Мировой океан и его состав. Мировой океан. Явления в Мировом океане

Общие сведения. Площадь Мирового океана - 361 млн км/кв. В северном полушарии Мировой океан занимает 61%, а в южном - 81% площади полушарий. Для удобства земной шар изображают в виде так называемых карт полушарий. Выделяют карты Северного, Южного, Западного и Восточного полушарий, а также карты полушарий океанов и материков (рис. 7). В океанических полушариях 95,5% площади занимает вода.

Мировой океан: строение и история исследования. Мировой океан един, он нигде не прерывается. Из любой его точки можно попасть в любую другую, не пересекая сушу. По мнению ученых, термин океан заимствован у финикиян и в переводе с древнегреческого языка означает «великая река, опоясывающая Землю».

Термин «Мировой океан» ввел в обиход русский ученый Ю.М. Шокальский в 1917 году. В редких случаях вместо термина «Мировой океан» используют термин «океаносфера».

Карта полушарий графических открытий, которой охватывают океанов период со второй половины XV века до первой половины XVII века. Великие географические открытия связаны с именами X. Колумба, Дж. Кабота, Васко да Гамы, Ф. Магеллана, Дж. Дрейка, А. Тасмана, А. Веспуччи и др. Благодаря выдающимся мореплавателям и путешественникам человечество узнало немало интересного о Мировом океане, о его очертаниях, глубине, солености, температурном режиме и т. д.

Целенаправленные научные исследования Мирового океана были начаты в XVII веке и связаны с именами Дж. Кука, И. Крузенштерна, Ю. Лисянского, Ф. Беллинсгаузена, Н. Лазарева, С. Макарова и др. Весомый вклад в изучение Мирового океана внесла океанографическая экспедиция на корабле «Челленджер». Результаты, полученные экспедицией «Челленджера», заложили основу новой науки - океанографии.

В XX веке исследование Мирового океана осуществляется на основе международного сотрудничества. Начиная с 1920 года ведутся работы по измерению глубин Мирового океана. Выдающийся французский исследователь Жан Пикар в 1960 году первым опустился на дно Марианской впадины. Немало интересных сведений о Мировом океане собрала команда знаменитого французского исследователя Жака Ива Кусто. Ценную информацию о Мировом океане дают космические наблюдения.

Строение Мирового океана. Мировой океан, как известно, условно разделен на отдельные океаны, моря, заливы и проливы. Каждый океан представляет собой обособленный природный комплекс, обусловленный географическим положением, своеобразием геологического строения и населяющими его биоорганизмами.

Мировой океан в 1650 году был впервые разделен голландским ученым Б. Варениусом на 5 частей, которые в настоящее время утвердил Международный океанографический комитет. В составе Мирового океана выделяют 69 морей, в том числе 2 на суше (Каспийское и Аральское).

Геологическое строение. Мировой океан состоит из крупных литосферных плит, которые, за исключением Тихоокеанской, названы по имени материков.

На дне Мирового океана встречаются речные, ледниковые и биогенные отложения. Отложения действующих вулканов, как правило, приурочены к Срединно-океаническим хребтам.

Рельеф дна Мирового океана. Рельеф дна Мирового океана, как и рельеф суши, имеет сложное строение. Дно Мирового океана обычно отделено от суши материковой отмелью, или шельфом. На дне Мирового океана, как и на суше, встречаются равнины, горные цепи, платообразные возвышения, каньоны и впадины. Глубоководные впадины - примечательность Мирового океана, которую нельзя встретить на суше.

Срединно-океанические хребты представляют собой вместе с отрогами непрерывную единую цепь гор протяженностью 60 000 км. Воды суши разделены между пятью бассейнами: Тихоокеанским, Атлантическим, Индийским, Северным Ледовитым и Внутренним замкнутым. Например, реки, впадающие в Тихий океан или в составляющие его моря, называются реками Тихоокеанского бассейна и т.д.

Внимание! Если Вы нашли ошибку в тексте, выделите её и нажмите Ctrl+Enter для уведомления администрации.

Во многом эта геосфера остается загадочной. Так, развитие космонавтики опровергло «очевидную» истину о нулевой поверхности Мирового океана. Оказалось, что даже в полный штиль водная поверхность имеет свой рельеф. Впадины и холмы с абсолютным превышением в десятки метров накапливаются на расстояниях в тысячи километров, а потому и незаметны. Замечательны пять планетарных аномалий (в метрах): Индийская минус 112, Калифорнийская минус 56, Карибская плюс 60, Северо-Атлантическая плюс 68, Австралийская плюс 78.

Причины таких стабильных аномалий пока не выяснены. Но предполагается, что превышения и понижения поверхности Мирового океана связаны с аномалиями силы тяжести. Многослойной моделью планеты предусматривает рост плотности каждого последующего по глубине слоя. Границы раздела подземных геосфер неровные. Горы поверхности Мохоровичича вдвое выше земных Гималаев. На глубине от 50 до 2900 километров источниками аномалий сил тяжести могут быть зоны фазовых переходов вещества. Направление тяжести благодаря возмущениям отклоняется от радионального. Считается, что на глубине 400 - 900 километров находятся массы пониженной плотности и массы особо плотного вещества. Под положительными аномалиями плотности океанической поверхности располагаются массы повышенной плотности, под впадинами - разуплотнённые массы. может быть использована для объяснения рельефа Мирового океана. Обширность водно-поверхностных аномалий отвечает крупным неоднородностям внутреннего , которые связаны не только с фазовыми переходами вещества, но и с изначально различным веществом протопланетных модулей. В Земле воссоединен и относительно легкий материал лунных модулей и относительно тяжелый материал. В 1955 году на юге США упал метеорит Твин Сити, состоящий из 70 процентов железа и 30 процентов никеля. Но мартенситовой структуры, типичной для подобных метеоритов, в метеорите Твин Сити не обнаружили. Американский ученый Р. Кнокс предположил, что данный метеорит является неизмененным фрагментом планетезимали, из которой, в частности, миллиарды лет назад сформировались планеты . Наличие в глубинах масс вещества, отвечающего метеориту Твин Сити, обеспечит стабильное существование аномалий силы тяжести.

