Устроены палочки непера говорится. Волшебные палочки. Счетные палочки джона непера

Кандидат педагогических наук Наталья Карпушина.

Чтобы освоить умножение многозначных чисел, нужно всего лишь знать таблицу умножения и уметь складывать числа. В сущности, вся сложность заключается в том, как правильно разместить промежуточные результаты умножения (частичные произведения). Стремясь облегчить вычисления, люди придумали множество способов умножения чисел. За многовековую историю математики их набралось несколько десятков.

Умножение способом решётки. Иллюстрация из первой печатной книги по арифметике. 1487 год.

Палочки Непера. Этот простой счётный прибор впервые был описан в сочинении Джона Непера «Рабдология». 1617 год.

Джон Непер (1550-1617).

Модель счётной машины Шиккарда. Это не дошедшее до нас вычислительное устройство изготовлено изобретателем в 1623 году и описано им годом позже в письме Иоганну Кеплеру.

Вильгельм Шиккард (1592-1635).

Наследие индусов — способ решётки

Индусы, с давних времён знавшие десятичную систему счисления, предпочитали устный счёт письменному. Они изобрели несколько способов быстрого умножения. Позже их заимствовали арабы, а от них эти способы перешли к европейцам. Те, однако, ими не ограничились и разработали новые, в частности тот, что изучается в школе, - умножение столбиком. Этот способ известен с начала XV века, в следующем столетии он прочно вошёл в употребление у математиков, а сегодня им пользуются повсеместно. Но является ли умножение столбиком лучшим способом осуществления этого арифметического действия? На самом деле существуют и другие, в наше время забытые способы умножения, ничуть не хуже, например способ решётки.

Этим способом пользовались ещё в древности, в Средние века он широко распространился на Востоке, а в эпоху Возрождения - в Европе. Способ решётки именовали также индийским, мусульманским или «умножением в клеточку». А в Италии его называли «джелозия», или «решётчатое умножение» (gelosia в переводе с итальянского - «жалюзи», «решётчатые ставни»). Действительно, получавшиеся при умножении фигуры из чисел имели сходство со ставнями-жалюзи, которые закрывали от солнца окна венецианских домов.

Суть этого нехитрого способа умножения поясним на примере: вычислим произведение 296 × 73. Начнём с того, что нарисуем таблицу с квадратными клетками, в которой будет три столбца и две строки, - по количеству цифр в множителях. Разделим клетки пополам по диагонали. Над таблицей запишем число 296, а с правой стороны вертикально - число 73. Перемножим каждую цифру первого числа с каждой цифрой второго и запишем произведения в соответствующие клетки, располагая десятки над диагональю, а единицы под ней. Цифры искомого произведения получим сложением цифр в косых полосах. При этом будем двигаться по часовой стрелке, начиная с правой нижней клетки: 8, 2 + 1 + 7 и т.д. Запишем результаты под таблицей, а также слева от неё. (Если при сложении получится двузначная сумма, укажем только единицы, а десятки прибавим к сумме цифр из следующей полосы.) Ответ: 21 608. Итак, 296 x 73 = 21 608.

Способ решётки ни в чём не уступает умножению столбиком. Он даже проще и надёжнее, при том, что количество выполняемых действий в обоих случаях одинаково. Во-первых, работать приходится только с однозначными и двузначными числами, а ими легко оперировать в уме. Во-вторых, не требуется запоминать промежуточные результаты и следить за тем, в каком порядке их записывать. Память разгружается, а внимание сохраняется, поэтому вероятность ошибки уменьшается. К тому же способ решётки позволяет быстрее получить результат. Освоив его, вы сможете убедиться в этом сами.

Почему способ решётки приводит к правильному ответу? В чём заключается его «механизм»? Разберёмся в этом с помощью таблицы, построенной аналогично первой, только в этом случае множители представлены как суммы 200 + 90 + 6 и 70 + 3.

Как видим, в первой косой полосе стоят единицы, во второй - десятки, в третьей - сотни и т.д. При сложении они дают в ответе соответственно число единиц, десятков, сотен и т.д. Дальнейшее очевидно:


Иначе говоря, в соответствии с законами арифметики произведение чисел 296 и 73 вычисляется так:

296 x 73 = (200 + 90 + 6) x (70 + 3) = 14 000 + 6300 + 420 + 600 + 270 + 18 = 10 000 + (4000 + 6000) + (300 + 400 + 600 + 200) + (70 + 20 + 10) + 8 = 21 608.

Палочки Непера

Умножение способом решётки лежит в основе простого и оригинального счётного прибора - палочек Непера. Его изобретатель Джон Непер, шотландский барон и любитель математики, наряду с профессионалами занимался усовершенствованием средств и методов вычисления. В истории науки он известен, прежде всего, как один из создателей логарифмов.

