Встречается ли в треугольнике паскаля число. Свойства треугольника Паскаля и их применение в решении задач. Удивительный треугольник великого француза

Рассмотрим следующие выражения со степенями (a + b) n , где a + b есть любой бином, а n - целое число.

Каждое выражение - это полином. Во всех выражениях можно заметить особенности.

1. В каждом выражении на одно слагаемое больше, чем показатель степени n.

2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.

3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.

4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до "половины пути", а потом уменьшаются на те же значения обратно к 1.

Давайте рассмотрим коэффициенты подробнее. Предположим, что мы хотим найти значение (a + b) 6 . Согласно особенности, которую мы только что заметили, здесь должно быть 7 членов
a 6 + c 1 a 5 b + c 2 a 4 b 2 + c 3 a 3 b 3 + c 4 a 2 b 4 + c 5 ab 5 + b 6 .
Но как мы можем определить значение каждого коэффициента, c i ? Мы можем сделать это двумя путями. Первый метод включает в себя написание коэффициентов треугольником, как показано ниже. Это известно как Треугольник Паскаля :


Есть много особенностей в треугольнике. Найдите столько, сколько сможете.
Возможно вы нашли путь, как записать следующую строку чисел, используя числа в строке выше. Единицы всегда расположены по сторонам. Каждое оставшееся число это сумма двух чисел, расположенных выше этого числа. Давайте попробуем отыскать значение выражения (a + b) 6 путем добавления следующей строки, используя особенности, которые мы нашли:

Мы видим, что в последней строке

первой и последнее числа 1 ;
второе число равно 1 + 5, или 6 ;
третье число это 5 + 10, или 15 ;
четвертое число это 10 + 10, или 20 ;
пятое число это 10 + 5, или 15 ; и
шестое число это 5 + 1, или 6 .

Таким образом, выражение (a + b) 6 будет равно
(a + b) 6 = 1 a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 ab 5 + 1 b 6 .

Для того, чтобы возвести в степень (a + b) 8 , мы дополняем две строки к треугольнику Паскаля:

Тогда
(a + b) 8 = a 8 + 8a 7 b + 28a 6 b 2 + 56a 5 b 3 + 70a 4 b 4 + 56a 3 b 5 + 28a 2 b 6 + 8ab 7 + b 8 .

Мы можем обобщить наши результаты следующим образом.

Бином Ньютона с использованием треугольника Паскаля

Для любого бинома a+ b и любого натурального числа n,
(a + b) n = c 0 a n b 0 + c 1 a n-1 b 1 + c 2 a n-2 b 2 + .... + c n-1 a 1 b n-1 + c n a 0 b n ,
где числа c 0 , c 1 , c 2 ,...., c n-1 , c n взяты с (n + 1) ряда треугольника Паскаля.

Пример 1 Возведите в степень: (u - v) 5 .

Решение У нас есть (a + b) n , где a = u, b = -v, и n = 5. Мы используем 6-й ряд треугольника Паскаля:
1 5 10 10 5 1
Тогда у нас есть
(u - v) 5 = 5 = 1 (u) 5 + 5 (u) 4 (-v) 1 + 10 (u) 3 (-v) 2 + 10 (u) 2 (-v) 3 + 5 (u)(-v) 4 + 1 (-v) 5 = u 5 - 5u 4 v + 10u 3 v 2 - 10u 2 v 3 + 5uv 4 - v 5 .
Обратите внимание, что знаки членов колеблются между + и -. Когда степень -v есть нечетным числом, знак -.

Пример 2 Возведите в степень: (2t + 3/t) 4 .

Решение У нас есть (a + b) n , где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
1 4 6 4 1
Тогда мы имеем

Разложение бинома используя значения факториала

Предположим, что мы хотим найти значение (a + b) 11 . Недостаток в использовании треугольника Паскаля в том, что мы должны вычислить все предыдущие строки треугольника, чтобы получить необходимый ряд. Следующий метод позволяет избежать этого. Он также позволяет найти определенную строку - скажем, 8-ю строку - без вычисления всех других строк. Этот метод полезен в вычислениях, статистике и он использует биномиальное обозначение коэффициента .
Мы можем сформулировать бином Ньютона следующим образом.

Бином Ньютона с использованием обозначение факториала

Для любого бинома (a + b) и любого натурального числа n,
.

Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом .

Пример 3 Возведите в степень: (x 2 - 2y) 5 .

Решение У нас есть (a + b) n , где a = x 2 , b = -2y, и n = 5. Тогда, используя бином Ньютона, мы имеем


Наконец, (x 2 - 2y) 5 = x 10 - 10x 8 y + 40x 6 y 2 - 80x 4 y 3 + 80x 2 y 4 - 35y 5 .

Пример 4 Возведите в степень: (2/x + 3√x ) 4 .

Решение У нас есть (a + b) n , где a = 2/x, b = 3√x , и n = 4. Тогда, используя бином Ньютона, мы получим


Finally (2/x + 3√x ) 4 = 16/x 4 + 96/x 5/2 + 216/x + 216x 1/2 + 81x 2 .

Нахождение определенного члена

Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.

Обратите внимание, что в биноме Ньютона дает нам 1-й член, дает нам 2-й член, дает нам 3-й член и так далее. Это может быть обощено следующим образом.

Нахождение (k + 1) члена

(k + 1) член выражения (a + b) n есть .

Пример 5 Найдите 5-й член в выражении (2x - 5y) 6 .

Решение Во-первых, отмечаем, что 5 = 4 + 1. Тогда k = 4, a = 2x, b = -5y, и n = 6. Тогда 5-й член выражения будет

Пример 6 Найдите 8-й член в выражении (3x - 2) 10 .

Решение Во-первых, отмечаем, что 8 = 7 + 1. Тогда k = 7, a = 3x, b = -2 и n = 10. Тогда 8-й член выражения будет

Общее число подмножеств

Предположим, что множество имеет n объектов. Число подмножеств, содержащих k элементов есть . Общее число подмножеств множества есть число подмножеств с 0 элементами, а также число подмножеств с 1 элементом, а также число подмножеств с 2-мя элементами и так далее. Общее число подмножеств множества с n элементами есть
.
Теперь давайте рассмотрим возведение в степень (1 + 1) n:

.
Так. общее количество подмножеств (1 + 1) n , или 2 n . Мы доказали следующее.

Полное число подмножеств

Полное число подмножеств множества с n элементами равно 2 n .

Пример 7 Сколько подмножеств имеет множество {A, B, C, D, E}?

Решение Множество имеет 5 элементов, тогда число подмножеств равно 2 5 , или 32.

Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
{кетчуп, горчица, майонез, помидоры, салат, лук, грибы, оливки, сыр }.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?

Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно

. Таким образом, Венди может предложить 512 различных гамбургеров.

Прогресс человечества во многом связан с открытиями, сделанными гениями. Одним из них является Блез Паскаль. Его творческая биография еще раз подтверждает истинность выражения Лиона Фейхтвангера «Талантливый человек, талантлив во всем». Все научные достижения этого великого ученого трудно перечесть. К их числу относится одно из самых элегантных изобретений в мире математики — треугольник Паскаля.

Несколько слов о гении

Блез Паскаль по современным меркам умер рано, в возрасте 39 лет. Однако за свою короткую жизнь он проявил себя как выдающийся физик, математик, философ и писатель. Благодарные потомки назвали в его честь единицу давления и популярный язык программирования Pascal. Он уже почти 60 лет используется для обучения написания различных кодов. Например, с его помощью каждый школьник может написать программу для вычисления площади треугольника на «Паскале», а также исследовать свойства схемы, о которой речь пойдет ниже.

Деятельность этого ученого с экстраординарным мышлением охватывает самые разные области науки. В частности, Блез Паскаль является одним из основателей гидростатики математического анализа, некоторых направлений геометрии и теории вероятностей. Кроме того, он:

  • создал механический калькулятор, известный под названием Паскалева колеса;
  • представил экспериментальное доказательство того, что воздух обладает упругостью и имеет вес;
  • установил, что барометр можно использовать для предсказания погоды;
  • изобрел тачку;
  • придумал омнибус — конные экипажи с фиксированными маршрутами, ставшие впоследствии первым видом регулярного общественного транспорта и пр.

Арифметический треугольник Паскаля

Как уже было сказано, этот великий французский ученый внес огромный вклад в математическую науку. Одним из его безусловных научных шедевров является «Трактат об арифметическом треугольнике», который состоит из биномиальных коэффициентов, расставленных в определенном порядке. Свойства этой схемы поражают своим разнообразием, а сама она подтверждает пословицу «Все гениальное — просто!».