Как было сказано ранее аномалии поверхности Мирового океана и проекций радиационных аномалий в пространственно совпадают. Возможно, что возмущения поля силы тяжести и магнитного поля имеют одну внутреннюю причину, связанную с первичной неоднородностью планеты.

Поверхность Мирового океана тщательно изучается с обитаемых и автоматических спутников. Спутником «Гео-3» над восточным берегом Австралии на расстоянии 3200 километров установлен перепад высоты поверхности океана на 2 м: уровень вод у северного побережья материка выше. Специальный спутник «Сисат», запущенный в 1978 году, измеряет водную поверхность с точностью до 10 сантиметров.

Не менее интересна проблема внутренних волн Мирового океана. В середине XVIII века Б. Франклин во время морского путешествия заметил, что масло в светильнике на качку не реагировало, а в слое под маслом периодически возникала волна. Публикация Б. Франклина стала первым научным сообщением о подводных волнах, хотя само явление было хорошо известно мореплавателям.

Иногда при спокойном ветре и малом волнении корабль внезапно терял ход. Моряки толковали о загадочной «мертвой воде», но только после 1945 года начались систематические исследования этого явления. Оказалось, при полном штиле на глубине бушуют штормы невидан­ной силы: высота подводных волн достигает 100 метров! Правда, частота волн от нескольких минут до нескольких суток, но эти медленные волны пронизывают всю толщу океанических вод.

Не исключено, что именно внутренняя волна стала причиной гибели американской атомной субмарины «Трешер»: лодка была внезапно увлечена волной на большую глубину и была раздавлена.

Одни внутренние океанические волны вызваны приливами (период таких волн равен половине суток), другие - ветром, течениями. Однако таких естественных объяснений уже недостаточно, поэтому многочисленные корабли круглосуточно ведут наблюдения в океане.

Человек всегда старался проникнуть в глубь Мирового океана. Первый спуск в подводном колоколе на реке Тахо зафиксирован в 1538 году. В 1911 году в Средиземном море американец Г. Гартман опустился на рекордную глубину - 458 метров. Экспериментальные подводные лодки достигли 900 метров («Долфин» в 1968 году). Батискафы штурмовали сверхглубины. 23 января 1960 года швейцарец Ж. Пикар и американец Д. Уолш опустились до глубины 10919 метров на дно Марианской впадины. Это не только случаи, демонстрирующие технические и волевые возможности человека, но и прямое погружение в «океан загадок».

За геологическое время наступило солевое равновесие Мирового океана и твердой земной коры. Средняя соленость океанической воды 34,7 промилле, ее колебания 32-37,5 промилле.

Главные ионы Мирового океана (в процентах): CI 19,3534, SO24- 2,707, HCO 0,1427, Вг- 0,0659, F- 0,0013, H3BO3 0,0265, Na+ 10,7638, Mg2+ 1,2970, Са2+ 0,4080, К+ 0,3875, Sr2+ 0,0136/

Океан пополняется ионами из различных источников в результате дегазации глубин планеты, разрушения океанического ложа, ветровой эрозии, биологического кругооборота вещества. Большое число ионов поступает с речным стоком. Вся суша при общем речном стоке в 33 540 кубических километров поставляет свыше двух миллиардов тонн ионов в год.

Водная масса Мирового океана неоднородна. По аналогии с атмосферой ученые стали выделять в Мировом океане объемные границы масс. Но если в атмосфере обычны циклоны и антициклоны диаметром тысяча километров, то в океане вихри в 10 раз мельче. Причины - большая гидростатическая устойчивость водных масс и большое влияние боковых береговых границ; кроме того, различны плотность, вязкость и толщина и океана. Но главное - различные по солености, и загрязненности воды перемешиваются плохо. Внутренние водные течения, ветер и волны создают у поверхности океана однородный слой. Вертикальная стратификация Мирового океана очень устойчива. Но существуют ограниченные «окна» вертикального перемещения вод различной температуры и солености. Особенно важны зоны «апвелинга», где холодные глубинные воды поднимаются к поверхности моря и выносят значительные массы и питательных веществ.

Границы разделов водных масс видны отчетливо с самолетов и космических спутников. Но это только часть границ водных масс. Значительная доля границ скрыта на глубине. К. Н. Федоров обращает внимание на удивительное явление: воды Средиземного моря, изливаясь в придонном слое Гибралтарского пролива, стекают по склонам шельфа и материкового склона, затем отрываются от грунта на глубинах около тысячи метров и в виде слоя толщиной в сотни метров пересекают весь Атлантический океан. В направлении с востока на запад слой средиземноморской воды делится на тонкие прослои, которые благодаря более высокой солености и повышенной температуре отчетливо прослеживаются на глубине 1,5 - 2 километра в Саргассовом море. Аналогично ведут себя воды Красного моря, изливающиеся в Индийский океан. В самом Красном море термальные рудоносные рассолы перекрыты двухкилометровой толщей вод, температура которых ниже 20-30° С. Однако они не перемешиваются. Термальные воды нагреты до 45-58 °С, сильно минерализованы (до 200 граммов на литр) Верхняя граница термальных вод представлена серией резких плотностных ступенек, где происходит тепломассообмен.

