Фабрициус ян францевич биография. Критика и спорные факты. Подполье в армии

Осадки и образующиеся при их диагенезе осадочные породы накапливаются в понижениях рельефа (на дне океанов и морей, озёр, в речных длинах, межгорных депрессиях и пр.) и, как правило, первоначально обладают горизонтальным залеганием. Образуемые ими уплощенные геологические тела называют слоями. Слой – это уплощенное геологическое тело относительно однородное по составу и строению, ограниченное приблизительно параллельными поверхностями раздела.

Верхняя граница слоя называется кровлей, нижняя - подошвой.

Примечание. Помимо термина «слой», часто употребляется термин «пласт», имеющий аналогичное значение, но обычно применяемый для полезных ископаемых, например угля, известняка и др.

Расстояние между кровлей и подошвой слоя определяет мощность данного слоя. Различают два вида мощности: истинную мощность - кратчайшее расстояние между кровлей и подошвой пласта (по перпендикуляру) и видимую мощность - любое другое (не кратчайшее) расстояние между подошвой и кровлей.

Чередование слоёв определяет слоистое строение толщ осадочных пород.

Группы слоёв, обладающие некоторой общностью признаков, отличающих их от смежных по разрезу слоёв (или групп слоёв) объединяют в пачки . Такая общность может быть связана с особенностью строения (повторяющееся на некоторой мощности разреза переслаивание двух или более разновидностей пород), отличием в литологическом составе (обогащённость минеральными компонентами, ожелезнение и пр.) или другими признаками, визуально выделяющими группу слоёв из общей мощности толщи.

Форма слоистости отражает характер движения среды, в которой происходит накопление осадка. Выделяют четыре основных типа слоистости: параллельную (горизонтальную), волнистую, косую, линзовидную.

Параллельная слоистость, когда поверхности наслоения параллельны, свидетельствует об относительной неподвижной среде, в которой накапливался осадок. Такие условия возникают в озёрах или морских бассейнах ниже уровня действия волн и течений.

Волнистая слоистость имеет волнисто-изогнутые поверхности наслоения. Она формируется при движениях, имеющих периодическую смену в одном направлении, например при отливах, приливах, прибрежных волнениях в мелководных зонах моря.

Линзовидная слоистость образуется при быстром и изменчивом движении водной или воздушной среды, например в речных потоках или приливно-отливной полосе моря. Она характеризуется разнообразием форм и изменчивостью мощности отдельных слоёв. Часто происходит выклинивание слоя, что приводит к его разобщению на отдельные части или линзы. Генетически тесно связана с волнистой.

Косой слоистостью называют слоистость с прямолинейными и криволинейными поверхностями наслоения и с различными углами мелкой слоистости внутри слоя. Она образуется при движении среды в одном направлении, например реки, потока, морского течения или движения воздуха. В речных потоках косая слоистость имеет общий наклон в сторону движения воды. Дельтовая разновидность косой слоистости более крупная и отличается плавным причленением косых слоёчков к подошве слоя, а у кровли косые слоёчки исчезают, и появляется более грубый материал. Косая слоистость морских отложений характеризуется также более крупными размерами и сравнительно небольшим наклоном. На мелководье образуется очень тонкая, переплетающаяся косая слоистость, ориентированная в различных направлениях.

Виды слоистости (слойчастости)

I - волнистая (и линзовидная), II - горизонтальная, III - косая

Особенности строения поверхностей наслоения помогают выяснить происхождение и условия залегания осадочных толщь. К числу таких особенностей относятся: ископаемые знаки ряби, первичные трещины усыхания, следы жизнедеятельности организмов, отпечатки дождевых капель, кристаллов льда и др.

Первичное и нарушенное залегание слоёв

Большая часть осадков образуется в морских или континентальных водоёмах или на прибрежных равнинах. Залегание осадков при этом практически горизонтальное (угол наклона не более 1 o). Такое залегание называют первичным . Первичное залегание с более крутым залеганием пород, достигающем 3-4 o , а иногда 10 o может возникнуть на склонах наземных и подводных возвышенностей, каньонов, уступов. Первичное залегание осадочных пород сохраняется сравнительно редко и нарушается последующими тектоническими движениями, что приводит к их наклонному залеганию, образованию складчатых и разрывных нарушений.

Пласты осадочных пород могут иметь согласное и несогласное залегание по отношению друг к другу. В случае согласного залегания каждый вышележащий слой, без каких либо следов перерыва в накоплении осадков налегает на нижележащие породы. Несогласное залегание образуется тогда, когда между вышележащим и подстилающим слоями отмечается перерыв в осадконакоплении и стратиграфическая последовательность нарушена. Несогласное залегание может быть параллельным , когда пласты, несмотря на перерыв в отложении осадка, сохраняют параллельное залегание и угловым , когда одна толща лежит с перерывом по отношению к другой под определённым углом. Например, когда на смятом в складки пласте известняка горизонтально залегает слой песчаника. Выявление стратиграфических несогласий является одной из наиболее важных задач геологического картирования и проводится с использованием следующих признаков:

  1. характерное строение поверхности несогласия, имеющей неровности, вымоины, уступы;
  2. угловое несогласие между слоями разного возраста;
  3. резкий возрастной разрыв между фауной в выше- и нижележащих слоёв;
  4. резкое различие в степени метаморфизма двух соприкасающихся слоёв;
  5. присутствие базального конгломерата в основании несогласно залегающей серии пород;
  6. резкий переход от морских к континентальным отложениям и наоборот;
  7. следы выветривания на поверхности несогласия.

Пликативные дислокации слоёв горных пород

В результате действия пластических деформаций горных пород возникает нарушенное залегание слоёв земной коры без видимого разрыва их сплошности. Такие формы нарушений называют пликативными дислокациями. К ним относится образование моноклиналей, складок и флексур.

Моноклинальное залегание образуется тогда, когда горизонтально залегающие породы в результате тектонических движений приобрели наклон под одним углом на значительном пространстве. Моноклиналь это наиболее простая форма пликативных дислокаций, широко проявлена в чехлах молодых и древних платформ. Существуют слабонаклонные (до 15 o), пологие (16-30 o), крутые (30-75 o), поставленные на голову (80-90 o) моноклинали.

Складчатые деформации или складки - это волнообразные изгибы пластов без разрыва сплошности пород. Этот тип дислокаций проявлен наиболее широко. Во всех типах складок различают несколько основных элементов.

Часть складки в месте перегиба слоёв называется замком, сводом или ядром . Крылья - боковые части складок, примыкающие к своду. Угол складки - угол, образованный линиями, являющимися продолжением крыльев складки. Осевая поверхность складки - воображаемая плоскость, проходящая через точки перегиба слоёв и делящая угол складки пополам. Осевая линия (ось складки) - линия пересечения осевой поверхности с горизонтальной плоскостью или с поверхностью рельефа. Осевая линия характеризует ориентировку складки в плане и определяется азимутом простирания. Шарнир складки - линия пересечения осевой поверхности складки с поверхностью одного из слоёв, составляющих складку. Он характеризует строение складки вдоль осевой поверхности (по вертикали) и определяется азимутом и углом погружения или воздымания. Размеры складок характеризуются длиной, шириной, высотой. Длина складки - это расстояние вдоль осевой линии между смежными перегибами шарнира. Ширина складки - расстояние между осевыми линиями двух соседних антиклиналей или синклиналей. Высотой складки называется расстояние по вертикали между замком антиклинали и замком смежной с ней синклинали.

Складки, пласты которых выгнуты кверху, называются антиклиналями. У этих складок в ядре на дневной поверхности обнажаются более древние породы, а на крыльях - более молодые и они наклонены от ядра. Складки, пласты которых прогнуты книзу, называются синклиналями. У них в ядре обнажаются более молодые породы, и крылья наклонены к ядру. Это две основные формы складок.


В зависимости от положения осевой поверхности в пространстве выделяют следующие разновидности складок.

Прямые складки - осевая поверхность вертикальна, а крылья падают в разные стороны под одинаковыми углами.

Наклонные складки - осевая поверхность наклонена к горизонту, а крылья падают в разные стороны под разными углами.

Опрокинутые складки - осевая поверхность круто наклонена, а крылья падают (наклонены) в одну сторону под разными углами. В этих складках различают нормальное и опрокинутое крылья.

Лежачие складки - осевая поверхность параллельна горизонтальной поверхности. Крылья наклонены в одну сторону под одним углом.