Немного истории

Справедливости ради нужно сказать, что на самом деле треугольник Паскаля был известен в Европе еще в начале 16 века. В частности, его изображение можно увидеть на обложке учебника арифметики известного астронома Петра Апиана из Ингольтштадского университета. Похожий треугольник представлен и в качестве иллюстрации в книге китайского математика Ян Хуэй, изданной в 1303 году. О его свойствах было известно также и замечательному персидскому поэту и философу Омару Хайяму еще в начале 12 века. Причем считается, что он познакомился с ним из трактатов арабских и индийских ученых, написанных ранее.

Описание

Прежде чем исследовать интереснейшие свойства треугольника Паскаля, прекрасного в своем совершенстве и простоте, стоит узнать, что он из себя представляет.

Говоря научным языком, эта числовая схема - бесконечная таблица треугольной формы, образованная из биномиальных коэффициентов, расположенных в определенном порядке. В его вершине и по бокам находятся цифры 1. Остальные позиции занимают числа, равные сумме двух чисел, расположенных над ними рядом выше. При этом все строки треугольника Паскаля симметричны относительно его вертикальной оси.

Основные свойства

Треугольник Паскаля поражает своим совершенством. Для любой строки под номером n (n = 0, 1, 2…) верно:

  • первое и последнее числа — 1;
  • второе и предпоследнее — n;
  • третье число равно треугольному числу (количеству кружков, которые можно расставить в виде т. е. 1, 3, 6, 10): T n -1 = n (n - 1) / 2.
  • четвертое число является тетраэдрическим, т. е. представляет собой пирамиду с треугольником в основании.

Кроме того, сравнительно недавно, в 1972 году, было установлено еще одно свойство треугольника Паскаля. Для того чтобы его обнаружить, нужно записать элементы этой схемы в виде таблицы со сдвигом строк на 2 позиции. Затем отмечают числа, делящиеся на номер строки. Оказывается, что номер столбца, в котором выделены все числа, является простым числом.

Тот же трюк можно осуществить и по-другому. Для этого в треугольнике Паскаля заменяют числа на остатки от их деления на номер строки в таблице. Затем располагают строки в полученном треугольнике так, чтобы следующая из них начиналась правее на 2 колонки от первого элемента предыдущей. Тогда столбцы, имеющие номера, являющиеся простыми числами, будут состоять только из нулей, а в тех, у которых они составные, будет присутствовать хотя бы один ноль.

Связь с биномом Ньютона

Как известно, так называется формула для разложения на слагаемые целой неотрицательной степени суммы двух переменных, которая имеет вид:

Присутствующие в них коэффициенты равны C n m = n! / (m! (n - m)!), где m, представляет собой порядковый номер числа в строке n треугольника Паскаля. Иными словами, имея под рукой эту таблицу, можно легко возводить в степень любые числа, предварительно разложив их на два слагаемых.

Таким образом, треугольник Паскаля и бином Ньютона взаимосвязаны самым тесным образом.

Математические чудеса

При внимательном изучении треугольника Паскаля можно обнаружить, что:

  • сумма всех чисел в строке с порядковым номером n (отсчет ведется с 0) равна 2 n ;
  • если строки выровнять по левому краю, то суммы чисел, которые расположены вдоль диагоналей треугольника Паскаля, идущих снизу вверх и слева направо, равны числам Фибоначчи;
  • первая «диагональ» состоит из натуральных чисел, идущих по порядку;
  • любой элемент из треугольника Паскаля, уменьшенный на единицу, равен сумме всех чисел, расположенных внутри параллелограмма, который ограничен левыми и правыми диагоналями, пересекающимися на этом числе;
  • в каждой строке схемы сумма чисел на четных местах равна сумме элементов на нечетных местах.

Треугольник Серпинского

Такая интересная математическая схема, достаточно перспективная с точки зрения решения сложных задач, получается, если раскрасить четные числа Паскалевого изображения в один цвет, а нечетные — в другой.

Треугольник Серпинского можно выстроить и другим образом:

  • в закрашенной схеме Паскаля перекрашивают в другой цвет серединный треугольник, который образован путем соединения середин сторон исходного;
  • точно также поступают с тремя незакрашенными, расположеными в углах;
  • если процедуру продолжать бесконечно, то в итоге должна получиться двухцветная фигура.