Прибор состоит из десяти линеек, на которых размещена таблица умножения. В каждой клетке, разделённой диагональю, записано произведение двух однозначных чисел от 1 до 9: в верхней части указано число десятков, в нижней - число единиц. Одна линейка (левая) неподвижна, остальные можно переставлять с места на место, выкладывая нужную числовую комбинацию. При помощи палочек Непера легко умножать многозначные числа, сводя эту операцию к сложению.

Например, чтобы вычислить произведение чисел 296 и 73, нужно умножить 296 на 3 и на 70 (сначала на 7, затем на 10) и сложить полученные числа. Приложим к неподвижной линейке три другие - с цифрами 2, 9 и 6 наверху (они должны образовать число 296). Теперь заглянем в третью строку (номера строк указаны на крайней линейке). Цифры в ней образуют уже знакомый нам набор.

Складывая их, как в способе решётки, получим 296 x 3 = 888. Аналогично, рассмотрев седьмую строку, найдём, что 296 x 7 = 2072, тогда 296 x 70 = 20 720. Таким образом,
296 x 73 = 20 720 + 888 = 21 608.

Палочки Непера применялись и для более сложных операций - деления и извлечения квадратного корня. Этот счётный прибор не раз пытались усовершенствовать и сделать более удобным и эффективным в работе. Ведь в ряде случаев для умножения чисел, например с повторяющимися цифрами, нужны были несколько комплектов палочек. Но такая проблема решалась заменой линеек вращающимися цилиндрами с нанесённой на поверхность каждого из них таблицей умножения в том же виде, как её представил Непер. Вместо одного набора палочек получалось сразу девять.

Подобные ухищрения в самом деле ускоряли и облегчали расчёты, однако не затрагивали главный принцип работы прибора Непера. Так способ решётки обрел вторую жизнь, продлившуюся ещё несколько столетий.

Машина Шиккарда

Учёные давно задумывались над тем, как переложить непростую вычислительную работу на механические устройства. Первые успешные шаги в создании счётных машин удалось осуществить только в XVII столетии. Считается, что раньше других подобный механизм изготовил немецкий математик и астроном Вильгельм Шиккард. Но по иронии судьбы об этом знал лишь узкий круг лиц, и столь полезное изобретение более 300 лет не было известно миру. Поэтому оно никак не повлияло на последующее развитие вычислительных средств. Описание и эскизы машины Шиккарда были обнаружены всего полвека назад в архиве Иоганна Кеплера, а чуть позже по сохранившимся документам была создана её действующая модель.

По сути, машина Шиккарда представляет собой шестиразрядный механический калькулятор, выполняющий сложение, вычитание, умножение и деление чисел. В ней три части: множительное устройство, суммирующее устройство и механизм для сохранения промежуточных результатов. Основой для первого послужили, как нетрудно догадаться, палочки Непера, свёрнутые в цилиндры. Они крепились на шести вертикальных осях и поворачивались с помощью специальных ручек, расположенных наверху машины. Перед цилиндрами располагалась панель с девятью рядами окошек по шесть штук в каждом, которые открывались и закрывались боковыми задвижками, когда требовалось увидеть нужные цифры и скрыть остальные.

В работе счётная машина Шиккарда очень проста. Чтобы узнать, чему равно произведение 296 x 73, нужно установить цилиндры в положение, при котором в верхнем ряду окошек появится первый множитель: 000296. Произведение 296 x 3 получим, открыв окошки третьего ряда и просуммировав увиденные цифры, как в способе решётки. Точно так же, открыв окошки седьмого ряда, получим произведение 296 x 7, к которому припишем справа 0. Остаётся только сложить найденные числа на суммирующем устройстве.

Придуманный некогда индусами быстрый и надёжный способ умножения многозначных чисел, много веков применявшийся при расчётах, ныне, увы, забыт. А ведь он мог бы выручить нас и сегодня, если бы под рукой не оказалось столь привычного всем калькулятора.

Первым устройством для выполнения умножения был набор деревянных брусков, известных как палочки Непера. Они были изобретены шотландцем Джоном Непером (1550-1617гг.). На таком наборе из деревянных брусков была размещена таблица умножения. Кроме того, Джон Непер изобрел логарифмы.

Данное изобретение оставило заметный след в истории оставило изобретение Джоном Непером логарифмов, о чем сообщалось в публикации 1614 г. Его таблицы, расчет которых требовал очень много времени, позже были “встроены” в удобное устройство, чрезвычайно ускоряющее процесс вычисления, -- логарифмическую линейку; она была изобретена в конце 1620-х годов. В 1617 г. Непер придумал и другой способ перемножения чисел. Инструмент, получивший название “костяшки Непера”, состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа, в прилегающих друг к другу по горизонтали сегментах, мы получали результат их умножения.

Теории логарифмов Непера суждено было найти обширное применение. Однако его “костяшки” вскоре были вытеснены логарифмической линейкой и другими вычислительными устройствами--в основном механического типа, -- первым изобретателем которых стал гениальный француз Блез Паскаль.

Логарифмическая линейка

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка.