Классификация складок по положению осевой плоскости

Форма складок зависит также от соотношения крыльев и замка. В зависимости от этого складки могут быть острыми , когда крылья образуют острый угол (до 90 o), тупыми , с углом более 90 o , изоклинальными , с параллельным расположением крыльев и тупым замком, веерообразными , с пережимом крыльев, сундучными с пологим широким замком.

В продольном сечении складки бывают линейными , у которых длина превышает ширину более чем в три раза, брахиформными , с отношением длины к ширине меньше трёх и куполовидными , с примерно одинаковыми размерами длины и ширины складки.

Шарнир складки по простиранию часто испытывает погружение или воздымание и представляет не прямую, а волнистую линию. Это явление называется ундуляцией . В этом случае наблюдается замыкание складки, когда одно крыло вдоль оси постепенно переходит в другое. В антиклинальных складках такое замыкание называется периклинальным , а в синклинальных - центриклинальным .

Разновидностями антиклинальных складок являются диапировые складки и соляные купола . Их образование связано с присутствием в ядрах этих складок пластичных пород (глин, солей, гипса), которые, под действием огромного давления вышележащих пород, выжимаются и внедряются в эти породы, образуя пологий свод и крутые боковые поверхности.


Наиболее широко развитыми разновидностями диапировых складок являются соляные купола и глиняные диапиры. В соляных куполах различают ядро, сложенное пластичными породами и более хрупкие вмещающие породы. Ядро носит черты активного протыкания, а вмещающие породы пассивно приспосабливаются к движению ядра. Очень часто соль в ядре имеет форму цилиндрического столба, образуя «соляной шток». При внедрении соляных масс свод купола подвергается растяжению и в нём, могут возникнуть многочисленные трещины и разломы. С соляными куполами часто связаны промышленные скопления нефти и газа. Формирование диапировых складок, по данным Ю.А.Косыгина, а также американских исследователей Бартона, Нельтона и других, происходит лишь там, где мощность пластичных пород составляет не менее 120 м, а глубина их залегания превышает 300 м. Пластичные породы, будучи вовлечены в процесс сжатия, в месте с окружающими их хрупкими породами выжимаются из крыльев в ядра антиклиналей. При благоприятных условиях они могут прорвать перекрывающие породы и образовать диапировые складки.

(по Бенцу)


Складки часто собраны в группы и образуют параллельные, кулисообразные, четковидные, пучкообразные сообщества. Сложные линейно-складчатые структуры образуют синклинории и антиклинории. Антиклинории – это крупные, сложнопостроенные антиклинальные структуры, протяженностью сотни и даже тысячи километров. Они включают множество более мелких антиклинальных и синклинальных складок. Примером является мегантиклинорий Большого Кавказа. Синклинории – это такие же крупные, сложнопостроенные, но в целом синклинальные структуры, осложненные синклинальными и антиклинальными складками более низких порядков. Сочетание антиклинориев и синклинориев образует горные хребты и горные системы, такие как Альпы, Кавказ, Тянь-Шань и др.

Разновидностью крупных складок являются флексуры , которые представляют собой коленообразные или ступенчатые перегибы слоёв или пластов. В области перегиба мощности слагающих флексуру пластов несколько уменьшаются и часто возникают разрывы. Части флексуры, расположенные по обе стороны от перегиба называются крыльями. Выделяется смыкающее крыло, оставшееся на месте и нижнее - опущенное крыло. Вертикальная амплитуда смещения может составлять десятки, и даже сотни метров. Флексуры обычно ограничивают крупные платформенные структуры, такие как синеклизы, краевые прогибы и др.

Разрывные нарушения (дизъюнктивные дислокации)

Тектонические движения иногда приводят к разрыву сплошности пластов горных пород и образованию разрывных нарушений или дизъюнктивных дислокаций . Различают нарушения без существенного смещения по ним и нарушения со смещениями. Нарушения без смещения – это трещины. Они различаются по ширине (от миллиметров до нескольких метров), по протяжённости (от первых сантиметров до десятков километров), по глубине, форме (прямолинейные, дугообразные и др.) и т.д. Кроме трещин тектонического происхождения существуют трещины экзогенного (нетектоничекого) происхождения – трещины усыхания, оползней, обвалов, расширения пород, отслаивания и др.


Дизюнктивное нарушение; a-b - вертикальное смещение

К нарушениям со смещением относятся сбросы, взбросы, сдвиги и надвиги. Элементами тектонических нарушений являются: сместитель, крылья, угол наклона сместителя амплитуды смещения.

Сместитель – это плоскость, по которой происходит смещение. Угол наклона сместителя может варьировать от нескольких градусов до 80-90 o . Крылья – толщи пород, расположенные по обе стороны сместителя. При наклонном положении сместителя крыло, которое располагается над ним, называется висячим крылом, а расположенное под ним – лежачим. Амплитуда смещения – величина относительного перемещения пластов. Различают амплитуду смещения по сместителю, вертикальную, горизонтальную, стратиграфическую.

Одной из наиболее характерных форм разрывных нарушений является сброс . Это нарушение, у которого сместитель наклонён в сторону опущенного крыла (независимо от того, является оно висячим или лежачим). Если же сместитель наклонен в сторону приподнятых пород и уходит под них, то такое нарушение называется взброс . В отличие от описанных типов нарушений сдвигом называется разрывное нарушение, у которого перемещение происходит преимущественно в горизонтальном направлении, а сместитель расположен вертикально. Часто (или почти всегда) сбросы и сдвиги проявляются совместно и называются сбросо-сдвигами и сдвиго-сбросами.

Надвигом называется дислокация с разрывом пластов и надвиганием одного крыла на другое по относительно пологой или горизонтальной плоскости. Это нарушение взбросового типа, возникающее обычно вместе со складчатостью. Выделяют крутые (более45 o), пологие (менее45 o) и горизонтальные надвиги. Эти структуры широко проявлены в складчатых областях. Надвиг с большим горизонтальным перемещением называется шарьяжем , у которого висячее крыло может перемещаться на многие километры и даже на десятки километров.

Сбросовые нарушения часто проявляются в виде систем сбросов и взбросов. При этом образуются своеобразные структуры.

Грабен – опущенный участок земной коры ограниченный параллельными сбросами значительной протяжённости.
Горст – приподнятый участок земной коры, заключенный между параллельными разломами.

Несколько параллельных ступенчато расположенных грабенов образуют сложный грабен. Это относится к структурам Великих африканских озёр (Танганьика, Альберта, Рудольфа), рифту Красного моря, рифту озера Байкал, Рейнскому грабену и др.

Наиболее крупные надвиги и шарьяжи, характеризующиеся перемещениями пород на десятки километров по пологим, горизонтальным и волнистым поверхностям называются покровами . В покровах выделяются перемещённые массы висячего крыла, называемые аллохтоном , и оставшееся на месте лежачее крыло, называемое автохтоном . Покровы развиваются в областях со сложным покровно-складчатым строением. Они широко распространены в Альпах, Апеннинах, Гималаях, Карпатах, центральном и юго-восточном Кавказе, на западных склонах Урала, Верхоянье, Алтае и других областях.

Горные породы являются природной совокупностью минералов постоянного минералогического состава, непрерывно образующей в земной коре самостоятельное тело.

Все они делятся на 3 группы по происхождению: магматические (интрузивные и эффузивные), метаморфические и осадочные. Метаморфические и магматические слагают примерно 90% от объёма земной коры, но они не слишком распространены на поверхности материков. Остальные 10% занимают осадочные горные породы (ОГП), покрывающие 75% площади поверхности земли.

Осадочные горные породы

Этот вид горных пород на земной поверхности, а также вблизи нее образуется в условиях низких давлений и температур вследствие преобразований континентальных и морских осадков. Осадочные горные породы по способу образования подразделяются на 3 генетические группы:

  • обломочные (конгломераты, пески, алевриты, брекчии) – это грубые продукты, образовавшиеся в результате механического разрушения материнских пород;
  • глинистые – дисперсные продукты химического глубокого преобразования алюмосиликатных и силикатных минералов материнских пород, которые со временем перешли в новые минеральные виды;
  • биохемогенные, органогенные и хемогенные породы – продукты осаждения из растворов, при участии различных организмов, накоплений органических веществ либо продуктов жизнедеятельности различных организмов.

Промежуточное положение между вулканическими и осадочными породами занимает целая группа эффузивно-осадочных пород, а между основными группами ОГП наблюдаются переходы, возникающие при смешивании материалов разного генезиса. Характерной особенностью ОГП, связанной с их образованием, является их слоистость, а также залегание в виде правильных геометрических пластов.