Самое интересное свойство треугольника Серпинского — его самоподобие, так как он состоит из 3-х своих копий, которые уменьшены в 2 раза. Оно позволяет отнести эту схему к фрактальным кривым, а они, как показывают новейшие исследования лучше всего подходят для математического моделирования облаков, растений, дельт рек, да и самой Вселенной.

Несколько интересных задач

Где используется треугольник Паскаля? Примеры задач, которые можно решать с его помощью, достаточно разнообразны и относятся к различным областям науки. Рассмотрим некоторые, наиболее интересные из них.

Задача 1. У некоторого большого города, обнесенного крепостной стеной, только одни входные ворота. На первом перекрестке основная дорога расходится на две. То же происходит и на любом другом. В город заходят 210 человек. На каждом из встречающихся перекрестков они делятся пополам. Сколько человек будет находить на каждом перекрестке, когда делиться будет уже невозможно. Ее ответом является 10 строка треугольника Паскаля (формула коэффициентов представлена выше), где по обе стороны от вертикальной оси расположены числа 210.

Задача 2. Имеется 7 наименований цветов. Нужно составить букет из 3 цветков. Требуется выяснить, сколькими различными способами это можно сделать. Эта задача из области комбинаторики. Для ее решения опять же используем треугольник Паскаля и получаем на 7 строке на третьей позиции (нумерация в обоих случаях с 0) число 35.

Теперь вы знаете, что изобрел великий французский философ и ученый Блез Паскаль. Его знаменитый треугольник при правильном использовании может стать настоящей палочкой-выручалочкой для решения множества задач, особенно из области комбинаторики. Кроме того, его возможно использовать для разгадывания многочисленных загадок, связанных с фракталами.

Для того, чтобы получить треугольник Паскаля , перепишем Таблицу 1 из раздела «Формулы сокращенного умножения: степень суммы и степень разности» в следующем виде (Таблица П.):

Таблица П. – Натуральные степени бинома x + y

Степень Разложение в сумму одночленов
0 (x + y ) 0 = 1
1 (x + y ) 1 = 1x + 1y
2 (x + y ) 2 = 1x 2 + 2xy + 1y 2
3 (x + y ) 3 = 1x 3 + 3x 2 y + 3x y 2 + 1y 3
4 (x + y ) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4x y 3 + 1y 4
5 (x + y ) 5 = 1x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5x y 4 + 1y 5
6 (x + y ) 6 = 1x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 +
+ 15x 2 y 4 + 6x y 5 + 1y 6

Теперь, воспользовавшись третьим столбцом Таблицы П., составим следующую Таблицу - Треугольник Паскаля :

Степень 0:

(x + y ) 0 =

Степень 1:

(x + y ) 1 =

Разложение в сумму одночленов:

1x + 1y

Степень 2:

(x + y ) 2 =

Разложение в сумму одночленов:

1x 2 + 2xy + 1y 2

Степень 3:

(x + y ) 3 =

Разложение в сумму одночленов:

1x 3 + 3x 2 y + 3x y 2 + 1y 3

Степень 4:

(x + y ) 4 =

Разложение в сумму одночленов:

1x 4 + 4x 3 y + 6x 2 y 2 +
+ 4x y 3 + 1y 4

Степень 5:

(x + y ) 5 =

Разложение в сумму одночленов:

1x 5 + 5x 4 y + 10x 3 y 2 +
+ 10x 2 y 3 + 5x y 4 + 1y 5

Степень 6:

(x + y ) 6 =

Разложение в сумму одночленов:

1x 6 + 6x 5 y + 15x 4 y 2 +
+ 20x 3 y 3 +
+ 15x 2 y 4 +
+ 6x y 5 + 1y 6

Теперь, записыая только коэффициенты разложений степеней бинома в сумму одночленов, получим следующую Таблицу - Треугольник Паскаля :

Таблица - Треугольник Паскаля

На всякий случай напомним, что Блез Паскаль – это знаменитый физик и математик, живший во Франции более трех веков назад.

В треугольнике Паскаля каждая строка соответствует строке с тем же номером в Таблице П. Однако в каждой строке треугольника Паскаля, в отличие от Таблицы П., записаны только коэффициенты разложения в сумму одночленов соответствующей степени бинома x + y .

