x 2 – 3x = 0 или 2x 2 – 3x = 9

x(2x – 3) = 0 2x 2 – 3x – 9 = 0

x = 0 или x = 3/2 x = 3 или x = -3/2

Ответ: -1,5; 0; 1,5; 3.

Пример 2.

Решить уравнение (x 2 – 6x) 2 – 2(x – 3) 2 = 81.

Решение.

Применим формулу квадрата разности (a – b) 2 = a 2 – 2ab + b 2 . Запишем исходное уравнение в виде

(x 2 – 6x) 2 – 2(x 2 – 6x + 9) = 81. Теперь можно сделать замену.

Пусть x 2 – 6x = t, тогда уравнение будет иметь вид:

t 2 – 2(t + 9) = 81.

t 2 – 2t – 18 – 81 = 0;

t 2 – 2t – 99 = 0.

По теореме Виета корнями полученного уравнения будут числа -9 и 11.

Сделаем обратную замену:

x 2 – 6x = -9 или x 2 – 6x = 11

x 2 – 6x + 9 = 0 x 2 – 6x – 11 = 0

(x – 3) 2 = 0 D = 80

x = 3 x 1 = 3 + 2√5; x 2 = 3 – 2√5.

Ответ: 3 – 2√5; 3; 3 + 2√5.

Пример 3.

Решить уравнение (x – 1)(x – 3)(x + 5)(x + 7) = 297 и найти произведение его корней.

Решение.

Найдем «выгодный» способ группировки множителей и раскроем пары скобок:

((x – 1)(x + 5))((x – 3)(x + 7)) = 297;

(x 2 + 5x – x – 5)(x 2 + 7x – 3x – 21) = 297;

(x 2 + 4x – 5)(x 2 + 4x – 21) = 297.

Cделаем замену x 2 + 4x = t, тогда уравнение будет выглядеть следующим образом:

(t – 5)(t – 21) = 297.

Раскроем скобки, приведем подобные слагаемые:

t 2 – 21t – 5t + 105 = 297;

t 2 – 26t – 192 = 0.

По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.

После обратной замены будем иметь:

x 2 + 4x = -6 или x 2 + 4x = 32

x 2 + 4x + 6 = 0 x 2 + 4x – 32 = 0

D = 16 – 24 < 0 D = 16 + 128 > 0

Нет корней x 1 = -8; x 2 = 4

Найдем произведение корней: -8 · 4 = -32.

Ответ: -32.

Пример 4.

Найти сумму корней уравнения (x 2 – 2x + 2) 2 + 3x(x 2 – 2x + 2) = 10x 2 .

Решение.

Пусть x 2 – 2x + 2 = t, тогда уравнение примет вид:

t 2 + 3xt – 10x 2 = 0.

Рассмотрим полученное уравнение как квадратное относительно t.

D = (3x) 2 – 4 · (-10x 2) = 9x 2 + 40x 2 = 49x 2 ;

t 1 = (-3x – 7x) / 2 и t 2 = (-3x + 7x) / 2;

t 1 = -5x и t 2 = 2x.

Так как t = x 2 – 2x + 2, то

x 2 – 2x + 2 = -5x или x 2 – 2x + 2 = 2x. Решим каждое из полученных уравнений.

x 2 + 3x + 2 = 0 или x 2 – 4x + 2 = 0.

Оба уравнения имеют корни, т.к. D > 0.

С помощью теоремы Виета можно сделать вывод, что сумма корней первого уравнения равна -3, а второго уравнения 4. Получаем, что сумма корней исходного уравнения равна -3 + 4 = 1

Ответ: 1.

Пример 5.

Найти корень уравнения (x + 1) 4 + (x + 5) 4 = 32, принадлежащий промежутку [-5; 10].

Решение.

Пусть x = t – 3, тогда x + 1 = t – 2; x + 5 = t + 2 и исходное уравнение принимает вид:

(t – 2) 4 + (t + 2) 4 = 32. Для возведения выражений в четвертую степень можно воспользоваться треугольником Паскаля (рис. 1);

(t – 2) 4 = t 4 – 4t 3 · 2 + 6t 2 · 2 2 – 4t · 2 3 + 2 4 ;

(t + 2) 4 = t 4 + 4t 3 · 2 + 6t 2 · 2 2 + 4t · 2 3 + 2 4 .