В 1654 г. Роберт Биссакар, а в 1657 г. независимо С. Патридж (Англия) разработали прямоугольную логарифмическую линейку - это счетный инструмент для упрощения вычислений, с помощью которого операции над числами заменяются операциями над логарифмами этих чисел. Конструкция линейки сохранилась в основном до наших дней.

Логарифмической линейки была суждена долгая жизнь: от 17 века до нашего времени. Вычисления с помощью логарифмической линейки производятся просто, быстро, но приближенно. И, следовательно, она не годится для точных, например финансовых, расчетов.

Палочкам Непера суждена была долгая жизнь. Они широко и долгое время использовались для вычислений в астрономии, артиллерии и других областях. Замечательный фильм 70-х годов об английском философе XVI века Томасе Море назывался «Человек на все времена», а вот если бы делался фильм о его соотечественнике, жившем спустя несколько десятилетий, то, возможно, его стоило бы назвать «Человек, опередивший время». Речь идет о сэре Джоне Непере, чье имя можно смело поставить в один ряд, например, с именами Галилео Галилея или Николая Коперника, а может быть, и Леонардо да Винчи.

Непер - шотландский математик и теолог-протестант - был потомственным дворянином, родился в 1550 году в замке Мерчистон близ Эдинбурга, там же и умер 4 апреля 1617 года. Учился он в Эдинбургском университете, а затем долго путешествовал в поисках знаний по Европе. В итоге своих странствий, как и большинство ученых своего времени, Непер стал универсалом, специалистом широкого профиля. Большую часть последующей жизни Непер отдал богословию, активно участвовал в теософских спорах, где, как настоящий шотландец, отличался истовостью.

В качестве теолога он известен тем, что в 1593 году опубликовал «Простое изъяснение всего Откровения Иоанна Богослова», первое толкование Священного Писания на шотландском языке, но при том Непер был не чужд модным тогда наукам - астрологии и алхимии. Наряду с этими увлечениями, он также был и инженером, придумал целый ряд машин для обработки земли и водяные насосы для орошения. А еще он сделал несколько «секретных» изобретений, среди которых зеркало для поджигания вражеских кораблей, устройство для плавания под водой (акваланг), повозка, не пробиваемая пулями (танк), и нечто, напоминающее неуправляемый ракетный снаряд.

Однако вполне возможно, что вся эта успешная по тому времени деятельность, имевшая значение для современников, так и осталась бы неизвестной потомкам, если бы не его главные работы, выполненные на седьмом десятке, незадолго до смерти. Хронологически первым из них был математический труд - система логарифмов «Описание удивительной таблицы логарифмов (Mirifici logarithmorum canonis descriptio, 1614)», в нем была предложена (без раскрытия способа ее построения) первая таблица логарифмов, а также и сам термин «логарифм». Позже способ построения был раскрыт в сочинении «Построение удивительной таблицы логарифмов (Mirifici logarithmorum canonis constructio)», вышедшем в 1619 году, уже после смерти автора. К появлению этих работ имел непосредственное отношение профессор лондонского Грэшем-колледжа Генри Бригс, который позднее стал публикатором, преемником и биографом Непера. Случилось так, что, познакомившись с «Описанием...», Бригс стал верным последователем идей Непера, поэтому, движимый желанием помогать ему, он отправился в Шотландию для личной встречи с автором и в последствии посвятил свою жизнь тому, что довел его дело до конца. Немалую роль в сохранении памяти о Непере сыграли его потомки.

Оба названных труда представляют интерес скорее для истории математики, а для истории компьютеров существенным является главнейшее и на первый взгляд очень простое технически изобретение шотландского ученого, которое в последующем стали называть палочками (или костями) Непера. Оно стало вторым после абака в истории человечества практическим приспособлением, облегчающим расчеты. Справедливости ради следует сказать, что есть более ранний по времени рисунок да Винчи, который считают изображением счетной машины, есть даже современные попытки ее реконструкции, но никаких документальных свидетельств о работе и практическом использовании калькулятора да Винчи нет. А с палочек Непера, несмотря на всю их видимую простоту, началась цепочка устройств, которая, в конечном счете, привела к современному ПК.

Видимо, понимая значимость своего изобретения, последний год жизни Непер отдал подготовке к печати завершающего творческий путь трактата - «Рабдология, или Две книги о счете с помощью палочек», в предисловии к которому он написал: «Теперь мы также нашли значительно лучшую разновидность логарифмов и намерены (если Бог дарует долгую жизнь и хорошее здоровье) опубликовать как метод их вычисления, так и способ использования. Но, по причине нашей телесной слабости, вычисление этих новых таблиц мы предоставляем людям, опытным в такого рода занятиях, и прежде всего ученейшему мужу Генри Бригсу, профессору геометрии и нашему дражайшему другу».