Заполнив сначала строки треугольника Паскаля с номерами 0 и 1, рассмотрим строки с номерами 2 и далее.

Основным свойством треугольника Паскаля , позволяющим последовательно, начиная со строки с номером 2, заполнять его строки, является следующее свойство :

Каждая из строк , начиная со строки с номером 2, во-первых, начинается и заканчивается числом 1, а, во-вторых, между числами 1 стоят числа, каждое из которых равно сумме двух чисел, стоящих над ним в предыдущей строке.

Действительно, число 2, стоящее в строке с номером два, равно сумме чисел 1 плюс 1, стоящих в первой строке. Точно так же, числа 3 и 3, стоящие в строке с номером три, равны соответственно сумме чисел 1 плюс 2 и сумме чисел 2 плюс 1, стоящих во второй строке.

Также и для других строк.

Таким образом, свойство треугольника Паскаля позволяет, заполнив одну из строк, легко заполнить и следующую за ней, т.е. получить необходимые коэффициенты разложения в сумму одночленов следующей степени бинома x + y .

Пример . Написать разложение вида:

(x + y ) 7 .

Решение . Воспользовавшись строкой треугольника Паскаля с номером 6 и применив основное свойство треугольника Паскаля, получим строку с номером 7:

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ

Треугольник Паскаля

Введение 3

1.Определение треугольника Паскаля 4

2.Построение треугольника Паскаля 6

3.Свойства треугольника Паскаля и их применения 7

4.Применение свойств треугольника Паскаля 13

Заключение 16

Список использованной литературы 17

Треугольник Паскаля так прост,

что выписать его сможет даже

десятилетний ребенок.

В тоже время он таит в себе

неисчерпаемые сокровища и связывает

воедино различные аспекты математики,

не имеющие на первый взгляд между

собой ничего общего.

Столь необычные свойства позволяют

наиболее изящных схем

во всей математике".
Мартин Гарднер

"Математические новеллы"

Введение

В школьном курсе алгебры рассматриваются формулы сокращенного умножения второй и третей степени, но меня заинтересовала задача возведение двучлена в более высокую степень.

Изучая треугольник Паскаля знакомимся с множеством интересных и удивительных свойств. Применение этих свойств поможет при решение задач комбинаторики. Изучение этих свойств и их применение рассмотрено в данной работе.

  1. Определение треугольника Паскаля

Треугольник Паскаля - арифметический треугольник, образованный биномиальными коэффициентами. Назван в честь Блеза Паскаля, данный треугольник представлен на рисунке 1.

Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух, расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятности и обладает занимательными свойствами.

Рисунок 1 Треугольник Паскаля
Из истории.

Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). Данный треугольник приведен на рисунке 2. На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».

Рисунок 2 Треугольник Яна Хуэя в китайском средневековом манускрипте, 1303 год

  1. Построение треугольника Паскаля

Треугольник Паскаля часто выписывают в виде равнобедренного треугольника рисунок 3, в котором на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину.

Рисунок 3 Треугольник Паскаля

  1. Свойства треугольника Паскаля и их применения

1 - Второе число каждой строки соответствует её номеру.
2 - Третье число каждой строки равно сумме номеров строк, ей предшествующих.
3 – Треугольник Паскаля представляет собой различные системы измерения пространства:

одномерное, двухмерное, трехмерное, четырехмерное и т.д. На рисунке 4 каждая зеленая линия показывает пространство, т.е. то количество шаров которые можно выложить друг под другом.

Рисунок 4 Треугольник Паскаля

3.1 – Одномерное пространство - первая зеленая линия

Это треугольные числа в одномерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем.

3.2. – Двухмерное пространство – вторая зеленая линия

Треугольное число - это число кружков, которые могут быть расставлены в форме равностороннего треугольника, смотри рисунок 5.

Рисунок 5 Треугольное число

Последовательность треугольных чисел для n = 0, 1, 2, … начинается так:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120

Классический пример треугольных чисел встречающихся в повседневной жизни – это начальная расстановка шаров в бильярде, представлена на рисунке 6.

Рисунок 6 Треугольные числа на бильярдном столе
3.3 – Трехмерное пространство это третья зеленая линия.