Таким образом, водные массы Мирового океана разделены по естественным причинам на изометричные области, слои и тончайшие прослои. На практике эти свойства широко используются при скрытом проходе подводных лодок. Однако это далеко не все. Оказывается, можно без бетонных плотин и загородок искусственно создавать слабо преодолимые границы вод разной солёности и температуры, а это путь к созданию контролируемых зон аквакультуры. Например, известны предложения о создании у берегов Бразилии с помощью насосов искусственного «апвелинга» для «удобрения» поверхностных вод, что повысит возможности .

Мировой океан

Мировой океан

Океан
Мировой океан
водная оболочка, покрывающая бóльшую часть земной поверхности (четыре пятых в Южном полушарии и более трех пятых – в Северном). Лишь местами земная кора вздымается над поверхностью океана, образуя континенты, острова, атоллы и т.д. Хотя Мировой океан представляет собой единое целое, для удобства исследования отдельным его частям присвоены различные названия: Тихий, Атлантический, Индийский и Северный Ледовитый океаны.
Наиболее крупные океаны – Тихий, Атлантический и Индийский. Тихий океан (площадь ок. 178,62 млн. км 2) имеет в плане округлую форму и занимает почти половину водной поверхности земного шара. Атлантический океан (91,56 млн. км 2) имеет форму широкой буквы S, причем его западное и восточное побережья почти параллельны. Индийский океан площадью 76,17 млн. км 2 имеет форму треугольника.
Северный Ледовитый океан площадью всего 14,75 млн. км 2 почти со всех сторон окружен сушей. Как и Тихий, он имеет округлую в плане форму. Некоторые географы выделяют еще один океан – Антарктический, или Южный, – водное пространство, окружающее Антарктиду.
Океан и атмосфера. Мировой океан, средняя глубина которого составляет ок. 4 км, содержит 1350 млн. км 3 воды. Атмосфера, окутывающая всю Землю слоем толщиной в несколько сотен километров, с гораздо большим основанием, чем Мировой океан, может рассматриваться как «оболочка». И океан и атмосфера представляют собой текучие среды, в которых существует жизнь; их свойства определяют среду обитания организмов. Циркуляционные потоки в атмосфере влияют на общую циркуляцию волы в океанах, а от состава и температуры воздуха в сильной степени зависят свойства океанических вод. В свою очередь, океан определяет основные свойства атмосферы и является источником энергии для многих протекающих в атмосфере процессов. На циркуляцию воды в океане влияют ветры, вращение Земли и барьеры суши.
Океан и климат. Хорошо известно, что температурный режим и другие климатические характеристики местности на любой широте могут существенно изменяться по направлению от побережья океана в глубь материка. По сравнению с сушей океан медленнее нагревается летом и медленнее остывает зимой, сглаживая колебания температуры на прилежащей суше.
Атмосфера получает от океана значительную часть поступающего к ней тепла и почти весь водяной пар. Пар поднимается, конденсируется, образуя облака, которые переносятся ветрами и поддерживают жизнь на планете, проливаясь в виде дождя или снега. Однако в тепло- и влагообмене участвуют только поверхностные воды; более 95% воды находится в глубинах, где ее температура остается практически неизменной.
Состав морской воды. Вода в океане соленая. Соленый вкус придают содержащиеся в ней 3,5% растворенных минеральных веществ – главным образом соединения натрия и хлора – основные ингредиенты столовой соли. Следующим по количеству является магний, за ним следует сера; присутствуют также все обычные металлы. Из неметаллических компонентов особенно важны кальций и кремний, так как именно они участвуют в строении скелетов и раковин многих морских животных. Благодаря тому что вода в океане постоянно перемешивается волнами и течениями, ее состав почти одинаков во всех океанах.
Свойства морской воды. Плотность морской воды (при температуре 20° С и солености ок. 3,5%) примерно 1,03, т.е. несколько выше, чем плотность пресной воды (1,0). Плотность воды в океане меняется с глубиной из-за давления вышележащих слоев, а также в зависимости от температуры и солености. В наиболее глубоких частях океана воды обычно солонее и холоднее. Наиболее плотные массы воды в океане могут оставаться на глубине и сохранять пониженную температуру более 1000 лет.
Поскольку морская вода имеет низкую вязкость и высокое поверхностное натяжение, она оказывает относительно слабое сопротивление движению корабля или пловца и быстро стекает с различных поверхностей. Преобладающая синяя окраска морской воды связана с рассеянием солнечных лучей взвешенными в воде мелкими частицами.
Морская вода гораздо менее прозрачна для видимого света по сравнению с воздухом, но более прозрачна по сравнению с большинством других веществ. Зарегистрировано проникновение солнечных лучей в океан до глубины 700 м. Радиоволны проникают в толщу воды лишь на небольшую глубину, зато звуковые волны могут распространяться под водой на тысячи километров. Скорость распространения звука в морской воде колеблется, составляя в среднем 1500 м в секунду.
Электропроводность морской воды примерно в 4000 раз выше, чем электропроводность пресной воды. Высокое содержание солей препятствует ее использованию для орошения и полива сельскохозяйственных культур. Для питья она также непригодна.
ОБИТАТЕЛИ МОРЯ