Состав осадочных горных пород

ОГП состоят из разных по происхождению и минеральному составу компонентов, что отражает множественность источников происхождения осадконакопления и полистадийность породообразования. Порода – это сложнейшее единство образовавшихся в разное время разнородных составных частей. К ним относятся реликтовые или обломочные минералы, обломки материнской породы, различные продукты разложения первичных минералов, экзогенные новообразования, которые возникли в результате осаждения соединений из коллоидных и истинных растворов, продукты диагенеза, катагенеза и метагенеза.

В составе ОГП выделяются хемогенные, терригенные, космогенные, вулканогенные и биогенные вещественно-генетические составляющие, которые объединяются в две большие группы: аутигенные и аллотигенные компоненты.

Аутигенные – возникают на месте в породе либо в осадках на разных стадиях изменения, образования или разрушения пород. Они отражают физические и химические условия осадконакопления. В образованиях осадочного типа свыше 200 аутигенных минералов: хлориты, соли, сульфаты, глауконит, оксиды и гидроксиды железа, алюминия, марганца и др.; минералы кремнезема, железа, глин, фосфаты, сульфиды, карбонаты и многие другие.

Аллотигенные – это компоненты, к которым относится материал, привнесенный из любых других областей и помещенный в бассейн осадконакопления в качестве источника питания. В основном это терригенный или обломочный материал, а также пирокластические, космогенные или вулканические компоненты. Известно более 240 аллотигенных минералов и огромное число обломков различных пород.

Свойства основных осадочных горных пород

К основным осадочным горным породам относятся: известняк и его разновидности, песчаник и доломит.

Известняк – главным образом состоит из углекислого кальция с примесью углекислого магния, глинистых, железистых и других включений. Свойства известняков разнообразны и зависят от их текстуры, структуры и состава. Обладают высокой прочностью на сжатие (от 900 до 1500 кгс/см 2).

Песчаник – состоит из зерен минералов, сцементированных природными веществами. Прочность в пределах 600-2600 кгс/см 2 , в зависимости от наличия примесей и цементирующего вещества.

Доломит – состоит из минерала доломита, близок по свойствам плотным известнякам.

1) обломочные породы - продукты преимущественно физического выветривания материнских пород и минералов с последующим переносом материала и его отложением в других участках;

2) коллоидно-осадочные породы - результат преимущественно химического разложения с переходом вещества в коллоидальное состояние (коллоидные растворы); сюда же включаются и самые тонкие классы обломочных пород и остаточные породы кор выветривания;

3) хемогенные породы - осадки, выпадающие из водных, преимущественно истинных, растворов - вод морей, океанов, озер и других бассейнов химическим путем, т.е. в результате химических реакций или пересыщения растворов, вызванного различными причинами;

4) биохимические породы, включающие породы, образовавшиеся в ходе химических реакций при участии микроорганизмов, и породы, которые могут иметь двоякое происхождение: химическое и биогенное;

5) органогенные породы, образовавшиеся при участии живых организмов; отчасти эти породы являются непосредственными продуктами жизнедеятельности организмов и всегда содержат значительное количество остатков отмерших животных и растений или же целиком построены из вещества органического происхождения.

Под структурой осадочной породы понимается строение пород, обусловленное формой, размерами и взаимоотношением компонентов, слагающих породу. Классификация структур осадочных пород основана на генетической основе, поэтому выделяются обломочные, хемогенные и биогенные структуры. Поэтому, структуры осадочных пород мы рассмотрим при изучении этих трех генетических типов.

Текстура осадочных пород - особенность пространственного расположения компонентов породы. Выделяют два главных типа текстур - внутрипластовые и поверхностные. Рассмотрим некоторые характерные для осадочных пород текстуры. По мере описания отдельных осадочных пород будут рассмотрены так же и другие текстуры. В осадочных породах встречаются и массивные и пористые текстуры.

Осадочные горные породы образуются в результате процесса осадконакопления на земной поверхности. Исходным материалом осадочных пород служат продукты разрушения ранее сформировавшихся пород, жизнедеятельности организмов и некоторые химические соединения. К наиболее распространенным типам осадочных пород относятся песчаники, известняки и глины. Их классификация основана на химическом составе и размерах слагающих частиц. Минералы, наиболее часто встречающиеся в этих породах , - кварц, кальцит и гипс. Самые тонкозернистые разновидности осадочных пород называются глинистыми или аргиллитовыми, среднезернистые - песчанистыми; наиболее грубозернистые разновидности - крупнообломочными или рудитовыми. Осадочные породы залегают в виде слоев или пластов.

10. Понятие грунт. Классификация грунтов по ГОСТ 25100-95.

Грунт - любые горные породы, почвы, осадки, техногенные (антропогенные) образования, представляющие собой многокомпонентные, динамичные системы, являющиеся компонентами геологической среды и объектом инженерно-хозяйственной деятельности человека.

Классификация

· Класс природных скальных грунтов - грунты с жесткими структурными связями (кристаллизационными и цементационными) подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 1.

· Класс природных дисперсных грунтов - грунты с водноколлоидными и механическими структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 2.

· Класс природных мерзлых грунтов* - грунты с криогенными структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 3.

· Класс техногенных (скальных, дисперсных и мерзлых) грунтов - грунты с различными структурными связями, образованными в результате деятельности человека, подразделяют на группы, подгруппы, типы и виды согласно таблице 4.

· Частные классификации по вещественному составу, свойствам и структуре скальных, дисперсных и мерзлых грунтов (разновидности) представлены в приложении Б.

11. Обломочные горные породы, их наименования, размер и форма слагающих их частиц, характер связей между зернами. Главнейшие инженерно-геологические особенности обломочных горных пород.

Обломочные горные породы -кластические горные породы, осадочные горные породы, состоящие целиком или преимущественно из обломков различных горных пород (магматических, метаморфических или осадочных) и минералов (кварц, полевые шпаты, слюды, иногда глауконит, вулканическое стекло и др.).

Различают О. г. п. сцементированные и несцементированные, рыхлые. В сцементированных О. г. п. связующим веществом служат карбонаты (кальцит, доломит), окислы кремния (опал, халцедон, кварц), окислы железа (лимонит, гётит и др.), глинистые минералы и ряд др. О. г. п. часто содержат органические остатки: раковины моллюсков и др., стволы и ветви деревьев и т.п.

В основу классификации О. г. п. положен структурный признак - размер обломков. Выделяются грубообломочные породы, с размером обломков более 1 мм (несцементированные - глыбы, валуны, галька, щебень, дресва, гравий; сцементированные - Конгломераты, Гравелиты и др.); песчаные породы, или псаммиты, с размером частиц 1-0,05 мм (пески и песчаники); пылеватые породы, или Алевриты, с размером частиц 0,05-0,005 мм (алевриты и Алевролиты); глинистые породы, или Пелиты, с размером частиц менее 0,005 мм (глины, аргиллиты и др.). Иногда граница между алевритами и пелитами проводится по размеру частиц 0,001 мм . Глинистые породы могут быть как химического, так и обломочного происхождения. Выделяются также О. г. п. смешанного состава, сложенные обломками различной размерности - песчаными, алевритовыми и глинистыми. К ним относятся широко распространённые, особенно среди современных континентальных отложений, различные суглинки и супеси. Дальнейшее подразделение О. г. п. в пределах структурных подтипов производится по минеральному составу обломков и др. признакам. К О. г. п. принадлежат также продукты вулканических извержений: вулканический щебень, пепел - рыхлые породы и их сцементированные разновидности - туфы, туфобрекчии и породы переходные между обломочными и вулканогенными - туффиты и туфогенные породы.

При расчленённом рельефе и высокой динамике среды образуются грубообломочные породы, в условиях равнинного рельефа и небольшой скорости водных и воздушных потоков - песчаные, алевритовые и глинистые породы. Глинистые частицы осаждаются главным образом в спокойной воде. В прибрежной части морей и океанов на пляже и мелководье отлагаются галька и гравий, по мере движения в глубь бассейна они сменяются песками, алевритами и, наконец, глинистыми илами на глубине ниже уровня действия волн и течений. Однако встречаются галечники и пески на больших глубинах - результат действия различных донных течений и мутьевых потоков.