Это треугольные числа в трехмерном пространстве т.е. один шар мы можем положить на три – итого четыре, под три подложим шесть, представлено на рисунке 7.

Рисунок 7 Расположение четырех шаров в трехмерном пространстве
4 - Сумма чисел n-й восходящей диагонали, проведенной через строку треугольника с номером n − 1, есть n-е число Фибоначчи:

Числа Фибоначчи - элементы числовой последовательности

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…

в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (известного как Фибоначчи).

Более формально, последовательность чисел Фибоначчи задается линейным рекуррентным соотношением:

Иногда числа Фибоначчи рассматривают и для отрицательных номеров n как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. Члены с такими номерами легко получить с помощью эквивалентной формулы «назад»: F n = F n + 2 − F n + 1


n

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

F n

-55

34

-21

13

-8

5

-3

2

-1

1

0

1

1

2

3

5

8

13

21

34

55

5 - Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана.

Числа Катала́на - числовая последовательность, встречающаяся в многих задачах комбинаторики. Последовательность названа в честь бельгийского математика Каталана, хотя была известна ещё Л. Эйлеру.

Первые несколько чисел Каталана:

1, 1, 2, 5, 14, 42, 132, 429, 1430,…

Числа Каталана удовлетворяют рекуррентному соотношению

И для
6 - Сумма чисел n-й строки треугольника Паскаля равна 2 n .
7 - Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры.

Рассмотрите треугольник, построенный "относительно" числа 7, то есть, числа, не делящиеся на 7 без остатка, нарисованы черным цветом, делящиеся - белым, и попробуем увидеть закономерность.

Рисунок 8 Треугольник Паскаля относительно делителя 7

8 - Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные - в белый, то образуется треугольник Серпинского. Данный треугольник представлен на рисунке 9.

Рисунок 9 Треугольник Серпинского

  1. Применение свойств треугольника Паскаля


  1. Предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смаликом, а тремя, соответственно, розовым. Это один из вариантов построения треугольника, предложенный Гуго Штейнгаузом в его классическом "Математическом калейдоскопе".


  1. Практическая значимость треугольника Паскаля заключается в том, что с его помощью можно запросто восстанавливать по памяти не только известные формулы квадратов суммы и разности, но и формулы куба суммы (разности), четвертой степени и выше.
Например, четвертая строчка треугольника как раз наглядно демонстрирует биномиальные коэффициенты для бинома четвертой степени:

Альтернатива треугольнику Паскаля:

перемножить почленно четыре скобки:

вспомнить разложение бинома Ньютона четвертой степени:

общий член разложения бинома n-й степени: ,

где Т – член разложения; – порядковый номер члена разложения.


  1. Используя свойства треугольника Паскаля мы можем вычислить сумму чисел натурального ряда. Например: нам необходимо вычислить сумму натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму.

Заключение

В работе приведены треугольник Паскаля, его интересные и удивительные свойства. Треугольник Паскаля применяется при решении различных алгебраических задач.

Данная работа позволяет научиться возводить двучлен в любую целую положительную степень, познакомиться с биномом Ньютона.

Список использованной литературы


  1. В.А. Успенский Популярные лекции по математике «Треугольник Паскаля» Главная редакция физико-математической литературы Москва «Наука» 1979г..

  2. Квант «Треугольник Паскаля».

  3. В. Байдикова Вариации на тему «Треугольник Паскаля»

  4. Энциклопедия юного математика.

  5. О. В. Кузьмин Треугольник и пирамида Паскаля: свойства и обобщения

Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… … Википедия

В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия

Таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят единицы, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа: В строке с номером n+1… … Математическая энциклопедия

Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпински … Википедия

Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

Треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). П. т. предложен Б. Паскалем (См. Паскаль). См. Арифметический треугольник …

Треугольник Паскаля, треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). По бокам А. т. стоят единицы, внутри суммы двух верхних чисел. В (n + 1) й строке А. т. биномиальные коэффициенты… … Большая советская энциклопедия

То же, что Паскаля треугольник … Математическая энциклопедия

В математике биномиальные коэффициенты это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В … Википедия

Коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы … Википедия

Книги

  • Треугольник Паскаля. Книга 102 , В. А. Успенский. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…
  • Треугольник Паскаля. Книга № 102 , Успенский В.А.. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…