Жизнь в океане необычайно разнообразна – там обитает более 200 000 видов организмов. Некоторые из них, например кистеперая рыба целакант, представляют собой живые ископаемые, предки которых процветали здесь более 300 млн. лет назад; другие появились совсем недавно. Бóльшая часть морских организмов встречается на мелководье, куда проникает солнечный свет, способствующий процессу фотосинтеза. Благоприятны для жизни зоны, обогащенные кислородом и питательными веществами, например, нитратами. Широко известно такое явление, как «апвеллинг» (англ. upwelling), – поднятие к поверхности глубинных морских вод, обогащенных питательными веществами; именно с ним связано богатство органической жизни у некоторых побережий. Жизнь в океане представлена самыми различными организмами – от микроскопических одноклеточных водорослей и крошечных животных до китов, превышающих в длину 30 м и превосходящих по размерам любое животное, жившее когда-либо на суше, включая самых крупных динозавров. Океаническая биота делится на следующие основные группы.
Планктон представляет собой массу микроскопических растений и животных, не способных к самостоятельному передвижению и обитающих в приповерхностных хорошо освещенных слоях воды, где они образуют плавучие «кормовые угодья» для более крупных животных. Планктон состоит из фитопланктона (включающего такие растения, как диатомовые водоросли) и зоопланктона (медузы, криль, личинки крабов и пр.).
Нектон состоит из свободно плавающих в толще воды организмов, преимущественно хищных, и включает более 20 000 разновидностей рыб, а также кальмаров, тюленей, морских львов, китов.
Бентос состоит из животных и растений, обитающих на дне океана или вблизи него, как на больших глубинах, так и на мелководье. Растения, представленные различными водорослями (например, бурыми), встречаются на мелководье, куда проникает солнечный свет. Из животных следует отметить губок, морских лилий (одно время считавшихся вымершими), плеченогих и др.
Пищевые цепи. Более 90% органических веществ, составляющих основу жизни в море, синтезируется при солнечном освещении из минеральных веществ и других компонентов фитопланктоном, в изобилии населяющим верхние слои водной толщи в океане. Некоторые организмы, входящие в состав зоопланктона, поедают эти растения и в свою очередь являются источником пищи для более крупных животных, обитающих на большей глубине. Тех поедают более крупные животные, живущие еще глубже, и такая закономерность прослеживается до самого дна океана, где наиболее крупные беспозвоночные, например стеклянные губки, получают необходимые им питательные вещества из остатков отмерших организмов – органического детрита, опускающегося на дно из вышележащей толщи воды. Однако известно, что множество рыб и другие свободно передвигающиеся животные сумели приспособиться к экстремальным условиям высокого давления, низкой температуры и постоянной темноты, характерных для больших глубин. См. также морская биология .
ВОЛНЫ, ПРИЛИВЫ, ТЕЧЕНИЯ
Как и вся Вселенная, океан никогда не остается в покое. Разнообразные природные процессы, в том числе такие катастрофические, как подводные землетрясения или извержения вулканов, вызывают движения океанических вод.
Волны. Обычные волны вызываются ветром, дующим с переменной скоростью над поверхностью океана. Сначала возникает рябь, затем поверхность воды начинает ритмично подниматься и опускаться. Хотя водная поверхность при этом вздымается и опускается, отдельные частицы воды движутся по траектории, представляющей собой почти замкнутый круг, практически не испытывая смещения по горизонтали. По мере усиления ветра волны становятся выше. В открытом море высота гребня волны может достигать 30 м, а расстояние между соседними гребнями – 300 м.
Подходя к берегу, волны образуют буруны двух типов – ныряющие и скользящие. Ныряющие буруны характерны для волн, зародившихся в удалении от берега; они имеют вогнутый фронт, их гребень нависает и обрушивается, как водопад. Скользящие буруны не образуют вогнутого фронта, и снижение волны происходит постепенно. В обоих случаях волна накатывается на берег, а затем откатывается обратно.
Катастрофические волны могут возникать в результате резкого изменения глубины морского дна при образовании сбросов (цунами), при сильных штормах и ураганах (штормовые волны) или при обвалах и оползнях береговых обрывов.
Цунами могут распространяться в открытом океане со скоростью до 700–800 км/ч. При приближении к берегу волна цунами тормозится, одновременно увеличивается ее высота. В результате на берег накатывается волна высотой до 30 м и более (относительно среднего уровня океана). Цунами обладают огромной разрушительной силой. Хотя больше всего от них страдают районы, находящиеся вблизи таких сейсмически активных зон, как Аляска, Япония, Чили, волны, приходящие от удаленных источников, могут причинить значительный ущерб. Подобные волны возникают при взрывных извержениях вулканов или обрушении стенок кратеров, как, например, при извержении вулкана на о.Кракатау в Индонезии в 1883.
Еще более разрушительными могут быть штормовые волны, порожденные ураганами (тропическими циклонами). Неоднократно подобные волны обрушивались на побережье в вершинной части Бенгальского залива; одна из них в 1737 привела к гибели примерно 300 тыс. человек. Сейчас благодаря значительно усовершенствованной системе раннего оповещения имеется возможность заранее предупреждать население прибрежных городов о приближающихся ураганах.
Катастрофические волны, вызванные оползнями и обвалами, относительно редки. Они возникают в результате падения крупных блоков породы в глубоководные заливы; при этом происходит вытеснение огромной массы воды, которая обрушивается на берег. В 1796 на о.Кюсю в Японии сошел оползень, имевший трагические последствия: порожденные им три огромные волны унесли жизни ок. 15 тыс. человек.