После приведения подобных слагаемых получим:

2t 4 – 2 · 6t 2 · 2 2 + 2 · 2 4 = 32;

t 4 + 6t 2 · 2 2 + 2 4 = 16;

t 4 + 24t 2 + 16 = 16;

t 4 + 24t 2 = 0;

t 2 (t 2 + 24) = 0;

t = 0 или t 2 = -24.

Второе уравнение не имеет корней, а значит t = 0 и после обратной замены

x = t – 3 = 0 – 3 = -3. Корень уравнения -3 принадлежит промежутку [-5; 10].

Ответ: -3.

Как видим, при решении рациональных уравнений необходимо знать приведенные выше формулы и уметь правильно считать. Ошибки же чаще всего возникают при выборе замены и при обратной подстановке. Чтобы этого избежать, нужно расписывать подробно каждое действие, тогда ошибок в ваших решениях не будет.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t) , или t = t(x) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x(t) . Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f(x) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x(t) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) - это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x - это функция от t .
(2) ,
где t - это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2) . Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x)′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b - постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A) Вычислить интеграл
.
Решение.
.

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции .
.
ln 2 - это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Урок и презентация на тему: "Метод замены переменной. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов
Алгебраические задачи с параметрами, 9–11 классы

Этот метод довольно часто встречается при решении уравнений, и мы с вами им не раз пользовались.Его можно использовать в следующих случаях:

  • Если исходное уравнение $f(x)=0$ имеет сложный вид, но его удалось преобразовать к уравнению вида $h(g(x))=0$.
  • Нужно произвести замену переменных $u=g(x)$.
  • Решить уравнение $h(u)=0$, найти корни $u_1$, $u_2$, … $u_n$.
  • Ввести обратную замену $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$.
  • Решить каждое из уравнений $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$. Корни каждого из уравнений и будут решениями исходного уравнения.
Метод замены переменной, требует хорошего навыка и опыта работы с уравнениями. После решения большого количества уравнений общий вид этих уравнений хорошо запоминается и придумать замену, приводящую к уже известным уравнениям, становится гораздо проще. Стоит также проверять все корни, полученные при замене уравнений и только после этого возвращаться к исходной переменной.

Пример.
Решить уравнение: $8x^6+7x^3-1=0$.

Решение.
Введем замену $y=x^3$. Тогда наше уравнение сводится к квадратному уравнению:
$8y^2+7y-1=0$,
$(8y-1)(y+1)=0$,
$y_1=\frac{1}{8}$ и $y_2=-1$.

На данном этапе при решении более сложных уравнений следует проверить полученные корни.
Введем обратную замену: $x^3=\frac{1}{8}$ и $x^3=-1$.
Корни данных уравнений найти легко: $x_1=\frac{1}{2}$ и $x_2=-1$.

Ответ: $х=0,5$ и $х=-1$.

Пример.
Решить уравнение: $\sqrt{\frac{2x+3}{2x-1}}+4\sqrt{\frac{2x-1}{2x+3}}=4$.

Решение.
Проведем равносильные преобразования:
$\sqrt{\frac{2x-1}{2x+3}}=(\frac{2x-1}{2x+3})^{\frac{1}{2}}=(\frac{2x+3}{2x-1})^{-\frac{1}{2}}=((\frac{2x+3}{2x-1})^{\frac{1}{2}})^{-1}=\frac{1}{\sqrt{\frac{2x+3}{2x-1}}}$.

Введем замену: $u=\sqrt{\frac{2x+3}{2x-1}}$, тогда наше уравнение сводится к $u+\frac{4}{u}=4$. $u^2-4u+4=0$, откуда $u=2$.

Введем обратную замену: $\sqrt{\frac{2x+3}{2x-1}}=2$.

$2x+3=4(2x-1)$, решив линейное уравнение $х=1\frac{1}{6}$.

Пример.
Решить уравнение: $2^x+2^{1-x}=3$.

Решение.
Наше уравнение сводится к равносильному уравнению: $2^x+\frac{2}{2^x}=3$.

Введем замену: $t=2^x$.
$t+\frac{2}{t}=3$,
$t^2-3t+2=0$,
$(t-2)(t-1)=0$,
$t_1=2$ и $t_2=1$.

Введем обратную замену: $2^x=2$ и $2^x=1$. Откуда: $х=1$ и $х=0$.

Ответ: $х=1$ и $х=0$.

Пример.
Решить уравнение: $lg^2(x^2)+lg(10x)-6=0$.

Решение.
Преобразуем наше уравнение.
$lg^2(x^2)=(lg(x^2))^2=(2lg(x))^2=4lg^2x$.
$lg(10x)=lg10+lgx=1+lgx$.