О. г. п. используют в качестве строительного материала, пески - в стекольной и металлургической промышленности. В речных и морских песках встречаются россыпи золота, платины, драгоценных камней, минералов титана, олова, вольфрама, редких и радиоактивных элементов.

12. Осадочные горные хемогенные и органогенные: классификация по происхождению, особенности состава, структуры, текстуры. Главнейшие инженерно-геологические особенности хемогенных и органогенных горных пород.

ОРГАНОГЕННЫЕ ГОРНЫЕ ПОРОДЫ – осадочные горные породы, состоящие из остатков животных и растений и продуктов их жизнедеятельности. Организмы обладают способностью концентрировать определённые вещества, не достигающие насыщения в природных водах, образуя скелеты или ткани, которые сохраняются в ископаемом состоянии.

По вещественному составу среди органогенных горных пород можно выделить карбонатные, кремнистые, некоторые фосфатные породы, а также, Горючие сланцы, нефть, твёрдые битумы. Органогенные горные породы карбонатные (Известняки) состоят из раковин фораминифер, кораллов, мшанок, брахиопод, моллюсков, водорослей и других организмов.

Своеобразными их представителями являются рифовые известняки, слагающие атоллы, барьерные рифы и другие, а также писчий мел. К органогенным горным породам кремнистым относятся: диатомит, спонголит, радиолярит и др. Диатомиты состоят из опаловых скелетов диатомовых водорослей, а также спикул кремнёвых губок и радиолярий. Спонголиты - породы, содержащие обычно более 50% спикул кремнёвых губок. Цемент у них кремнистый, из опаловых округлых телец, или глинистый, слегка известковистый, нередко включает вторичный халцедон. Радиоляриты - кремнистые породы, более чем на 50% состоящие из скелетов радиолярий, которые в современных океанах образуют радиоляриевый ил. Помимо радиолярий в них входят спикулы губок, редкие скорлупки диатомовых водорослей, кокколитофориды, опаловые и глинистые частицы. Многие яшмы имеют основу из радиолярий.

По условиям образования (главным образом применительно к карбонатным породам) можно различать биогермы - скопление остатков организмов в прижизненном положении, танато- и тафроценозы - совместное захоронение мёртвых организмов, живших здесь же или перенесённых волнами и течениями; породы, возникшие из планктонных организмов, называются планктоногенными (например, диатомит, мел, фораминиферовый известняк).

Если органические остатки подвергаются раздроблению в результате действия волн и прибоя, образуются органогенно-обломочные породы, состоящие из обломков (детрита) раковин и скелетов, скреплённых каким-либо минеральным веществом (например, кальцитом).

ХЕМОГЕННЫЕ ГОРНЫЕ ПОРОДЫ - группа пород, образовавшихся непосредственно путём химического осаждения из вод или растворов без участия биологических процессов.

В зависимости от способа и места осаждения, а также происхождения вод и растворов хемогенные горные породы могут быть осадочными, гидротермально-осадочными и гидротермальными. Способы осаждения: постепенное концентрирование вод и растворов в результате солнечного испарения, смешивание растворов 2 или более растворимых солей и понижение температуры растворов. По происхождению минералообразующие воды и растворы могут быть морскими, континентальными гидротермальными (слабо- минерализованными и рассольными).

Место осаждения; поверхность (морские и континентальные водоёмы) или недра Земли. В первом случае образуются протяжённые пластовые тела, во втором - трещинно-жильные линзовидные тела.

Преобладающая часть хемогенных горных пород является гибридной - гидротермально-осадочной, в меньшей степени - осадочной и гидротермальной.

Состав минералообразующих вод и растворов, а также тектонические и климатические условия определяют минералогический состав хемогенных горных пород и ценность их использования в качестве полезного ископаемого.

К хемогенным горным породам относятся все минеральные соли, калийные соли, эвапориты, сода, кремни и кремневидные опоки в ассоциации с трепелами, фосфориты, железомарганцевые руды, бокситы, хемогенные известняки, травертины, большая часть свинцово-цинковых, серных, бороносных и литиеносных руд, которые являются ценным сырьём для развития различных отраслей промышленности.

13. Метаморфические горные породы, их происхождение, формы залегания, минеральный состав, структура, текстура и свойства в образце и массиве.

Метаморф ические г орные пор оды -горные породы, ранее образованные как осадочные или как магматические, но претерпевшие изменение (метаморфизм) в недрах Земли под действием глубинных флюидов, температуры и давления или близ земной поверхности под действием тепла внедрившихся интрузивных масс.

Наиболее распространены метаморфические горные породы сланцеватой или полосчатой текстуры -сланцы, гнейсы, хотя нередки и массивные породы, например мраморы, кварциты, роговики. Кроме того, широко развиты породы с катакластическими текстурами, возникшими при дислокационном или динамическом метаморфизме, - разнообразные катаклазиты и милониты.

Состав метаморфических горных пород, как и их физико-механические свойства, варьирует в широких пределах. Различают метапелиты - производные кислых осадочных и изверженных пород (аргиллитов, алевролитов, песчаников, гранитоидных вулканитов и интрузивных пород) и метабазиты - производные основных осадочных и магматических пород. Особняком стоят карбонатные метаморфические горные породы - мраморы, кальцифиры, карбонатные катаклазиты.

По характеру температурного воздействия различают регионально-метаморфизованные (низкий температурный градиент, огромные региональные объёмы метаморфические горные породы, возникших в сходных интервалах температуры и давления) и контактово-метаморфизованные горные породы (локально высокие температурные градиенты возле магматических тел, малые глубины, небольшие объёмы метаморфических горных пород, возникших в сходных интервалах температуры и давления, концентрическая зональность около интрузивных тел). Контактово-метаморфизованные горные породы, образованные за счёт глинистых и других алюмосиликатных горных пород, - роговики, за счёт известняков - мраморы,бокситов - наждаки.

Среди регионально-метаморфизованных пород выделяют различные типы метаморфических горных пород, характерные для определённых фаций метаморфизма. Это разнообразные сланцы от низкотемпературных хлоритовых и серицитовых до кристаллических сланцев различного состава, образованных в высокотемпературных условиях. Существенно роговообманково-плагиоклазового состава метабазиты называются амфиболитами. Гнейсы - метапелитовые полосчатые породы высоких ступеней метаморфизма, близкие к гранитоидам по химическому составу. К метаморфическим горным породам высоких давлений (1500 МПа) многие исследователи относят эклогиты - массивные существенно гранато-пироксеновые породы со значительным содержанием пиропа в гранате и жадеита в пироксене.

14. Абсолютный и относительный возраст горных пород. Метод определения возраста горных пород. Шкала геологического времени.

Геологический возраст – возраст горных пород. Геологический возраст – это время, прошедшее от определенного события в геологической истории Земли: отложения слоя горных пород, образования гор, оледенения и пр. Различают относительный и абсолютный геологический возраст.

· Абсолютный геологический возраст – возраст горных пород, выраженный в абсолютных единицах времени; устанавливается на основании изучения распада радиоактивных элементов (уран, торий, калий, рубидий и др.), содержащихся в минералах. Оценивается обычно в млн. лет. Термин применяется условно, так как каждая из полученных цифр не «абсолютна» и нередко даётся в первом приближении (с минимальной ошибкой ± 5%).

· Относительный геологический возраст – возраст горных пород, устанавливаемый на основании взаимного положения слоев в разрезе. При пологом залегании слоев нижние являются более древними, а верхние - более молодыми (закон последовательности напластования). Сравнение осадочных толщ удалённых друг от друга районов позволило создать общую стратиграфическую шкалу, подразделённую на ряд отрезков (систем), характеризующихся специфическим комплексом растительных и животных остатков. Путём анализа найденных в пластах окаменелостей производится привязка отложений к общей шкале, т. е. определение относительного геологического возраста.

· тратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется – нижележащие их слои являются более древними, а вышележащие-более молодыми. Этот метод может быть использован и при складчатом залегании слоев. Не может быть использован при опрокинутых складках.

· Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных – в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород), могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфически выдержаны на большой площади.

· Тектонический метод основан на том, что мощные процессы деформации горных пород проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.

· Биостратиграфические или палеонтологические методы состоят в определении возраста горных пород с помощью изучения ископаемых организмов.

· Определение относительного возраста магматических и метаморфических горных пород (все выше охарактеризованные методы – для определения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.

· Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.

· Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.

15. Геологические карты и разрезы.

Геологическая карта – изображение геологического строения определенной территории земной коры. Она дает представление не только о геологическом строении поверхности земли, но в определенной мере и о внутреннем строении земной коры.