Приливы. На берега океана накатываются приливы, в результате чего уровень воды поднимается на высоту 15 м и более. Основной причиной приливов на поверхности Земли является притяжение Луны. В течение каждых 24 ч 52 мин происходят два прилива и два отлива. Хотя эти колебания уровня заметны только у берегов и на отмелях, известно, что они проявляются и в открытом море. Приливами обусловлены многие очень сильные течения в прибрежной зоне, поэтому для безопасной навигации морякам необходимо пользоваться специальными таблицами течений. В проливах, соединяющих Внутреннее море Японии с открытым океаном, приливо-отливные течения достигают скорости 20 км/ч, а в проливе Симор-Нарроус у берегов Британской Колумбии (о.Ванкувер) в Канаде зарегистрирована скорость ок. 30 км/ч.
Течения в океане могут также создаваться волнением. Прибрежные волны, подходящие к берегу под углом, вызывают относительно медленные вдольбереговые течения. Там, где течение отклоняется от берега, его скорость резко возрастает – образуется разрывное течение, которое может представлять опасность для пловцов. Вращение Земли заставляет крупные океанические течения двигаться по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном. С некоторыми течениями связаны самые богатые рыболовные угодья, например в районе Лабрадорского течения у восточных берегов Северной Америки и Перуанского течения (или Гумбольдта) у берегов Перу и Чили.
Мутьевые течения относятся к наиболее сильным течениям в океане. Они вызываются перемещением большого объема взвешенных наносов; эти наносы могут быть принесены реками, явиться результатом волнения на мелководье или образоваться при сходе оползня по подводному склону. Идеальные условия для зарождения таких течений существуют в вершинах подводных каньонов, расположенных вблизи берега, особенно при впадении рек. Такие течения развивают скорость от 1,5 до 10 км/ч и временами повреждают подводные кабели. После землетрясения 1929 с эпицентром в районе Большой Ньюфаундлендской банки многие трансатлантические кабели, соединявшие Северную Европу и США, оказались поврежденными, вероятно, вследствие сильных мутьевых течений.
БЕРЕГА И БЕРЕГОВЫЕ ЛИНИИ
На картах хорошо видно необычайное разнообразие очертаний берегов. В качестве примеров можно отметить берега, изрезанные заливами, с островами и извилистыми проливами (в шт. Мэн, на юге Аляски и в Норвегии); берега относительно простых очертаний, как на большей части западного побережья США; глубоко проникающие и ветвящиеся заливы (например, Чесапикский) в средней части атлантического побережья США; выступающий низменный берег Луизианы около устья р.Миссисипи. Подобные примеры могут быть приведены для любой широты и любой географической или климатической области.
Эволюция берегов. Прежде всего проследим, как менялся уровень моря за последние 18 тыс. лет. Как раз перед этим бóльшая часть суши в высоких широтах была покрыта огромными ледниками. По мере таяния этих ледников талые воды поступали в океан, в результате чего его уровень поднялся примерно на 100 м. При этом оказались затопленными многие устья рек – так образовались эстуарии. Там, где ледники создали долины, углубленные ниже уровня моря, образовались глубокие заливы (фьорды) с многочисленными скалистыми островами, как, например, в береговой зоне Аляски и Норвегии. При наступании на низменные побережья море также затопляло речные долины. На песчаных побережьях в результате волновой деятельности сформировались низкие барьерные острова, вытянутые вдоль берега. Такие формы встречаются у южного и юго-восточного берегов США. Иногда барьерные острова образуют аккумулятивные выступы берега (например, мыс Хаттерас). В устьях рек, несущих большое количество наносов, возникают дельты. На тектонических блоковых берегах, испытывающих поднятия, которые компенсировали подъем уровня моря, могут образоваться прямолинейные абразионные уступы (клифы). На о.Гавайи в результате вулканической деятельности в море стекали лавовые потоки и формировались лавовые дельты. Во многих местах развитие берегов протекало таким образом, что заливы, образовавшиеся при затоплении устьев рек, продолжали существовать – например, Чесапикский залив или заливы на северо-западном побережье Пиренейского п-ова.
В тропическом поясе подъем уровня моря способствовал более интенсивному росту кораллов с внешней (морской) стороны рифов, так что с внутренней стороны образовывались лагуны, отделяющие от берега барьерный риф. Подобный процесс происходил и там, где на фоне подъема уровня моря происходило погружение острова. При этом барьерные рифы с внешней стороны частично разрушались во время штормов, и обломки кораллов нагромождались штормовыми волнами выше уровня спокойного моря. Кольца рифов вокруг погрузившихся вулканических островов образовали атоллы. В последние 2000 лет поднятие уровня Мирового океана практически не отмечается.
Пляжи всегда высоко ценились человеком. Они сложены преимущественно песком, хотя встречаются также галечные и даже мелковалунные пляжи. Иногда песок представляет собой измельченные волнами раковины (т.н. ракушечный песок). В профиле пляжа выделяются наклонная и почти горизонтальная части. Угол наклона прибрежной части зависит от слагающего ее песка: на пляжах, сложенных тонким песком, фронтальная зона наиболее пологая; на пляжах из крупнозернистого песка уклоны несколько больше, а наиболее крутой уступ образуют галечные и валунные пляжи. Тыловая зона пляжа находится обычно выше уровня моря, но порой огромные штормовые волны заливают и ее.
Различают несколько типов пляжей. Для берегов США наиболее типичны протяженные, относительно прямолинейные пляжи, окаймляющие с внешней стороны барьерные острова. Для таких пляжей характерны вдольбереговые ложбины, где могут развиваться опасные для пловцов течения. С внешней стороны ложбин находятся вытянутые вдоль берега песчаные бары, где и происходит разрушение волн. При сильном волнении здесь часто возникают разрывные течения.