Исходное уравнение равносильно уравнению: $4lg^2x+lgx-5=0$.

Введем замену: $u=lg(x)$.
$4u^2+u-5=0$,
$(4u+5)(u-1)=0$.

Введем обратную замену: $lgx=-1,25$ и $lgx=1$.
Ответ: $x=10^{-\frac{5}{4}}$ и $x=10$.

Пример.
Решить уравнение: $sin(x)cos(x)-6sin(x)+6cos(x)+6=0$.

Решение.
Введем замену: $cos(x)-sin(x)=y$.

Тогда: $(cos(x)-sin(x))^2=1-2sin(x)cos(x)$.
$sin(x)cos(x)=\frac{1-y^2}{2}$.

Исходное уравнение равносильно:
$\frac{1-y^2}{2}+6y+6=0$,
$1-y^2+12y+12=0$,
$y^2-12y-13=0$,
$(y-13)(y+1)=0$.

Введем обратную замену: $cos(x)-sin(x)=13$ - очевидно, что решений нет, так как косинус и синус ограничены по модулю единицей.

$cos(x)-sin(x)=-1$ - умножим обе части уравнения на $\frac{\sqrt{2}}{2}$.
$\frac{\sqrt{2}}{2}cos(x)-\frac{\sqrt{2}}{2}sin(x)=-\frac{\sqrt{2}}{2}$.
$sin(\frac{π}{4}-x)=-\frac{\sqrt{2}}{2}$.
$\begin {cases} \frac{π}{4}-x=-\frac{π}{4}+2πn, \\ \frac{π}{4}-x=-\frac{3π}{4}+2πn. \end {cases}$
$\begin {cases} x=\frac{π}{2}+2πn, \\ x=π+2πn. \end {cases}$

Ответ: $x=\frac{π}{2}+2πn$ и $π+2πn$.

Задачи для самостоятельного решения

Решить следующие уравнения:
1. $x^8+3x^4-4=0$.

2. $\sqrt{\frac{5x-1}{x+3}}+5\sqrt{\frac{x+3}{5x-1}}=6$.

3. $5^x+5^{2x+1}=-4$.
4. $2cos^2(x)-7cos-4=0$.
5. $5sin(2x)-11sin(x)=11cos(x)-7$.

Математика – это скважина, через которую логический ум может подглядывать за идеальным миром.

Кротов Виктор

В школе ведущее место в курсе алгебры занимают рациональные уравнения. Именно на их изучение времени отводится больше, чем на любые другие темы. Связано это в первую очередь с тем, что уравнения имеют не только важное теоретическое значение, но и служат многим практическим целям. Огромное количество задач реального мира сводятся именно к решению различных уравнений, и только после того, как вы овладеете способами их решения, вы найдете ответы на различные вопросы науки и техники.

Для формирования умения решать рациональные уравнения самостоятельная работа ученика имеет огромное значение. Однако перед тем как переходить именно к самостоятельной работе, необходимо четко знать и уметь применять на практике все возможные методы решения рациональных уравнений.

Рассмотрим подробно на примерах метод замены переменных для решения рациональных уравнений.

Пример 1.

Решить уравнение (2x 2 – 3x + 1) 2 = 22x 2 – 33x + 1.

Решение.

Перепишем уравнение в виде

(2x 2 – 3x + 1) 2 = 11(2x 2 – 3x) + 1. Сделаем замену. Пусть 2x 2 – 3x = t, тогда уравнение примет вид:

(t + 1) 2 = 11t + 1.

Теперь раскроем скобки и приведем подобные, получим:

t 2 + 2t + 1 = 11t + 1;

В получившемся неполном квадратном уравнении вынесем общий множитель за скобки, будем иметь:

t = 0 или t = 9.

Теперь необходимо сделать обратную замену и решить каждое из полученных уравнений:

2x 2 – 3x = 0 или 2x 2 – 3x = 9

x(2x – 3) = 0 2x 2 – 3x – 9 = 0

x = 0 или x = 3/2 x = 3 или x = -3/2

Ответ: -1,5; 0; 1,5; 3.

Пример 2.

Решить уравнение (x 2 – 6x) 2 – 2(x – 3) 2 = 81.

Решение.

Применим формулу квадрата разности (a – b) 2 = a 2 – 2ab + b 2 . Запишем исходное уравнение в виде

(x 2 – 6x) 2 – 2(x 2 – 6x + 9) = 81. Теперь можно сделать замену.