Инженерно-геологические карты бывают трех видов: 1) инженерно-геологических условий, 2) инженерно-геологического районирования и 3) инженерно-геологические карты специального назначения. Каждая такая карта включает условные обозначения (рис. 91), геологические разрезы и пояснительную записку.Карта инженерно-геологических условий содержит информацию для всех видов наземного строительства.

Карта инженерно-геологического районирования отражает разделение территории на части (регионы, области-районы и т. д.) в зависимости от общности их инженерно-геологических условий.

Карты специального назначения составляют применительно к конкретным видам строительства. Они содержат оценку инженерно-геологических условий территории строительства и прогноз инженерно-геологических явлений.

В основу составления геологической карты положены след. принципы: на карте условными знаками (цветом-краской, штриховкой, буквенными индексами и др. знаками) показывается распространение осадочных, изверженных и метаморфических горных пород различного возраста. Состав и возраст пород отображается цветом и особыми спец знаками. Линиями разной толщины обозначаются геологические границы горных пород, слагающие геологические тела и тектонические нарушения – разломы. Форма границ позволяет судить об условиях залегания, соотношении горных пород, геологических структурах и поведении горных пород на определенных глубинах.

Геологические разрезы представляют проекцию геологических структур на вертикальную плоскость и позволяют выявить геологическое строение по глубине. Их строят по геологической карте или по данным разведоч­ных выработок (шурфов, буровых скважин). Вертикальный масштаб разрезов обычно принимается в 10 и более раз крупнее горизонтального.

На геологическом разрезе показывают возраст, состав, мощность, условия залегания грунтов, гидрогеологические условия.

16. Тектонические движения земной коры. Складки, трещины и разрывы в земной коре.

Тектонические движения и их значение в формировании кристаллического фундамента.

Процессы внутренней динамики (эндогенные процессы) можно подразделить на:

1 – магматизма;

2 – метаморфизма (большие давления и температура);

3 – тектонические.

Все они тесно связаны друг с другом и взаимно влияют.

Движения земной коры с её деформациями и изменением залегания пород называются тектоническими процессами. Их можно разделить на три основных типа:

Колебательные - медленные поднятия и опускания участков земной коры с образованием крупных выпуклостей и прогибов;

Складчатые - смятие горизонтальных слоев земной коры в складки без их разрыва;

Разрывные - с разрывом слоев и массивов горных пород.

Колебательные движения. Отдельные участки земной коры на протяжении многих столетий поднимаются, другие в это же время опускаются с их изменением наоборот со временем. Различают виды таких движений земной коры: 1 – прошедших геологических периодов; 2 – новейшие четвертичного периода; 3 – современные с изменением высот поверхности земли в данном районе.

Кристаллический фундамент платформы неровный. В нем впадины – синклинали, поднятия – антиклинали. Амплитуда колебаний на платформе достигает 2-3 км.

17. Сейсмические явления: землетрясения и цунами. Магнитуда и бальность землетрясения.

Землетрясение , геол., заметные колебания земной коры, происходящие от действия внутренних сил. Различают медленные, слабо заметные колебания и быстрые разрушительные перемещения пластов земной коры. Последние известны под землёй в тесном смысле, причины землетрясения: смещение, оседание пластов земной коры, провалы вследствие размывов и вообще действия воды и вулканические явления. Последние сопровождаются выделением водяных паров, газов, шлака, грязи. Для изучения Земли устроены особые станции (сейсмические) с приборами (сейсмометрами), отмечающими быстроту распространения колебаний земной коры.

Причины: Существуют две основные причины землетрясений:
Одной из них являются процессы поверхностного характера, которые вызывают незначительные землетрясения. Эти процессы заключаются в том, что плиты, дрейфующие вдоль таких великих разломов, как, например, разлом Сан-Андреас в Калифорнии или Альпийский разлом в Новой Зеландии, действуют подобно ножницам, круша края друг друга.

Вторая причина отражает более глубокие процессы, происходящие в зонах вдоль краёв смещающихся плит, где рёбра этих масс земной коры погружаются в земную мантию и на глубине около 500 км повторно всасываются, поглощаются. По этой причине происходят уже более крупные землетрясения.

БАЛЛЬНОСТЬ ЗЕМЛЕТРЯСЕНИЯ - интенсивность землетрясения, выраженная в баллах. В СССР с 1952 г. принята 12-балльная шкала С. В. Медведева. При определении Б. з. по этой шкале учитывается совокупность многих признаков: показания "сейсмологических станций, характер повреждений зданий и сооружений (с раздельным учетом типов зданий, степени повреждений и количества поврежденных зданий), остаточные явления в грунтах и изменения режима грунтовых и наземных вод, субъективные ощущения толчков и колебаний. Упрощенная характеристика землетрясений разной балльности: 1-4 - слабые, не вызывают разрушений; 5-7 - сильные, разрушают ветхие постройки; 8 - разрушительные, падают фабричные трубы, частично разрушаются прочные здания; 9 - опустошительные, разрушается большинство зданий, появляются значительные трещины на поверхности Земли; 10 - уничтожающие, разрушаются мосты, разрываются трубопроводы, происходят оползни; 11 - катастрофы, разрушение всех сооружений, изменения ландшафта; 12 - сильные катастрофы, большие изменения рельефа местности на обширном пространстве.

Магнит уда землетряс ения - условная величина, характеризующая общую энергию упругих колебаний, вызываемых землетрясениями или взрывами; пропорциональна логарифму энергии колебаний. Обычно определяется максимумом отношения амплитуды к периоду колебаний, регистрируемых сейсмографами. М. з. позволяет сравнивать источники колебаний по их энергии. Увеличение М. з. на единицу соответствует увеличению энергии колебаний в 100 раз. Самые сильные известные землетрясения имеют М. з. не более 9 (приблизительно соответствует 1019дж или 1026эргов ). Сила землетрясения в баллах оценивается сотрясениями и разрушениями на земной поверхности и зависит, помимо М. з., от глубины очага и геологических условий эпицентральной зоны. При неглубоком очаге разрушения могут в эпицентре начинаться при М. з около 5, а при очаге на глубине в сотни км при М. з., равной 7, разрушения почти не происходят.

Цунами -океанские волны большой длины (до 1500 км), возникающие в результате сдвига вверх или вниз протяженных участков дна при сильных подводных и прибрежных землетрясениях и, реже, вследствие вулканических извержений и других тектонических процессов. Период от 15 до 60 минут, скорость от 50 до 1000 км/ч, высота в области возникновения от 0,01 до 5 м, а у побережья 10 м и более (иногда до 50 м). Могут приводить к катастрофическим последствиям.

18. Сейсмическое районирование и микрорайонирование.

Сейсмическое районирование -оценка потенциальной сейсмической опасности в сейсмоактивном районе. Выделение сейсмоопасных районов основывается на результатах совместного анализа инструментальных и макросейсмических данных о землетрясениях прошлых лет (интенсивность колебаний на поверхности Земли, пространственное распределение очагов землетрясений, их размеры, магнитуда и энергия землетрясений, повторяемость и т. п.) и геологических особенностях района (история геологического развития, интенсивность и контрастность новейших и современных тектонических движений, возраст и характер тектонических нарушений, их активность и т. п.).

Уточнение величины сейсмических воздействий на сооружения в зависимости от местных условий конкретного участка территории сейсмоопасного района (физические и динамические свойства грунтов и подстилающих пород, мощность верхних слоев земной коры, наличие многолетнемёрзлых горных пород, тектонические условия, особенности рельефа, спектральные свойства приходящих сейсмических волн и т. п.) составляет предмет сейсмического микрорайонирования. Графическим выражением С. р. являются карты, содержащие сведения об интенсивности сотрясений (в баллах) для любого географического пункта при средних грунтовых условиях. Согласно Строительным нормам и правилам, к средним грунтовым условиям относятся глины, суглинки, пески, супеси при положении уровня грунтовых вод глубже 8м от поверхности Земли, а также крупнообломочные грунты при положении уровня грунтовых вод от 6 до 10 м от поверхности Земли. В СССР общая площадь сейсмоопасных районов составляет 28,6% территории страны (в т. ч. на 9-балльные районы приходится 2,4%, на 8-балльные - 3,2%). районы возможных 9-балльных землетрясений находятся в Средней Азии, Прибайкалье, Камчатке, Курильских островах и др.; 8-балльные районы - в Молдавии, Крыму, на Кавказе, в Южной Сибири и др.

