Как выводить формулы по физике из формулы. Как выводить формулы по физике. Союз с математикой

ОПРЕДЕЛЕНИЕ

Оксид углерода (IV) (углекислый газ) в обычных условиях представляет собой бесцветный газ, тяжелее воздуха, термически устойчивый, а при сжатии и охлаждении легко переходящий в жидкое и твердое («сухой лед») состояния.

Строение молекулы изображено на рис. 1. Плотность - 1,997 г/л. Плохо растворяется в воде, частично реагируя с ней. Проявляет кислотные свойства. Восстанавливается активными металлами, водородом и углеродом.

Рис. 1. Строение молекулы углекислого газа.

Брутто-формула углекислого газа - CO 2 . Как известно, молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Mr(CO 2) = Ar(C) + 2×Ar(O);

Mr(CO 2) = 12 + 2×16 = 12 + 32 = 44.

ОПРЕДЕЛЕНИЕ

Молярная масса (М) - это масса 1 моль вещества.

Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что молярная масса углекислого газа равна 44 г/моль .

Молярную массу вещества в газообразном состоянии можно определить, используя понятие о его молярном объеме. Для этого находят объем, занимаемый при нормальных условиях определенной массой данного вещества, а затем вычисляют массу 22,4 л этого вещества при тех же условиях.

Для достижения данной цели (вычисление молярной массы) возможно использование уравнения состояния идеального газа (уравнение Менделеева-Клапейрона):

где p - давление газа (Па), V - объем газа (м 3), m - масса вещества (г), M - молярная масса вещества (г/моль), Т - абсолютная температура (К), R - универсальная газовая постоянная равная 8,314 Дж/(моль×К).

Примеры решения задач

ПРИМЕР 1

Задание Составьте формулу соединения меди с кислородом, если соотношение масс элементов в нём m(Cu) : m(O) = 4:1.
Решение

Найдем молярные массы меди и кислорода (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел). Известно, что M = Mr, значит M(Сu) = 64 г/моль, а М(O) = 16 г/моль.

n (Cu) = m (Cu) / M (Cu);

n (Cu) = 4 / 64 = 0,0625 моль.

n (О) = m (О) / M (О);

n (О) = 1 / 16 = 0,0625 моль.

Найдем мольное отношение:

n(Cu) :n(O) = 0,0625: 0,0625 = 1:1,

т.е. формула соединения меди с кислородом имеет вид CuO. Это оксид меди (II).

Ответ CuO

ПРИМЕР 2

Задание Составьте формулу соединения железа с серой, если соотношение масс элементов в нём m(Fe):m(S) = 7:4.
Решение Для того, чтобы узнать, в каких отношениях находятся химические элементы в составе молекулы необходимо найти их количество вещества. Известно, что для нахождения количества вещества следует использовать формулу:

Найдем молярные массы железа и серы (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Известно, что M = Mr, значит M(S) = 32 г/моль, а М(Fe) = 56 г/моль.

Тогда, количество вещества этих элементов равно:

n (S) = m (S) / M (S);

n (S) = 4 / 32 = 0,125 моль.

n (Fe) = m (Fe) / M (Fe);

n (Fe) = 7 / 56 = 0,125 моль.

Найдем мольное отношение:

n(Fe) :n(S) = 0,125: 0,125 = 1:1,

т.е. формула соединения меди с кислородом имеет вид FeS. Это сульфид железа (II).

Ответ FeS

Инструкция

Откуда берутся физические формулы ? Упрощенно схему получения формул можно представить так: вопрос, выдвигаются гипотезы, проводится серия экспериментов. Результаты обрабатываются, возникают конкретные формулы , и это дает начало новой физической теории либо продолжает и развивает уже имеющуюся.

Уясните физику рассматриваемого процесса. Какими параметрами он описывается, и как эти параметры меняются на протяжении времени? Зная основные определения и понимая физику процесса, легко получить формулы . Как правило, между величинами или квадратами величин устанавливаются прямо пропорциональные или обратно пропорциональные зависимости, вводится .