Пусть x 2 – 6x = t, тогда уравнение будет иметь вид:

t 2 – 2(t + 9) = 81.

t 2 – 2t – 18 – 81 = 0;

t 2 – 2t – 99 = 0.

По теореме Виета корнями полученного уравнения будут числа -9 и 11.

Сделаем обратную замену:

x 2 – 6x = -9 или x 2 – 6x = 11

x 2 – 6x + 9 = 0 x 2 – 6x – 11 = 0

(x – 3) 2 = 0 D = 80

x = 3 x 1 = 3 + 2√5; x 2 = 3 – 2√5.

Ответ: 3 – 2√5; 3; 3 + 2√5.

Пример 3.

Решить уравнение (x – 1)(x – 3)(x + 5)(x + 7) = 297 и найти произведение его корней.

Решение.

Найдем «выгодный» способ группировки множителей и раскроем пары скобок:

((x – 1)(x + 5))((x – 3)(x + 7)) = 297;

(x 2 + 5x – x – 5)(x 2 + 7x – 3x – 21) = 297;

(x 2 + 4x – 5)(x 2 + 4x – 21) = 297.

Cделаем замену x 2 + 4x = t, тогда уравнение будет выглядеть следующим образом:

(t – 5)(t – 21) = 297.

Раскроем скобки, приведем подобные слагаемые:

t 2 – 21t – 5t + 105 = 297;

t 2 – 26t – 192 = 0.

По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.

После обратной замены будем иметь:

x 2 + 4x = -6 или x 2 + 4x = 32

x 2 + 4x + 6 = 0 x 2 + 4x – 32 = 0

D = 16 – 24 < 0 D = 16 + 128 > 0

Нет корней x 1 = -8; x 2 = 4

Найдем произведение корней: -8 · 4 = -32.

Ответ: -32.

Пример 4.

Найти сумму корней уравнения (x 2 – 2x + 2) 2 + 3x(x 2 – 2x + 2) = 10x 2 .

Решение.

Пусть x 2 – 2x + 2 = t, тогда уравнение примет вид:

t 2 + 3xt – 10x 2 = 0.

Рассмотрим полученное уравнение как квадратное относительно t.

D = (3x) 2 – 4 · (-10x 2) = 9x 2 + 40x 2 = 49x 2 ;

t 1 = (-3x – 7x) / 2 и t 2 = (-3x + 7x) / 2;

t 1 = -5x и t 2 = 2x.

Так как t = x 2 – 2x + 2, то

x 2 – 2x + 2 = -5x или x 2 – 2x + 2 = 2x. Решим каждое из полученных уравнений.

x 2 + 3x + 2 = 0 или x 2 – 4x + 2 = 0.

Оба уравнения имеют корни, т.к. D > 0.

С помощью теоремы Виета можно сделать вывод, что сумма корней первого уравнения равна -3, а второго уравнения 4. Получаем, что сумма корней исходного уравнения равна -3 + 4 = 1

Ответ: 1.

Пример 5.

Найти корень уравнения (x + 1) 4 + (x + 5) 4 = 32, принадлежащий промежутку [-5; 10].

Решение.

Пусть x = t – 3, тогда x + 1 = t – 2; x + 5 = t + 2 и исходное уравнение принимает вид:

(t – 2) 4 + (t + 2) 4 = 32. Для возведения выражений в четвертую степень можно воспользоваться треугольником Паскаля (рис. 1);

(t – 2) 4 = t 4 – 4t 3 · 2 + 6t 2 · 2 2 – 4t · 2 3 + 2 4 ;

(t + 2) 4 = t 4 + 4t 3 · 2 + 6t 2 · 2 2 + 4t · 2 3 + 2 4 .

После приведения подобных слагаемых получим:

2t 4 – 2 · 6t 2 · 2 2 + 2 · 2 4 = 32;

t 4 + 6t 2 · 2 2 + 2 4 = 16;

t 4 + 24t 2 + 16 = 16;

t 4 + 24t 2 = 0;

t 2 (t 2 + 24) = 0;

t = 0 или t 2 = -24.

Второе уравнение не имеет корней, а значит t = 0 и после обратной замены

x = t – 3 = 0 – 3 = -3. Корень уравнения -3 принадлежит промежутку [-5; 10].

Ответ: -3.

Как видим, при решении рациональных уравнений необходимо знать приведенные выше формулы и уметь правильно считать. Ошибки же чаще всего возникают при выборе замены и при обратной подстановке. Чтобы этого избежать, нужно расписывать подробно каждое действие, тогда ошибок в ваших решениях не будет.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.