Сейсмическое микрорайонирование выполняется с целью уточнения характеристик сейсмической опасности на основании данных инженерно-сейсмологическихисследований об очагах землетрясений с эпицентрами, удаленными на расстояние до 100 км от участка строительства, о сейсмическом режиме строительных площадок, о сейсмических свойствах изучаемой толщи грунта, о геоморфологических условиях участка строительства и влиянии погребенных разрывных тектонических структур на сейсмическое воздействие.

Основной геологической задачей является проведение полевых сейсмических исследований для количественной оценки относительных изменений (приращений) сейсмической интенсивности.

Сейсмическое микрорайонирование включает следующие виды работ :

· изучение материалов ранее выполненных исследований по инженерной геологии, сейсмотектонике и сейсмичности региона, а также данных общихинженерно-геологических изысканий и аэрокосмического зондирования участка строительства;

· визуальные сейсмотектонические и макросейсмические обследования на участке строительства и прилегающей территории;

· геологические, геодезические, геофизические и геохимические работы;

· комплексный анализ всей совокупности полученных данных, оформленный в виде сводного отчета, включающего карту (схему) сейсмического микрорайонирования участка строительства.

В результате выполнения работ по сейсмическому микрорайонированию определяются коэффициенты к параметрам колебаний грунта (ускорению, скорости, перемещению), соответствующим исходной сейсмичности района строительства. Эти коэффициенты учитывают сейсмотектоническую обстановку в районе строительства (Kс.т), сейсмический режим (Kс.р), местные инженерно-геологические условия (Кгр) и рельеф местности (Кр.м).

19. Рельеф поверхности Земли и его связь с тектоническими движениями.

Высота поверхности в пределах материков меняется от нескольких десятков метров над уровнем моря, до нескольких километров – уходящих далеко в небо снежных пиков Гималаев. Самое характерное для строения поверхности – это резкое сочленение разновысотных областей. Океаны и материки. Горные системы – Гималаи, Кордильеры, Альпы, Кавказ, Тянь-Шань и другие – четко обособленными глыбами возвышаются над окружающими их плоскогорьями или низменностями. Не менее резко разграничиваются между собой плоскогорья и низменности, например, области пустынь Восточной Австралии с высотами до 1500м и прилегающая к ней с востока низменность с отметками, редко превышающими 100м, граничит вдоль линии проходящей почти через весь континент в северо-восточном направлении.

Сочетание разновысотных областей настолько яркая черта, что если взглянуть на физическую карты мира, то материки представятся в виде мозаики, состоящей из участков различных форм и размеров, различных оттенков зелёного и коричневого цвета. В глобальном плане выделяются самые крупные единицы, такие как Гималаи, Кордильеры, Урал, Тянь-Шань, Западно-Сибирская низменность. Каждая из этих единиц в свою очередь состоит из обособленных разновысотных участков – отдельных хребтов, межгорных впадин, плоскогорий и пр.

И так, рельеф. Слово это произошло от французского relief – выпуклость. Оно весьма точно отражает вложенное в него содержание. В самом деле, несмотря на множество различных типов рельефа поверхности, главной, определяющей его чертой будет общий гипсометрический уровень (т. е. абсолютная высота, высота над уровнем моря) области в целом и относительная разница высот её отдельных участков. Важны также форма и размеры этих участков, характер их перехода, иными словами, то или иное их сочетание.

Первой научной гипотезой, трактующей образование рельефа взаимосвязано с развитием земной коры, была контракционная. Исходя из предпосылок этой гипотезы, затвердевшая земная кора подверглась различным механическим дислокациям в связи с уменьшением объёма внутренних частей планеты по мере их охлаждения. Возникли складки (горы), разрывы и пр.

В настоящее время мировой популярностью пользуется гипотеза тектоники плит. Согласно этой гипотезе, движение материков и отдельных плит земной коры приводит к нагромождению масс земной коры в определённых зонах – в краевых частях плит или при их сопряжении. Так, например, возникновение Гималаев трактуется как результат сближения Азии и Индостанского полуострова.

Рельеф поверхности, который мы наблюдаем, формировался в течение чрезвычайно длительного времени. При этом он обязан взаимодействию двух разнонаправленных сил: внутренних – эндогенных и внешних – экзогенных. Первые реализуются посредствам тектонических процессов, приводящих, какова бы ни была их природа, к возникновению первичных контрастных форм поверхности. Эндогенное рельефообразование в равной степени мажет характеризоваться и воздыманиями, и опусканиями.

Экзогенные силы направлены уже на сглаживание контрастных форм поверхности возвышенности под воздействием атмосферных процессов и водных потоков разрушаются, впадины заполняются сносимым материалом. Экзогенные силы действуют непрерывно как во время формирования тектонического рельефа, так и позднее. Экзогенные факторы начинают преобладать над эндогенными лишь только, когда тектонические процессы становятся менее активными или совершенно затухают.

Итак, разновысотная мозаика поверхности планеты обязана формам тектонического рельефа.

20. Виды воды в горных породах (грунтах) и их влияние на состояние и свойства горных пород.

Подземные воды подразделяют: по характеру их использования - хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные; по условиям залегания в земной коре

21. Понятие подземные воды. Происхождение подземных вод.

Подземные воды образуются преимущественно путем инфиль-трации. Атмосферные осадки, речные и другие воды за счет гравитации просачиваются по крупным порам и трещинам пород. На глубине они задерживаются на водоупоре, возникают горизонты подземных вод. Количество воды зависит от многих факторов: характера рельефа, состава и водопроницаемости грунтов, климата, растительного покрова, деятельности человека.

Воды земной коры постоянно пополняются ювенильными водами, возникшими в глубине земли с выходом на поверхность Земли в виде паров и горячих источников при вулканической деятельности. В зонах замедленного водообмена образуются минерализованные (соленые) воды так называемого седиментационного происхождения из древних морских осадков в начале геологической истории земной коры.

. Подземные воды подразделяют: по характеру их использования - хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные; по условиям залегания в земной коре (рис. 52) - верховодки, грунтовые, межпластовые, трещинные, карстовые, вечной мерзлоты. В инженерно-геологических целях подземные воды классифицируют по гидравлическому признаку – безнапорные и напорные.

22. Физические и химические свойства подземных вод, их жесткость, агрессивность.

При гидрогеологических исследованиях определяются следующие главнейшие физические свойства подземных вод: температура, цвет, прозрачность, вкус, запах и удельный вес.
Температура подземных вод изменяется в широких пределах. В высокогорных районах и в области распространения многолетней мерзлоты она низкая; высокоминерализованные воды местами имеют даже отрицательную температуру (-5° С и ниже). В районах молодой вулканической деятельности, а также в местах выходов гейзеров (Камчатка, Исландия и др.) температура воды иногда превышает 100° С. Температура неглубоко залегающих подземных вод. В средних широтах обычно изменяется в пределах 5-12° С и обусловливается местными климатическими (в основном) и гидрогеологическими условиями.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Осадочные горные породы образуются на поверхности земной коры из продуктов физического и химического выветривания ранее существовавших горных пород, а также из химических и органических осадков. Мощность их колеблется от нескольких дециметров до сотен метров, а в прогибах земной коры (геосинклиналях) достигает нескольких километров. Образование осадочных горных пород происходит по схеме: разрушение > перенос > накопление (осаждение) > диагенез (образование горной породы).

По месту образования осадочные горные породы подразделяются на континентальные, морские и лагунные; по способу образования делятся на обломочные, глинистые, химические и органогенные. Породы химического и органического происхождения часто тесно связаны между собой и образуют группу биохимических пород.

Осадочные горные породы имеют специфические виды структуры и текстуры. Из структур выделяют:

  • 1. Оолитовая - характерна тем, что в плотной массе встречаются шарики более менее округлой формы. Такую структуру часто имеют бокситы.
  • 2. Плотная - характерна для яшмы, зерна неразличимы.
  • 3. Землистая - породы с такой структурой напоминают рыхлую почву, растираются пальцами. К ним относятся глина, мел, мергель, лесс.
  • 4. Обломочная - представляет собой породы состоящие из обломков, которые сцементированы плотной массой. Это конгломерат, брекчия, песчаник.

Из текстур выделяются:

  • 1. Беспорядочная - материал расположен без всякого порядка, как бы перемешан (конгломерат).
  • 2. Слоистая - порода состоит как бы из слоев минерала (мергель).
  • 3. Листоватая - порода разделяется на тонкие пластины (глинистые).