В «Рабдологии...» Непер описал способ перемножения чисел посредством особых брусков-палочек с нанесенными на них цифрами, они внешне похожи на кости домино, но с большим числом полей на каждом из них. Идея автоматизации с помощью заранее размеченных палочек явно восходит к одному из древнейших способов умножения, который назвался gelosia. Сегодня никто не задумывается о внутренней сложности этого арифметического действия, даже словосочетание «способ умножения» звучит как-то странно, ведь единственный известный большинству алгоритм «в столбик» проходят в третьем классе. А в те далекие времена умножение было наукой, которой посвящали целые трактаты. Наиболее известен труд Луки Пачоли Summa de arithmetica, где среди прочих описан и этот способ gelosia, изобретенный в Индии и в XIV веке пришедший в Европу при посредничестве персов и арабов. Тем, кто заинтересуется методами умножения, рекомендую статью Multiplication Methods (www.ex.ac.uk/cimt/res2/trolfg.pdf ), где прекрасно описаны различные древние приемы.

Алгоритм gelosia по-своему очень изящен, суть его в том, что сомножители записываются справа и сверху от специальной счетной матрицы, состоящей из полей-квадратов, каждый из которых разделен диагональю, а совместно расположенные по диагонали треугольники образуют «косые» строки-столбцы. Итак, сверху и справа записывают сомножители, а промежуточные произведения каждой пары разрядов, от единиц до самого старшего, записывают в квадраты, разделяя внутри каждого единицы и десятки, единицы в нижний треугольник, а десятки - в верхний. При суммировании «по косой» получается результат, его нужно читать сверху вниз и слева направо. Собственная идея Непера была на первый взгляд очень простой: нужно разрезать таблицу на столбцы и выполнять действия, подбирая нужные палочки в соответствии с составом числа. Естественно, что для «ввода» числа в наборе должно быть больше палочек, цифры могут повторяться. Таким образом, умножение становится тривиальной задачей, но этим потенциал палочек не исчерпывается, с ними можно выполнять и деление, и возведение в степень, и извлечение корня, опираясь на сложение и вычитание логарифмов.

Идея палочек получила развитие в Германии. Через десять лет после опубликования «Рабдологии...» профессор восточных языков Вильгельм Шиккард из Тюбингенского университета изобрел механизм, упрощающий работу с палочками, который был описан им в переписке с Иоганном Кеплером. Как известно, письма были в ту пору единственной формой публикации. Была ли эта машина построена или нет, сейчас сказать сложно, но во всяком случае это была первая математически обоснованная модель калькулятора. Сейчас в Германии воссоздано несколько работоспособных образцов механизма Шиккарда. История создания калькулятора и жизнеописание автора удачно описаны в статье Юрия Полунова (http:// museum.iu4.bmstu.ru/ firststeps/ letters.shtml ).

Палочкам Непера суждена была долгая жизнь. Они долгое время широко использовались для вычислений в астрономии, артиллерии и других областях, палочки повлияли на создание логарифмической линейки, ставшей классическим инженерным инструментом XIX и XX веков, а в Великобритании вплоть до середины 60-х годов палочки Непера применялись для обучения школьников арифметике.

Транскрипт

1 ПАЛОЧКИ НЕПЕРА Прочитай текст и выполни задания Джон Непер В 1617 году Непер опубликовал трактат под названием «Рабдология, или Ис кусство счёта с помощью палочек» (рис. 1). В нём он описал способ, благодаря которому можно было без труда умножать числа. Сегодня никто не заду мывается о сложности этого арифметического действия, даже слово сочетание «способ умно жения» звучит как-то странно, ведь един ствен ный известный большинству алгоритм умно жения «в стол бик» проходят в третьем классе. А в те далёкие времена умножение было наукой, которой посвящали целые трактаты. В набор для вычислений, описанный Не пером (рис. 2), входили: одна палочка Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обык новенно отпугивает очень многих от изучения математики. Джон Непер, шотландский богослов и любитель математики Рис. 1. Одно из первых изданий трактата Непера с цифрами от 1 до 9 (это указатель строк) и палочки с таб лицей умножения всех чисел от 1 до 9 (разряды Рис. 2. Так выглядит набор палочек Непера Рис. 3. На этом рисунке указатель строк нанесён на подставку, на которую выкладывают палочки для чисел 7 и 6 1

2 множимого). Сверху каждой палочки были нанесены числа от 1 до 9, а по всей длине результаты умножения этого числа на числа от 1 до 9, причём для записи результата ячейка разделена по диагонали на две части: в верхней записан разряд десятков, а в нижней единиц (рис. 3). Палочки были похожи на кости домино, кроме того для их изготовления нередко использовалась слоновая кость. Для умножения выбирались палочки, соответствующие значениям разряда множимого, и выкладывались в ряд так, чтобы цифры сверху каждой палочки составляли множимое. Слева прикладывали указатель строк по нему выбирали строки, соответствующие разрядам множителя. Затем числа суммировались вдоль диагональной линии. Суммирование проводилось поразрядно с переносом переполнения в старший разряд. Например, чтобы умножить 187 на 3, необходимо выбрать три палочки, соответствующие числам 1, 8 и 7, и выстроить их так, как изображено на рисунке 4. Третья строка показывает следующее: Рис. 4 Суммируем два числа, одно из которых находится под диагональю, а другое над диагональю, но не этого квадрата, а соседнего справа (рис. 5). Рис. 5 Эти суммы и дают нам разряды произведения: 561. В основу своего счётного устройства Непер положил принцип умножения решёткой, широко распространённый в его время. Для умножения решёткой рисовали таблицу, содержащую столько столбцов, сколько разрядов у множимого, и столько строк, сколько разрядов у множителя. Над столбцами таблицы записывали множимое так, чтобы разря 2

