Выпуклый четырехугольник когда можно описать окружность. Вписанный четырёхугольник. Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Определение 1. Четырехугольником называется фигура, состоящая из четырех точек (вершины), никакие три из которых не лежат на одной прямой, и четырех последовательно соединяющих их непересекающихся отрезков (стороны).
Определение 2. Соседними называют вершины, которые являются концами одной стороны.
Определение 3. Вершины, не являющиеся соседними, называют противолежащими.
Определение 4. Отрезки, соединяющие противоположные вершины четырехугольника, называются его диагоналями.
Теорема 1. Сумма углов четырехугольника равна 360 о.
Действительно, поделив четырехугольник диагональю на два треугольника, получаем, что сумма его углов равна сумме углов этих двух треугольников. Зная, что сумма углов треугольника равна 180 о, получаем искомое: 2 * 180 о =360 о
Определение d1. Описанный четырёхугольник - это четырёхугольник, все стороны которого касаются некоторой окружности. Напомним, что понятие стороны, касающейся окружности: окружность считается касающейся данной стороны, если она касается прямой, содержащей эту сторону, и точка касания лежит на этой стороне.
Определение d2. Вписанный четырехугольник - это четырёхугольник, все вершины которого принадлежат некоторой окружности.
Теорема 2. У любого четырехугольника, вписанного в окружность, суммы пар противоположных углов равны 180 о.
Углы А и С оба опираются на дугу BD только с разных сторон, то есть охватывают всю окружность, а сама окружность - это дуга величиной в 360 о, но мы знаем теоремму, которая твердит, что величина вписанного угла равна половине угловой величины дуги, на которую он опирается, поэтому можем утвердить, что сумма этих углов (А и С в частности) равна 180 о. Тем же способом можно жоказать эту теорему и для другой пары углов.
Теорема 3. Если в четырехугольник можно вписать окружность, то суммы длин его противоположных сторон равны.
Для доказательства этой теоремы воспользуемся теоремой из темы круг и окружность , которая гласит: Отрезки касательных, проведенных из одной точки к окружности, равны, т.е. ВК=ВР, СР=СН, DH=DT и АТ=АК. Суммируем стороны АВ и CD: AB+CD=(AK+KB)+(DH+HC)=AT+BP+DT+CP=(AT+TD)+(BP+PC)=AD+BC, ч.т.д.

Для теорем 2 и 3 существуют обратные. Запишем их соответственно:

Теорема 4. Около четырехугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равны 180 градусам
Теорема 5. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин противоположных сторон равны.

Доказательство: Пусть ABCD - данный четырехугольник, и него AB + CD = AD + BC. Проведем биссектрисы его углов A и D. Эти биссектрисы непараллельны, а значит, пересекаются в некоторой точке O. Опустим из точки O на стороны AB, AD и CD перпендикуляры OK, OL и OM. Тогда OK=OL, и OL=OM, а значит, окружность с центром в точке O и радиусом OK касается сторон AB, AD и CD данного четырёхугольника. Проведём из точки B касательную к этой окружности. Пусть эта касательная пересекает прямую CD в точке P. Тогда ABPD - описанный четырёхугольник. Следовательно, по свойству описанного четырёхугольника, AB + DP = AD + BP. Также, по условию, AB+ CD = AD + BC. Следовательно, BP + PC = BC, а значит, по неравенству треугольника, точка P лежит на отрезке BC. Следовательно, прямые BP и BC совпадают, а значит, прямая BC касается окружности с центром в точке O, то есть ABCD - описанный четырёхугольник по определению. Теорема доказана.
Теорема 6. Площадь четырехугольника равна половине произведения его диагоналей и синуса угла между ними.

Доказательство: Пусть ABCD - данный четырёхугольник. Пусть также O - точка пересечения диагоналей. Тогда
S ABCD = S ABO + S BCO +S CDO + S DAO =
= 1/2(AO·BO·sin∠ AOB + BO·CO·sin∠ BOC +
+ CO·DO·sin∠ COD + DO·AO·sin∠ AOD) =
= 1/2·sin∠ BOC·(AO + CO)·(BO + DO) =
= 1/2·sin∠ BOC·AC·BD.
Теорема доказана.
Теорема d1. (Вариньона) Четырёхугольник с вершинами в серединах сторон любого четырёхугольника есть параллелограмм, причём площадь этого параллелограмма равна половине площади исходного четырёхугольника.

Доказательство: Пусть ABCD - данный четырёхугольник, а K, L, M и N - середины его сторон. Тогда KL - средняя линия треугольника ABC, а значит, KL параллельно AC. Также LM параллельно BD, MN параллельно AC, а NK параллельно BD. Следовательно, KL параллельно MN, LM параллельно KN. Значит, KLMN - параллелограмм. Площадь этого параллелограмма - KL·KN·sin∠ NKL =
1/2·AC·BD·sin∠ DOC = 1/2S ABCD .
Теорема доказана.

Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

Площадь

S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали

С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

Согласно второй теореме Птолемея ,

p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство

p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

(p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

Если M и N являются средними точками диагоналей AC и BD , то

M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

где E и F - точки пересечения противоположных сторон.

Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

Формулы углов

a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

Для угла θ между диагоналями выполняется

tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

Формула Парамешвара

Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

Другие свойства

  • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
  • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

Четырёхугольники Брахмагупты

Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

Свойства ортодиагональных вписанных четырёхугольников

Площадь и радиус описанной окружности

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D -

или, через стороны четырёхугольника

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

Литература

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. .
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
  • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
  • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6