Путем математических преобразований можно из первичных формул вывести вторичные. Если вы научитесь делать это легко и быстро, последние можно будет не запоминать. Основной метод преобразований – метод подстановки: -либо величина выражается из одной формулы и подставляется в другую. Важно лишь, чтобы эти формулы соответствовали одному и тому же процессу или явлению.

Также уравнения можно складывать между собой, делить, перемножать. Функции по времени очень часто интегрируют или дифференцируют, получая новые зависимости. Логарифмирование подойдет для функций. При выводе формулы опирайтесь на результат, который вы хотите в итоге получить.

Источники:

  • вывести из формулы

Вся человеческая жизнь окружена множеством разнообразных явлений. Ученые-физики занимаются изучением этих явлений; их инструментарием выступают математические формулы и достижения предшественников.

Природные явления

Изучение природы помогает разумней относиться к имеющимся ресурсам, открывать новые источники энергии. Так, геотермальные источники обогревают почти всю Гренландию. Само слово « » восходит к греческому корню «физис», «природа». Таким образом, сама физика - наука и природных явлениях.

Вперед, в будущее!

Часто физики в прямом смысле «опережают время», открывая законы, которые находят применение лишь десятками лет (и даже столетиями) позже. Никола Тесла открывал законы электромагнетизма, которые находят применение в наши дни. Пьер и Мария Кюри практически без поддержки, в немыслимых для современного ученого условиях. Их открытия помогли спасти десятки тысяч жизней. Сейчас физики всего мира сконцентрированы на вопросах Вселенной (макрокосмос) и мельчайших частиц вещества (нанотехнологии, микрокосмос).

Понимание мира

Важнейшим двигателем человечества является любознательность. Вот почему эксперименты в Большом Андронном Коллайдере имеют такую высокую значимость и спонсируются союзом из 60 государств. Имеется реальная возможность раскрыть тайны человечества.

Бывает и наоборот - толкают математиков на создание гипотез и нового логического аппарата. Связь физики и математики - одной из важнейших научных дисциплин подкрепляет авторитет физики.

Воспользовавшись записью первого начала термодинамики в дифференциальной форме (9.2), получим выражение для теплоёмкости произвольного процесса:

Представим полный дифференциал внутренней энергии через частные производные по параметрам и :

После чего формулу (9.6) перепишем в виде

Соотношение (9.7) имеет самостоятельное значение, поскольку определяет теплоёмкость в любом термодинамическом процессе и для любой макроскопической системы, если известны калорическое и термическое уравнения состояния.

Рассмотрим процесс при постоянном давлении и получим общее соотношение между и .

Исходя из полученной формулы, можно легко найти связь между теплоемкостями и в идеальном газе. Этим мы и займемся. Впрочем, ответ уже известен, мы его активно использовали в 7.5.

Уравнение Роберта Майера

Выразим частные производные в правой части уравнения (9.8), с помощью термического и калорического уравнений, записанных для одного моля идеального газа. Внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма газа, следовательно

Из термического уравнения легко получить

Подставим (9.9) и (9.10) в (9.8), тогда

Окончательно запишем

Вы, надеюсь, узнали (9.11). Да, конечно, это уравнение Майера. Еще раз напомним, что уравнение Майера справедливо только для идеального газа.

9.3. Политропические процессы в идеальном газе

Как отмечалось выше первое начало термодинамики можно использовать для вывода уравнений процессов, происходящих в газе. Большое практическое применение находит класс процессов, называемых политропическими. Политропическим называется процесс, проходящий при постоянной теплоемкости .

Уравнение процесса задается функциональной связью двух макроскопических параметров, описывающих систему. На соответствующей координатной плоскости уравнение процесса наглядно представляется в виде графика - кривой процесса. Кривая, изображающая политропический процесс, называется политропой. Уравнение политропического процесса для любого вещества может быть получено на основе первого начала термодинамики с использованием его термического и калорического уравнений состояния. Продемонстрируем, как это делается на примере вывода уравнения процесса для идеального газа.