Скалистые берега неправильных очертаний обычно образуют множество мелких бухточек с небольшими изолированными участками пляжей. Эти бухточки часто бывают защищены со стороны моря выступающими над поверхностью воды скалами или подводными рифами.
На пляжах обычны образования, созданные волнами, – пляжевые фестоны, знаки ряби, следы волнового заплеска, промоины, образующиеся при стоке воды во время отлива, а также следы, оставленные животными.
При размыве пляжей во время зимних штормов песок перемещается по направлению к открытому морю или вдоль берега. При более спокойной погоде летом на пляжи поступают новые массы песка, принесенные реками или образовавшиеся при размыве волнами береговых уступов, и таким образом происходит восстановление пляжей. К сожалению, этот компенсационный механизм часто нарушается вмешательством человека. Строительство плотин на реках или сооружение берегоукрепительных стенок препятствует поступлению на пляжи материала взамен размытого зимними штормами.
Во многих местах песок переносится волнами вдоль берега, преимущественно в одном направлении (т.н. вдольбереговой поток наносов). Если береговые сооружения (дамбы, волноломы, пирсы, буны и т.п.) преграждают этот поток, то пляжи «выше по течению» (т.е. расположенные с той стороны, откуда происходит поступление наносов) либо размываются волнами, либо расширяются за счет поступления наносов, тогда как пляжи «ниже по течению» почти не подпитываются новыми отложениями.
РЕЛЬЕФ ДНА ОКЕАНОВ
На дне океанов находятся огромные горные хребты, глубокие расселины с обрывистыми стенками, протяженные гряды и глубокие рифтовые долины. Фактически морское дно не менее изрезано, чем поверхность суши.
Шельф, материковый склон и материковое подножье. Платформа, окаймляющая континенты и называемая материковой отмелью, или шельфом, не столь ровная, как это когда-то считалось. На внешней части шельфа обычны скальные выступы; коренные породы часто выходят и на примыкающей к шельфу части материкового склона.
Средняя глубина внешнего края (бровки) шельфа, отделяющей его от материкового склона, составляет ок. 130 м. У берегов, подвергавшихся оледенению, на шельфе часто отмечаются ложбины (троги) и впадины. Так, у фьордовых берегов Норвегии, Аляски, южного Чили глубоководные участки обнаруживаются вблизи современной береговой линии; глубоководные ложбины существуют у берегов штата Мэн и в заливе Св. Лаврентия. Выработанные ледниками троги часто тянутся поперек всего шельфа; местами вдоль них располагаются исключительно богатые рыбой отмели, например банки Джорджес или Большая Ньюфаундлендская.
Шельфы у берегов, где оледенения не было, имеют более однообразное строение, однако и на них часто встречаются песчаные или даже скальные гряды, возвышающиеся над общим уровнем. В ледниковую эпоху, когда уровень океана понизился вследствие того, что огромные массы воды аккумулировались на суше в виде ледниковых покровов, во многих местах нынешнего шельфа были созданы речные дельты. В других местах на окраинах материков на отметках тогдашнего уровня моря в поверхность были врезаны абразионные платформы. Однако результаты этих процессов, протекавших в условиях низкого положения уровня Мирового океана, были существенно преобразованы тектоническими движениями и осадконакоплением в последующую послеледниковую эпоху.
Удивительнее всего то, что во многих местах на внешнем шельфе все-таки можно обнаружить отложения, образовавшиеся в прошлом, когда уровень океана был более чем на 100 м ниже современного. Там же находят кости мамонтов, живших в ледниковую эпоху, а иногда и орудия первобытного человека.
Говоря о материковом склоне, необходимо отметить следующие особенности: во-первых, он обычно образует четкую и хорошо выраженную границу с шельфом; во-вторых, почти всегда его пересекают глубокие подводные каньоны. Средний угол наклона на материковом склоне составляет 4°, но встречаются и более крутые, иногда почти вертикальные участки. У нижней границы склона в Атлантическом и Индийском океанах располагается пологонаклонная поверхность, получившая название «материкового подножья». По периферии Тихого океана материковое подножье обычно отсутствует; его часто замещают глубоководные желоба, где тектонические подвижки (сбросы) порождают землетрясения и где зарождается большинство цунами.
Подводные каньоны. Эти каньоны, врезанные в морское дно на 300 м и более, обычно отличаются крутыми бортами, узким днищем, извилистостью в плане; как и их аналоги на суше, они принимают многочисленные притоки. Самый глубокий из известных подводных каньонов – Большой Багамский – врезан почти на 5 км.
Несмотря на сходство с одноименными образованиями на суше, подводные каньоны в своем большинстве не являются древними речными долинами, погруженными ниже уровня океана. Мутьевые течения вполне способны как выработать долину на дне океана, так и углубить и преобразовать затопленную речную долину или понижение по линии сброса. Подводные долины не остаются неизменными; по ним осуществляется транспорт наносов, о чем свидетельствуют знаки ряби на дне, и глубина их постоянно меняется.
Глубоководные желоба. Многое стало известно о рельефе глубоководных частей океанического дна в результате широкомасштабных исследований, развернувшихся после Второй мировой войны. Наибольшие глубины приурочены к глубоководным желобам Тихого океана. Самая глубокая точка – т.н. «пучина Челленджера» – находится в пределах Марианского желоба на юго-западе Тихого океана. Ниже приводятся наибольшие глубины океанов с указанием их названий и местоположения:
Северный Ледовитый – 5527 м в Гренландском море;
Атлантический – желоб Пуэрто-Рико (у берегов Пуэрто-Рико) – 8742 м;
Индийский – Зондский (Яванский) желоб (к западу от Зондского архипелага) – 7729 м;