3 Умножение решёткой = Рис. 6 ды числа находились каждый над своим столбцом. Справа от таблицы записывали множитель (рис. 6). Затем заполняли клетки таблицы результатами умножения разряда множимого, находящегося над этой клеткой, и разряда множителя, находящегося справа от этой клетки. Именно эти действия Непер и упростил, нанеся таблицу умножения на палочки. Далее произведения суммировались, как и в случае с палоч ками. Палочкам Непера была суждена долгая жизнь: несколько веков они использовались для вычислений в самых разных областях деятельности человека. Они повлияли на создание логарифмической линейки, ставшей классическим инженерным инструментом XIX и XX веков, и благополучно дожили до эры компьютеров и калькуляторов. 19. Какую основную цель преследовал Джон Непер, работая над созданием счётного устройства, получившего его имя? Обведи номер ответа. 1) привлечь людей к изучению математики 2) заложить начало новой науки вычислительной математики 3) освободить людей от трудности вычислений 4) разработать новый способ вычислений, отличный от умножения «в столбик» 20. О том, как устроены палочки Непера, говорится во втором абзаце текста. Прочитай его ещё раз и ответь на вопрос: какое число должно быть написано в верхнем квадрате палочки, изображённой на рисунке? 3

4 21. С помощью палочек Непера надо выполнить умножение: Палочки, соответствующие каким числам, надо выбрать? Отметь их знаком P в клеточках, расположенных под соответствующими палочками. 22. Второе название описанного счётного устройства кости Непера. С чем связано это название? Подчеркни в тексте те слова, которые содержат ответ на этот вопрос. 23. С помощью палочек Непера умножают 187 на 4. Используя рисунки 4 и 5, выполни задания А В. А. Какую строку надо выбрать? Б. Запиши все необходимые суммы. В. Запиши результат. 4

5 24. Представь, что тебе надо рассказать младшему брату треть е- класснику, как умножить решёткой двузначное число на однозначное. Ниже описаны отдельные шаги этого алгоритма. Используя рисунок 6 и описание в тексте, укажи для каждого шага его порядковый номер. Первый шаг уже указан. Записываем полученное число. Умножаем разряд единиц множимого на множитель, записываем результат во вторую клетку. Суммируем поразрядно числа в ячейках по диагонали. 1 Чертим таблицу с двумя столбцами и одной строкой. Умножаем разряд десятков множимого на множитель, записываем результат в первую клетку. Каждую клетку таблицы разделяем по диагонали на две ячейки. 25. Как умножали числа, в разряде которых был 0? Как бы ты умножал(-а) 1807 на 3, используя палочки Непера? Покажи это на схеме и запиши ответ = 5

6 26. Таня прочитала в энциклопедии, что палочки Непера долгое время использовались для вычислений в астрономии, артиллерии и других областях, а на родине автора в Шотландии на протяжении нескольких столетий они применялись для обучения школьников арифметике. Она пытается понять, чем этот способ был так привлекателен в те времена. У неё есть несколько предположений: 1) В это время бумага и чернила были дорогие, а па лочки позволяли их экономить. 2) Алгоритм стал короче, умножение было заменено более простым действием сложением. 3) С помощью палочек Непера можно умножать мно гозначные числа, не зная таблицу умножения. Помоги Тане выбрать одну, самую главную, причину. Обведи номер ответа. 27. На рисунке показано, как с помощью палочек Непера найти произведение чисел 493 и 85. Умножение на палочках Непера (=) Используя рисунок, найди произведение чисел 493 и 74. Решение: 6


Научно-исследовательская работа Умножение с увлечением Выполнил(а): Недорезов Даниил Николаевич учащий(ая)ся 7 класса МБОУ основной общеобразовательной школы 6 Руководитель: Заляева Лидия Иосифовна учитель

Тематическое планирование по математике для -го класса (система учебников «Перспективная начальная школа») 4 ч. в неделю, 36 ч. в год (автор учебника А.Л. Чекин) Раздел Повторение «Круглые» двузначные

Понятие системы счисления Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления (с/с). Алфавит

ФГОС ИННОВАЦИОННА ШКОЛА РАБОЧАЯ ТЕТРАДЬ к учебнику «Математика. 6 класс» под редакцией академика РАН В.В. Козлова и академика РАО А.А. Никитина В ЧЕТЫРЕХ ЧАСТЯХ Часть 1 Москва «Русское слово» 2013 НАПРАВЛЕНИЕ

1 Математическое и компьютерное моделирование в решении задач строительства, техники, управления и образования XVI Международная научно-техническая конференция, Пенза, 2011 ISBN 978-5-94338-519-3 А. В.

Лекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная

Диагностическая работа (2 класс конец года) Задание 1 Какую цифру надо поставить в рамочку, чтобы вычисление было проведено верно? Подчеркни правильный вариант ответа. _61 2 37 а) 0 б) 6 в) 4 г) 3 Задания

Математика Требования к предметным результатам. Числа и величины читать, записывать, сравнивать, упорядочивать числа от нуля до миллиона; устанавливать закономерность правило, по которому составлена числовая

B3 (повышенный уровень, время 7 мин) Тема: динамическое программирование. Что нужно знать: динамическое программирование это способ решения сложных задач путем сведения их к более простым задачам того

III окружная научно-практическая конференция учащихся «КИНЕЛЬСКИЙ ВЕКТОР» Секция: МАТЕМАТИКА Способы умножения.

Материальная среда уроков математики в начальной школе Ни для кого не секрет, что дети младшего школьного возраста лучше всего усваивают те закономерности, которые они «открыли» в деятельности или в игре.

НЕСТАНДАРТНЫЕ ПРИЁМЫ УСТНОГО СЧЁТА 1. УМНОЖЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ ОТ 10 ДО 20 2. УМНОЖЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ ОТ 20 ДО 30 3. УМНОЖЕНИЕ ДВУХ ЧИСЕЛ, У КОТОРЫХ ЦИФРЫ ДЕСЯТКОВ РАВНЫ МЕЖДУ СОБОЙ, А СУММА ЕДИНИЦ

ВХОДНАЯ КОНТРОЛЬНАЯ РАБОТА Ц е л и д е я т е л ь н о с т и у ч и т е л я: создать условия для проверки умений выполнять сложение и вычитание однозначных чисел без перехода через десяток. П л а н и р у

Муниципальное бюджетное общеобразовательное учреждение «Добринская основная общеобразовательная школа имени Спиридонова Николая Семеновича» РАБОЧАЯ ПРОГРАММА по математике для обучающихся 2 «Б» класса

ОСНОВНЫЕ ТРЕБОВАНИЯ ПО МАТЕМАТИКЕ к уровню подготовки учащихся 1 класса К концу обучения в 1 классе учащиеся должны: предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным

О. А. Ивашова Е. Е. Останина Учусь вычислять Внетабличное умножение и деление Рабочая тетрадь по математике учени класса школы Москва ООО «Кирилл и Мефодий» 2007 УДК 373.167.1:51 ББК 74.262 И 24 Издание

Планируемые результаты изучения учебного предмета На уровне начального общего образования в ходе освоения математического содержания в учебниках математики созданы условия для достижения обучающимися

Системы счисления и компьютерная арифметика Содержание Введение... 3 I. Кодирование числовой информации.... 4 1.1. Представление числовой информации с помощью систем счисления... 4 1.2. Непозиционные системы

Технологические карты для работы по комплекту для начальной школы «ПЕРСПЕКТИВА» МАТЕМАТИКА 3 класс II полугодие 1 Технологическая карта 7 Раздел Тема Цели Основное содержание темы Термины и понятия Числа

Муниципальное бюджетное общеобразовательное учреждение города Абакана «Средняя общеобразовательная школа 4» РАБОЧАЯ ПРОГРАММА предмета «Математика» для 1-4 классов Рабочая программа предмета «Математика»

Цели урока: Конспект урока математики во 2 классе по теме «Таблица умножения на 8». Проводить работу над запоминанием изученных случаев умножения числа 9 Разобрать табличные случаи умножения числа 8 (8х8,

I вариант Математика 2 класс «НУМЕРАЦИЯ И СРАВНЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ» 1. Запишите числа, состоящие: из 5 десятков и 2 единиц; 3 десятков и 6 единиц;1 десятка и 8 единиц; 8 десятков и 7 единиц. 2. Прочитайте

Лекция Системы счисления Подумайте, сколькими разными способами можно записать число «десять» Один способ уже представлен в предыдущем предложении Можно назвать еще достаточно много способов написания

Тема проекта: Приемы устных вычислений Автор: Акуленко Никита Школа: 536 Класс: 5 «Б» Руководитель: Воронова С.Н. АКТУАЛЬНОСТЬ: Изучив новые нестандартные способы умножения двухзначных чисел, мы можем

Решение задач на тему «Представление чисел в компьютере» Типы задач: 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей запятой.