Вывод уравнения политропического процесса в идеальном газе

Требование постоянства теплоёмкости в процессе позволяет записать первое начало термодинамики в виде

Используя уравнение Майера (9.11) и уравнение состояния идеального газа, получаем следующее выражение для


Разделив уравнение (9.12) на T и подставив в него (9.13) придем к выражению

Разделив () на , находим

Интегрированием (9.15), получаем

Это уравнение политропы в переменных

Исключая из уравнения () , с помощью равенства получаем уравнение политропы в переменных

Параметр называется показателем политропы, который может принимать согласно () самые разные значения, положительные и отрицательные, целые и дробные. За формулой () скрывается множество процессов. Известные вам изобарный, изохорный и изотермический процессы являются частными случаями политропического.

К этому классу процессов относится также адиабатный или адиабатический процесс . Адиабатным называется процесс, проходящий без теплообмена (). Реализовать такой процесс можно двумя способами. Первый способ предполагает наличие у системы теплоизолирующей оболочки, способной изменять свой объем. Второй – заключается в осуществлении столь быстрого процесса, при котором система не успевает обмениваться количеством теплоты с окружающей средой. Процесс распространения звука в газе можно считать адиабатным благодаря его большой скорости.

Способов выведения неизвестной из формулы много, но как показывает опыт работы – все они малоэффективны. Причина: 1. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. 2. Физики, математики, химики – люди, которые говорят на разных языках, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста и др.) В статье рассмотрен простой алгоритм, позволяющий в один прием , без многократного переписывания выражения сделать вывод искомой формулы. Его можно мысленно сравнить с раздеванием человека (справа от равенства) в шкаф (слева): нельзя снять рубашку, не снимая пальто или: то, что первым одевают, последним снимают.

Алгоритм:

1. Записать формулу и разобрать прямой порядок выполняемых действий, последовательность вычислений: 1) возведение в степень, 2) умножение – деление, 3) вычитание – сложение.

2. Записать: (неизвестное) = (переписать обратную часть равенства) (одежда в шкафу (слева от равенства) осталась на месте).

3. Правило преобразования формул: последовательность переноса параметров через знак равенства определяется обратной последовательностью вычислений . Найти в выражении последнее действие и перенести его через знак равенства первым . Поэтапно, находя последнее действие в выражении, перенести сюда из другой части равенства (одежду с человека) все известные величины. В обратной части равенства выполняются обратные действия (если брюки снимают - «минус», то в шкаф укладывают - «плюс»).

Пример: hv = hc / λ m + 2 /2

Выразить частоту v :

Порядок действий: 1. v = переписываем правую часть hc / λ m + 2 /2

2. Разделим на h

Итог: v = ( hc / λ m + 2 /2) / h

Выразить υ m :

Порядок действий: 1. υ m = переписать левую часть (hv ); 2. Последовательно переносим сюда с обратным знаком: (- hc m ); (*2 ); (1/ m ); ( или степень 1/2 ).

Почему сначала переносится (- hc m ) ? Это последнее действие в правой части выражения. Поскольку вся правая часть умножается на (m /2 ), то и вся левая часть делится на данный множитель: поэтому ставятся скобки. Первое действие в правой части – возведение в квадрат, переносится в левую часть последним.

Эту элементарную математику с порядком действий при вычислениях каждый ученик отлично знает. Поэтому все учащиеся довольно легко, без многократного переписывания выражения , сразу выводят формулу для вычисления неизвестного.

Итог: υ = (( hv - hc m ) *2/ m ) 0.5 ` (или пишут квадратный корень вместо степени 0,5 )

Выразить λ m :

Порядок действий: 1. λ m = переписать левую часть (hv ); 2.Вычесть ( 2 /2 ); 3. Разделить на (hc ); 4. Возвести в степень (-1 ) (Математики обычно меняют числитель и знаменатель искомого выражения.)