Тихий – Марианский желоб (у Марианских о-вов) – 11 033 м; желоб Тонга (у Новой Зеландии) – 10 882 м; Филиппинский желоб (у Филиппинских о-вов) – 10 497 м.
Срединно-Атлантический хребет. О существовании большого подводного хребта, протянувшегося с севера на юг через центральную часть Атлантического океана, известно уже давно. Его протяженность почти 60 тыс. км, одно из его ответвлений тянется в Аденский залив к Красному морю, а другое заканчивается у берегов Калифорнийского залива. Ширина хребта составляет сотни километров; наиболее поразительную его черту представляют рифтовые долины, прослеживающиеся почти на всем его протяжении и напоминающие Восточно-Африканскую рифтовую зону.
Еще более удивительным открытием явилось то, что основной хребет пересекают под прямым углом к его оси многочисленные гребни и ложбины. Эти поперечные гребни прослеживаются в океане на протяжении тысяч километров. В местах пересечения их с осевым хребтом находятся т.н. зоны разломов, к которым приурочены активные тектонические подвижки и где находятся центры крупных землетрясений.
Гипотеза дрейфа материков А.Вегенера. Примерно до 1965 большинство геологов полагало, что положение и очертания материков и океанических бассейнов остаются неизменными. Существовало довольно смутное представление о том, что Земля сжимается, и это сжатие приводит к образованию складчатых горных хребтов. Когда в 1912 немецкий метеоролог Альфред Вегенер высказал идею о том, что материки перемещаются («дрейфуют») и что Атлантический океан образовался в процессе расширения трещины, расколовшей древний суперконтинент, эта идея была встречена с недоверием, несмотря на множество фактов, свидетельствующих в ее пользу (сходство очертаний восточного и западного побережий Атлантического океана; сходство ископаемых остатков в Африке и Южной Америке; следы великих оледенений каменноугольного и пермского периодов в интервале 350–230 млн. лет назад в районах, ныне расположенных вблизи экватора).
Разрастание (спрединг) океанического дна. Постепенно доводы Вегенера были подкреплены результатами дальнейших исследований. Было высказано предположение о том, что рифтовые долины в пределах срединно-океанических хребтов возникают как трещины растяжения, которые затем заполняются поднимающейся из глубин магмой. Материки и примыкающие к ним участки океанов образуют огромные плиты, движущиеся в стороны от подводных хребтов. Фронтальная часть Американской плиты надвигается на Тихоокеанскую плиту; последняя в свою очередь поддвигается под материк – происходит процесс, называемый субдукцией. Есть множество других свидетельств в пользу этой теории: например, приуроченность к этим районам центров землетрясений, краевых глубоководных желобов, горных цепей и вулканов. Эта теория позволяет объяснить почти все крупные формы рельефа материков и океанических бассейнов.
Магнитные аномалии . Наиболее убедительным доводом в пользу гипотезы разрастания океанического дна является чередование полос прямой и обратной полярности (положительных и отрицательных магнитных аномалий), прослеживающихся симметрично по обе стороны от срединно-океанических хребтов и следующих параллельно их оси. Изучение этих аномалий позволило установить, что спрединг океанов происходит в среднем со скоростью несколько сантиметров в год.
Тектоника плит. Еще одно доказательство вероятности этой гипотезы было получено с помощью глубоководного бурения. Если, как следует из данных по исторической геологии, разрастание океанов началось в юрском периоде, ни одна часть Атлантического океана не может быть старше этого времени. Глубоководными буровыми скважинами в некоторых местах были пройдены отложения юрского возраста (образовавшиеся 190–135 млн. лет назад), но нигде не встречены более древние. Это обстоятельство может считаться весомым доказательством; в то же время из него следует парадоксальный вывод о том, что дно океана моложе, чем сам океан.
ИССЛЕДОВАНИЯ ОКЕАНОВ
Ранние исследования. Первые попытки исследовать океаны носили исключительно географический характер. Путешественники прошлого (Колумб , Магеллан , Кук и др.) совершали долгие утомительные плавания через моря и открывали острова и новые материки. Первая попытка исследовать сам океан и его дно была сделана британской экспедицией на «Челленджере» (1872–1876). Это плавание заложило основы современной океанологии. Метод эхолотирования, разработанный в годы Первой мировой войны, позволил составить новые карты шельфа и материкового склона. Специальные океанологические научные учреждения, появившиеся в 1920–1930-е годы, распространили свою деятельность на глубоководные области.
Современный этап. Настоящий прогресс в исследованиях, однако, начинается лишь после окончания Второй мировой войны, когда в изучении океана приняли участие военно-морские силы различных стран. В это же время получили поддержку многие океанографические станции.
Ведущая роль в этих исследованиях принадлежала США и СССР; в меньших масштабах подобные работы проводили Великобритания, Франция, Япония, Западная Германия и другие страны. Примерно за 20 лет удалось получить довольно полное представление о рельефе океанического дна. На опубликованных картах рельефа дна вырисовывалась картина распределения глубин. Большое значение приобрели также исследования дна океана с помощью эхозондирования, при котором звуковые волны отражаются от поверхности коренных пород, погребенных под рыхлыми осадками. Сейчас об этих погребенных отложениях известно больше, чем о породах континентальной земной коры.