А. В. АФОНИНА Е. Е. ИПАТОВА ПОУРОЧНЫЕ РАЗРАБОТКИ ПО МАТЕМАТИКЕ К УМК А.Л. Чекина (М.: Академкнига/Учебник) Перспективная начальная школа 4 класс МОСКВА «ВАКО» 2011 УДК 372.851 ББК 74.262.21 А94 А94 Афонина

Пояснительная записка. Программа по математике для 6 класса разработана на основе программы для специальной (коррекционной) общеобразовательной школы VIII вида, под редакцией В. В. Воронковой, 00 года.

О. А. Ивашова Е. Е. Останина Учусь вычислять Табличное умножение и деление. Деление с остатком Рабочая тетрадь по математике учени класса школы Москва ООО «Кирилл и Мефодий» 2007 УДК 373.167.1:51 ББК 74.262

Вариант 1 Регион Город / посёлок / село Школа Класс Фамилия, имя Инструкция для учащихся На выполнение работы отводится 90 минут (с перерывом). В каждой части работы даются один или несколько текстов и

ÓÄÊ 373.167.1:51*01/04 ÁÁÊ 22.1ÿ71 Ì 30 Ì 30 Ìàð åíêî È. Ñ. Ìàòåìàòèêà : ïðàêòè åñêèé ñïðàâî íèê : 1 4 êëàññû / È. Ñ. Ìàð- åíêî. Ì. : Ýêñìî, 2012. 144 ñ. (Â ïîìîùü ìëàäøåìó øêîëüíèêó). ISBN 978-5-699-51255-3

Системы счисления Система счисления способ записи чисел с помощью заданного набора специальных символов (цифр). В вычислительной технике применяются позиционные системы счисления, в которых значение цифры

ФГОБУ ВПО "СибГУТИ" Кафедра вычислительных систем Дисциплины "ЯЗЫКИ ПРОГРАММИРОВАНИЯ" "ПРОГРАММИРОВАНИЕ" Практическое занятие Работа с десятичными разрядами Преподаватель: Доцент Кафедры ВС, к.т.н. Поляков

Тема Целые и рациональные числа Входной тест Ответом к каждому заданию является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы,

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа р.п.пинеровка Балашовского района Саратовской области» РАБОЧАЯ ПРОГРАММА ПЕДАГОГА Швецовой Татьяны Николаевны первая квалификационная

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Математика Цели: o Развитие образного и логического мышления, воображения, формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач,

Технологические карты для работы по комплекту для начальной школы «ПЕРСПЕКТИВА» МАТЕМАТИКА 3 класс I полугодие Технологическая карта 4 Раздел Тема Цели Основное содержание темы Термины и понятия Числа

Королева Елена Геннадьевна преподаватель математики Федеральное государственное казенное образовательное учреждение «Нахимовское военно-морское училище Министерства образования Российской Федерации» г.

Приложение к основной образовательной программе НОО ФГОС МАОУ СОШ 85, утвержденной приказом 552-ОД от 30.08.206 РАБОЧАЯ ПРОГРАММА ПО УЧЕБНОМУ ПРЕДМЕТУ «МАТЕМАТИКА» НАЧАЛЬНОГО ОБЩЕГО ОБРАЗОВАНИЯ 3 А,Б класс

Олимпиада «Курчатов» 2013 Интернет-этап по информатике Первый тур Мы приглашаем вас принять участие в серии не совсем обычных олимпиад по информатике. Каждая из олимпиад будет посвящена одной или нескольким

«Математика» Первоклассник научится: предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами; натуральные числа от 1 до 20 в прямом и

СПЕЦИФИКАЦИЯ диагностической работы по математике для обучающихся 4-х классов общеобразовательных организаций г. Москвы Диагностическая работа проводится 19 января 2017 г. 1. Назначение диагностической

Лекция 3. «Машинные» системы счисления. Представление целых чисел в компьютере. Цели- задачи: Знать: Основные понятия: переполнение, дискретность, машинные системы счисления. Особенности представления

Пояснительная записка Рабочая программа разработана на основе авторской программы начального общего образования в соответствии с требованиями Федерального государственного образовательного стандарта начального

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ Предмет: Русский язык Класс: 2 Количество часов по учебному плану: всего- 136часов в год (4 часа в неделю) УМК: 1. Авторская программа «Перспективная начальная школа» на основе

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО МАТЕМАТИКЕ К КОНЦУ 2 КЛАССА ЛИЧНОСТНЫЕ У учащихсябудут сформированы: положительное отношение и интерес к урокам математики; умение признавать собственные ошибки;

Вопрос Какие числа называют натуральными? Ответ Натуральными называют числа, которые используют при счете Что такое классы и разряды в записи чисел? Как называют числа при сложении? Сформулируйте сочетательный

Календарно тематическое планирование уроков математики в 3 класса 136 часов Образовательная система «Начальная школа XXI века» урока п/п Тема урока Виды учебной деятельности на уроке Универсальные учебные

Технологические карты для работы по комплекту для начальной школы «ПЕРСПЕКТИВА» МАТЕМАТИКА 3 класс I полугодие 1 Раздел Тема Числа от 1 до 100 (90 часов) Технологическая карта 5 Умножение и деление чисел

Пояснительная записка Рабочая программа по математике составлена на основе следующих нормативных документов и методических рекомендаций: 1.Федеральнфй государственный образовательный стандарт основного

Крылова А.В., Варченко В.И. Компьютерный практикум для начальной школы МАТЕМАТИКА Сборник дидактических материалов класс ОГЛАВЛЕНИЕ Раздел 1. НУМЕРАЦИЯ... 1.1. Повторение... 1.. Новая счетная единица десяток.