Обломочные породы (кластические).

Обломочные породы состоят из продуктов непосредственного разрушения исходных пород. Они могут быть рыхлыми или сцементированными. Классификация обломочных горных пород зависит от величины и формы обломков.

По величине обломков выделяют следующие классы этих пород:

  • 1. крупнообломочные породы, или псефиты (в переводе с греческого «псефос» - камешек), диаметр обломков более 2 мм;
  • 2. среднеобломочные породы, или псаммиты («псаммос», греч. - песок), диаметр обломков от 0,05 мм до 2 мм;
  • 3. мелкообломочные (пылеватые) породы, или алевриты («алеврон», греч. - мука), диаметр обломков 0,05-0,005 мм.

Крупнообломочные породы (псефиты) состоят из обломков различного петрографического и минералогического состава размером от 2мм до нескольких метров в диаметре.

Неокатанные угловатые обломки (глыбы, щебень, дресва) образуются при механическом разрушении пород и называются элювием. Они часто накапливаются у подножий горных склонов.

Окатанные обломки горных пород (валуны, галька, гравий) встречаются среди аллювиальных отложений, широко распространены среди ледниковых и водно-ледниковых наносов.

Щебень и дресва, сцементированные природными цементами, называются брекчиями. Сцементированные окатанные обломки (галечник, гравий), называются конгломератами. В качестве природных цементов выступают глинистые, карбонатные, кремнистые, железистые соединения.

Среднеобломочные породы (псаммиты) в рыхлом состоянии называются песками. В зависимости от размера зерен пески подразделяются на грубозернистые (1-2 мм), крупнозернистые (0,5-1 мм), среднезернистые (0,25-0,5 мм) и мелкозернистые (0,05-0,25 мм).

Если пески состоят из одного минерала, то они называются мономинеральными (кварцевые пески); из двух - олигомиктовые (кварцево-глауконитовые); из трех - полимиктовые (аркозовые пески из кварца, полевого шпата и слюды).

Сцементированные пески называются песчаниками. В зависимости от состава цемента различают песчаники глинистые, известковатые, железистые, кремнистые. Наибольшую прочность имеют кремнистые песчаники, состоящие их кварцевых зерен. Глинистые песчаники легко размокают. Цвет песков и песчаников зависит от цвета минеральных зерен и цвета цементирующего вещества.

Мелкообломочные породы (алевриты) с размеров зерен от 0,005 до 0,05 мм представляют собой тонкозернистые пылевидные породы морского, речного, водно-ледникового и эолового происхождения. Представителями алевритовых пород являются лессы, покровные пылеватые суглинки и супеси. Сцементированные алевриты, преимущественно известковистым и кремнистым цементом, называются алевролитами. Они слабо размокают в воде и являются полускальными породами.

Глинистые породы (пелиты). «Пэлес» в переводы с греческого - глина. Пелиты состоят из частиц размером менее 0,005 мм. Типичным представителем этих пород является глина, которая во влажном состоянии пластична, при высыхании твердеет и при обжиге приобретает твердость камня.

В их состав входят глинистые минералы каолинит, монтмориллонит, а также кварц, полевые шпаты, слюды, гидрослюды, халцедон, опал, гидроокислы железа. Каолинитовые глины имеют белый цвет и образуют глинистые породы каолиниты.

Каолинит (каолин) - глинистая порода с землистой структурой, пористой или листоватой текстурой. Твердость 1, жадно поглощает воду.

К этим породам относят также и бокситы, хотя их иногда причисляют и к окислам алюминия.

Боксит (Al2O3?nH2O) - горная порода осадочного происхождения. структура аморфная, землистая, часто оолитовая (состоит из мелких шариков концентрически скорлуповатого строения).

Каолиниты и монтмориллониты относятся к жирным глинам, а примеси кварца, халцедона, опала, окислов железа делают глину тощей. Глины, состоящие из каолинита, гидратов окиси алюминия и слюды, называются огнеупорными (температура плавления около 1700°С). Монтмориллонитовые глины обладают высокой поглотительной способностью.

Плотные дегидротизированные и сцементированные чаще всего кремнеземом глинистые породы, не размокающие в воде, называются аргиллитами.

В природе часто встречаются смешанные песчано-глинистые породы, которые называют супесями и суглинками. Супеси содержат от 10 до 20% глинистых частиц, а суглинки - от 20 до 50%.

Химические осадочные породы.

Химические осадочные породы образовались в результате выпадения солей из водных растворов или в результате различных химических реакций в земной коре. По химическому составу среди этих пород принято выделять карбонатные, галоидные, сульфатные, кремнистые, железистые и фосфатные. К карбонатным породам относятся известняки, доломиты, мергели и известковые туфы.

Известняки химического происхождения не менее чем органогенные состоят из кальцита выпавшего из воды. Известняки химического происхождения встречаются часто, но их трудно отличить от других разновидностей, особенно после перекристаллизации. Структура кристаллически-зернистая, текстура массивная, слоистая. Окраска различная, часто белая, с примесями желтоватая, серая различных оттенков. Бурно вскипают с HCl.

Типичными представителями известняков химического происхождения являются известковые туфы (травертины), образующиеся на суше в результате выпадения извести из вод некоторых источников. Они обычно светло-серого цвета, пористого строения.

По условиям образования различают пресноводные известняки, залегающие среди континентальных песчано-глинистых отложений, известняки солоноватых бассейнов и морские известняки. Они широко применяются в строительстве, при производстве вяжущих материалов, в металлургии, в полиграфическом производстве, в сельском хозяйстве.

Доломиты. К доломитам относятся карбонатные осадочные породы, состоящие не менее чем на 90% из минерала доломита. Для доломитов характерна примесь минералов (кальцит, гипс, флюорит, магнезит, окислы железа, кремнезем и др.), выпавших из раствора при образовании осадка или в процессе диагенеза. Окраска доломитов светлая с сероватыми, желтоватыми, красноватыми и зеленоватыми оттенками. Структура кристаллически-зернистая, текстура массивная иногда пористая. Доломиты тверже известняка. Прочность 120-130 МПа, твердость 3,5-4, блеск стеклянный. Не вскипают бурно с HCl, а только в порошке.

Добываются на Урале, Кавказе и в Забайкалье. Применяются при производстве цементов, в стекольной и керамической промышленности, при изготовлении огнеупорных изделий, в качестве флюса в черной металлургии, для получения магния и для изготовления бута, щебня и облицовочного камня.

Мергель. К мергелям относятся осадочные горные породы, переходные от известняков и доломитов к глинистым породам. Они содержат от 30 до 50 % глинистых частиц. Цвет серый, белый, коричневато-желтый. Текстура часто слоистая, иногда массивная, структура тонкозернистая. Вскипает под действием HCl, если на него подышать, то пахнет глиной.

Используются мергели как цементное сырье, для некоторых разностей требуется лишь обжиг и последующий размол.

Галоидные породы.

Галоидные породы представляют собой типичные химические осадки. Выпадение их из растворов происходит в замкнутых водных бассейнах, мелководных заливах и соляных лагунах вследствие интенсивного испарения. К ним относятся каменная соль, карналлит, сильвинит и др.

Каменная соль или галит (NaCl). Осадочные пласты каменной соли достигают мощности 10-15 м. Добывается каменная соль в Соликамске, Оренбурге и на Донбассе. В сложных соленых толщах нижние горизонты сложены ангидритовой породой, выше следует горизонт каменной соли, а зона калийных и калийно-магниевых солей располагается в верхних частях разреза, иногда перекрываясь каменной солью.

Карналлит (MgCl2?KCl?6H2O). Откладывается в верхних частях соляных отложений. Хлористые соли калия и магния начинают выпадать при солености воды 32-35 ‰ и более. Используется в сельском хозяйстве и химической промышленности.

Сильвинит (KCl). Также откладывается в верхних частях соляных залежей. Применяется как удобрение и в химической промышленности.

Сульфатные породы.

Эти породы образуют характерную группу химических осадочных пород, состоящих из сульфатных соединений натрия и кальция. К числу наиболее распространенных пород этого типа относятся гипсы ангидриты и мирабилиты.

Гипс (CaSO4?2H2O) и ангидрит (CaSO4). Эти породы откладываются в нижних горизонтах соляных залежей. Гипс и ангидрит начинают выпадать при солености воды 13-15‰, залежи образуют пласты до 100 и более метров. Используются в строительстве, химической, бумажной промышленности, в медицине и в сельском хозяйстве.