«Палочки Непера» стали началом новой эпохи – «эпохи науки», которая пришла на смену ранее популярному торговому делу. Счетные палочки – это изобретение шотландского математика Джона Непера, который вошел в историю, благодаря изобретению логарифмов. С помощью первой вычислительной техники развитие арифметики сделало шаг вперед, а «палочки Непера» до сих пор считаются прообразом первой вычислительной техники, например, такой, как калькулятор.

Джон Непер – шотландский математик, известный как изобретатель нового вида вычислительных инструментов – логарифмов, толчком к появлению которых стали «палочки Непера». В ХVI веке наука ощущала потребность в проведении сложных расчетов, однако в то время не были созданы необходимые условия для ее дальнейшего развития. Поэтому Джон Непер предложил вместо сложной операции умножения использовать процесс сложения, который ему же удалось сопоставить с помощью специальных таблиц. Благодаря этой схеме, трудоемкий процесс деления также может быть заменен на операцию вычитания. Это изобретение позволило заметно облегчить работу вычислителям.

Палочки Непера – что это

Джон Непер в 1617 году выпустил книгу, в которой предложил новый метод проведения операции умножения с помощью специальных палочек. В то время большой популярностью пользовался способ решетчатого умножения, поэтому ученый и решил на его основе создать собственную методику.

«Палочки Непера» представляли собой комплект специальных палочек, состоящих из дощечки с разметкой от одного до девяти и остальными палочками, на которые была помещена таблица умножения с такой же разметкой цифр. Вверху каждой дощечки располагались числа в порядке возрастания, а по всей длине выложенной таблицы Непер разместил собственно результаты умножения чисел на цифры от одного до девяти. Иными словами, таблица давала возможность совершать операции умножения числа 123456789 на число 123456789. Сама сетка была разделена столбцами.

Для того чтобы получить результат при умножении, нужно было выбрать палочки, которые бы отвечали разряду множимого, и расположить их в линию, ряд чисел которой обозначал бы само число. Из-за того, что разряды в множимом могли повторяться, в комплекте всегда были дополнительные палочки, отвечающие за каждый разряд. Дощечка с вертикально расположенными цифрами от одного до девяти, ставилась слева. С помощью нее можно было выбирать строку, соответствующую для разряда множителя.

Джон Непер решил, что если разделить ячейку на 2 части с помощью диагональной линии, то можно будет компактно записать результат операции: в верхнем отсеке зафиксировать старший разряд полученного числа, а в нижнем – младший разряд. Для получения окончательного результата операции нужно сложить числа в «таблице» справа налево – сумма цифр и будет необходимым ответом.

«Палочки Непера» могли использоваться, как для операции умножения, так и для деления, и вычисления квадратного корня числа. Если делить числа можно было по принципу схожему с умножением, то для того, чтобы извлечь квадратный корень в набор добавлялась еще одна палочка, состоящая из трех колонок. В первой колонке находились возведенные в квадрат числа, которые соответствовали значению дощечки, указывающей строки, во второй - цифры, полученные при результате умножения указателя строк на два, а в третьем столбце находились числа от одного до девяти.

Модернизация «палочек Непера»

После изобретения этого арифметического метода, многие ученые-математики старались внести какие-то новшества в разработанный до них механизм. Например, в 1666 году английским ученым-изобретателем была сделана попытка перенести всю таблицу с палочек на диски. Этот опыт увенчался успехом, так как подобная методика упростила работу с изобретением предшественника. А в конце 60-х немецкий математик Каспар Шот выдвинул идею заменить дощечки цилиндрами, на двух сторонах которых следовало разместить все числовые значения вместе с сеткой умножения от одного до девяти. Если поставить цилиндры в такое положение, чтобы их верхняя сторона с цифрами образовывала множитель, то операцию умножения можно производить по тому же принципу, что и с помощью «палочек Непера».

Уже в ХIX столетии, чтобы облегчить пользование прибором, вместо обычных ровных дощечек стали изготовлять бруски под наклоном, с углом 65 градусов. В результате, треугольники, содержащие числа для операции, можно было использовать по порядку, так как теперь они находились друг под другом. Уже к концу века внесли еще некоторые изменения, связанные с заменой палочек на тонкие полоски, зафиксированные в специальном чехле, который напоминал блокнот. Полоски нужно было передвигать с помощью острой палочки.

«Палочки Непера» пользовались большим спросом в свое время. Это, казалось бы, несложное открытие сделало большой прорыв в области развития арифметики.