Мирабилит (Na2SO4?10H2O) - глауберова соль. Образуется в заливе Кара-Богаз-Гол Каспийского моря. Выпадает в зимнее время из воды при температуре ниже - 33°С. Образует пластовые залежи в верхних частях разреза. Используется в медицине, стекольном производстве и для изготовления соды.

Кремнистые породы.

К кремнистым породам химического происхождения относятся гейзериты, кремнистые туфы (сланцы) холодных вод, яшмы и др. Яшмы и кремнистые сланцы обычно обладают скрытокристаллической или гелевой структурой. Текстуры бывают массивные и слоистые.

Яшмы - твердые, непрозрачные породы с раковистым изломом, состоящие из кремнезема (кварц, халцедон). Порода пестрая, полосчатая или пятнистая, окрашенная окислами марганца и железа в красный, желтый, коричневый и зеленый цвета. Используются как прекрасный поделочный материал.

Фосфоритные породы.

Фосфоритные породы представляют собой различные осадочные горные породы (песчаники, глины, мергели), обогащенные фосфатами кальция, содержание P2O5 в фосфоритах составляет 12-40%. В качестве примесей в фосфоритах встречаются примеси кварца, кальцита, глауконита, остатки радиолярий, диатомий и др. Фосфориты образуются в морях, озерах и болотах. Морские пластовые и желваковые фосфориты выпадают в виде химического осадка на глубинах от 50 до 150 м и образуют залежи мощностью до 10-15 м (пластовые фосфориты хребта Каратау, Брянские желваковые фосфориты). Используются фосфориты для получения фосфорных удобрений.

Органогенные породы.

Органогенные породы подразделяются на зоогенные - происхождение связано с деятельностью организмов и фитогенные - образованные растительным веществом (торф, уголь). Все породы, зоогенные и фитогенные в свою очередь делятся на три класса - карбонатные, кремнистые и углеродистые или каустоболиты.

Карбонатные породы.

Известняк-ракушечник. Органогенные известняки состоят из известковых скелетов и остатков раковин животных и растений. В зависимости от преобладания остатков тех или иных организмов различают известняки криноидные (из скелетов морских лилий), фузулиновые (из корненожек - фузулин),нуммулитовые (раковины в виде монеты), мшанковые, коралловые и др. Известняки, состоящие из целых раковин, называются ракушечниками, а из битых раковин - детритусовыми известняками. Структура известняков микрозернистая, оолитовая и может быть обломочная, текстура чаще пористая. Они имеют значительную прочность и используются как строительный материал. Распространены известняки в самых различных условиях. известны пресноводные известняки, но преобладают морские известняки (Крым, Черное море, Азовское море).

Мел. К органическим известнякам относится и мел, состоящий на 96-99% из мелких частиц порошкового кальцита, панцирей микроскопических морских водорослей и мельчайших раковин фораминифер. Это однородная белая слабосцементированная порода. Имеет землистую структуру. Вскипает сHCl. Твердость меньше 1. Используется в стекольной, резиновой, бумажной промышленности; при производстве цемента, сахара, соды; а также при известковании почв в сельском хозяйстве.

Кремнистые породы.

Кремнистые породы органогенного происхождения состоят преимущественно из кремнезема. К ним относятся диатомиты, трепелы и опоки.

Диатомиты состоят из рыхлых или сцементированных опаловых микроскопических скелетов диатомовых водорослей, которые в трепелах обычно разрушены. Это белые или желтоватые пористые мягкие и легкие породы с объемной массой от 0,4 до 1,4. Диатомиты жадно поглощают воду. Обладают хорошей тепло- и звукоизоляцией. Применяются также для очисти сахарных сиропов, минеральных и растительных масел. Встречаются в Поволжье, в Самарской, Калужской и Смоленской областях.

Трепел состоит из микроскопических округлых зерен опала (0,01-0,001 мм) с небольшой примесью скорлупок диатомовых водорослей и остатков кремнистых скелетов радиолярий и губок. Существует мнение, что это измененные диатомиты, так как очень на них похожи. Цвет породы белый, желтый, бурый, светло- и темно-серый. Порода легкая, жадно поглощает воду. Огнеупорен, хороший тепло- и звукоизолятор. Залегает обычно в отложениях нижнемелового периода в Белоруссии, в Калужской и Смоленской областях.

Опока представлена твердыми пористыми образованиями сложенными тонкозернистым опалом (до 90 %), часто с примесью створок диатомий, радиолярий, игл губок. Опоки окрашены обычно в темный цвет, но при выветривании светлеют и становятся белыми и серыми. Напоминают трепел, но обычно более твердые и при ударе раскалываются с характерным звенящим звуком. Излом раковистый, твердость 3-5. прочность при сжатии 30-50 МПа. Породы имеют пористую текстуру и очень морозостойкие. Возможно, что по происхождению опоки являются измененными трепелами и диатомитами. Залегают в меловых отложениях Нижнего и Среднего Поволжья.

Каустобиолиты.

Углеродистыми породами или каустобиолитами называются горючие ископаемые горные породы органического происхождения (греч. каустикос - горючий, биос - жизнь, литос - камень). К каустобиолитам относятся: торф, ископаемые угли, горючие сланцы, нефть и продукты ее преобразования (битум, асфальт, озокерит), а также горючие газы.

Процесс образования торфа из органических остатков происходит в течение тысячелетий, а образование углей из торфа растягивается на миллионы лет. Из остатков тканей высших растений образуются гумусовые угли (лат. гумус - земля), а из остатков животных и растительных организмов - сапропелевые угли (греч. сапрос - гнилой, пелос - ил; гнилой ил).

Торф образуется из перегнивших и обуглившихся растительных остатков, содержащих 35-59 % углерода, в условиях избыточной влажности и затрудненного доступа воздуха. Порода рыхлая, коричневого, коричнево-бурого и черного цвета. Сохраняет явные признаки растительных остатков. Структура землистая, текстура слоистая.

Используется торф как топливо и органическое удобрение. Из него получают горючие газы и аммиак.

Бурый уголь - плотная темно-бурая порода, содержащая около 70% углерода. Это промежуточное образование между торфом и каменным углем. Бурый уголь имеет бурую черту, землистый, реже раковистый излом и небольшую (около 1) твердость. Используется в основном как топливо.

Каменный уголь. Черная слоистая порода с содержанием углерода до 85%. Каменный уголь очень хрупкий, твердость 1-2,5. Блеск жирный, излом раковистый. Используется как топливо.

Антрацит. Образуется из бурых углей. Каменный уголь получается из бурого угля при повышенном давлении и температуре 300-325°С, а антрацит при повышении температуры до 500°С. Это тяжелые (плотность 1,4-1,7) черные, часто с сероватым оттенком, с сильным металлическим блеском угли, с содержанием углерода до 95%. Твердость около 3, с достаточно высокой прочностью. Залегает часто пластами, используется как топливо и для получения коксующихся углей в металлургии.

Горючие сланцы. Это сланцевые или мергелистые породы темно-серого цвета, содержащие битум и ил, а также примеси. Имеют меньшую теплотворную способность, чем угли. Используются как топливо, а также для перегонки на масла и газ.

Нефть. Маслянистая жидкость от беловато-желтого до темно-коричневого цвета, состоящая из смеси жидких и газообразных углеводородов. Нефть образуется из сапропели при полном разложении органического вещества, происходящего в условиях наиболее затруднительного доступа кислорода. Залегает нефть в пористых или трещиноватых породах (пески, песчаники, известняки), заключенных среди непроницаемых (чаще глинистых) слоев. Это основной энергетический продукт, значение которого трудно переоценить.

Битуминозные породы - с рассеянной в них нефтью, по большей части находящейся в окисленном (сгущенном) виде. Порода темного цвета с запахом битума, который усиливается при ударе. Часто накопление битумов происходит с отложением илов, в результате образуются горючие сланцы.

Озокерит - горный воск, является продуктом полимеризации и уплотнения нефти. Элементарный состав близок к составу парафина. Порода мягкая, пластичная, от желтого до темно-бурого цвета. Температура плавления от 50 до 80°С. Применяется в медицине.

Асфальт - порода более твердая, вязкая, почти черного цвета. Состоит из смеси масел, смол и асфальтов. Температура размягчения от 20-30 до 80-100°С. Состоит из углерода (80-85%) и водорода (9-10%). Применяется в дорожном строительстве.