Погружные аппараты с экипажем на борту. Большим шагом вперед в исследованиях океана явилась разработка глубоководных погружных аппаратов с иллюминаторами. В 1960 Жак Пикар и Дональд Уолш на батискафе «Триест» I осуществили погружение в самой глубокой из известных областей океана – «пучине Челленджера» в 320 км к юго-западу от о.Гуам. «Ныряющее блюдце» Жак Ива Кусто оказалось наиболее удачным среди аппаратов подобного типа; с его помощью удалось открыть удивительный мир коралловых рифов и подводных каньонов до глубины 300 м. Другой аппарат, «Алвин», спускался до глубины 3650 м (при проектной глубине погружения до 4580 м) и активно использовался в научных исследованиях.
Глубоководное бурение. Подобно тому, как концепция тектоники плит революционизировала геологическую теорию, глубоководное бурение произвело переворот в представлениях о геологической истории. Усовершенствованная буровая установка позволяет проходить сотни и даже тысячи метров в магматических породах. При необходимости замены затупившейся коронки этой установки в скважине оставлялась обсадная колонна, которую легко можно было обнаружить гидролокатором, укрепленным на новой коронке бурильной трубы, и таким образом продолжить бурение той же скважины. Керны глубоководных скважин позволили заполнить множество пробелов геологической истории нашей планеты и, в частности, дали множество доказательств правильности гипотезы спрединга дна океанов.
РЕСУРСЫ ОКЕАНА
По мере того как ресурсы планеты все с бóльшим трудом удовлетворяют потребности растущего населения, океан приобретает особое значение как источник пищи, энергии, минерального сырья и воды.
Пищевые ресурсы океана. В океанах ежегодно вылавливаются десятки миллионов тонн рыбы, моллюсков и ракообразных. В некоторых частях океанов добыча с применением современных плавучих рыбозаводов ведется очень интенсивно. Почти полностью истреблены некоторые виды китов. Продолжающийся интенсивный вылов может нанести сильный ущерб таким ценным промысловым видам рыбы, как тунец, сельдь, треска, морской окунь, сардина, мерлуза.
Рыбоводство . Для разведения рыбы можно было бы выделить обширные участки шельфа. При этом можно удобрять морское дно, чтобы обеспечить рост морских растений, которыми питается рыба.
Минеральные ресурсы океанов. Все минералы, которые находят на суше, присутствуют и в морской воде. Наиболее распространены там соли, магний, сера, кальций, калий, бром. Недавно океанологи обнаружили, что во многих местах дно океана буквально покрыто россыпью железомарганцевых конкреций с высоким содержанием марганца, никеля и кобальта. Найденные на мелководье фосфоритные конкреции могут использоваться в качестве сырья для производства удобрений. В морской воде присутствуют также такие ценные металлы, как титан, серебро и золото. В настоящее время в значительных количествах из морской воды добываются лишь соль, магний и бром.
Нефть . На шельфе уже сейчас разрабатывается ряд крупных месторождений нефти, например, у берегов Техаса и Луизианы, в Северном море, Персидском заливе и у берегов Китая. Ведется разведка месторождений во многих других районах, например у берегов Западной Африки, у восточного побережья США и Мексики, у берегов арктической Канады и Аляски, Венесуэлы и Бразилии.
Океан – источник энергии. Океан является практически неистощимым источником энергии.
Энергия приливов. Уже давно было известно, что приливные течения, проходящие через узкие проливы, можно использовать для получения энергии в такой же степени, как водопады и плотины на реках. Так, например, в Сен-Мало во Франции с 1966 успешно действует приливная гидроэлектростанция.
Энергия волн также может использоваться для получения электроэнергии.
Энергия термического градиента. Почти три четверти солнечной энергии, поступающей на Землю, приходится на океаны, поэтому океан является идеальным гигантским накопителем тепла. Получение энергии, основанное на использовании разности температур поверхностных и глубинных слоев океана, могло бы проводиться на крупных плавучих электростанциях. В настоящее время разработка таких систем находится в экспериментальной стадии.
Прочие ресурсы. К другим ресурсам можно отнести жемчуг, который образуется в теле некоторых моллюсков; губки; водоросли, использующиеся в качестве удобрений, пищевых продуктов и пищевых добавок, а также в медицине как источник иода, натрия и калия; залежи гуано – птичьего помета, добываемого на некоторых атоллах в Тихом океане и используемого в качестве удобрения. Наконец, опреснение позволяет получить из морской воды пресную.
ОКЕАН И ЧЕЛОВЕК
Ученые полагают, что жизнь зародилась в океане примерно 4 млрд. лет назад. Особые свойства воды оказали огромное воздействие на эволюцию человека и до сих пор делают возможной жизнь на нашей планете. Человек использовал моря как пути торговли и сообщения. Плавая по морям, он совершал открытия. К морю он обращался в поисках пищи, энергии, материальных ресурсов и вдохновения.
Океанография и океанология. Исследования океана часто подразделяют на физическую океанографию, химическую океанографию, морскую геологию и геофизику, морскую метеорологию, биологию океана и инженерную океанографию. В большинстве стран, имеющих выход к океану, ведутся океанографические исследования.

Самый верхний слой океана (ВПС + сезонный термоклин) требует гораздо более детального описания. Этому вопросу будет посвящен следующий параграф.[ ...]

В более важной динамически формулировке при помощи частоты Вяйссяля-Брента N слой скачка плотности стратифицирован заметно более устойчиво (Л З-10 2 с-1), чем тропосфера в целом, в которой дТ/дгж 6,5 °С/км и Л/ 10-2 с“1, хотя и менее устойчиво, чем сильные атмосферные инверсии (ТУ«1,7-10-1 с-1). При повсеместном распространении слоя скачка плотности в океане и редкости сильных инверсий в атмосфере этим и объясняется гораздо более широкое распространение внутренних волн в океане по сравнению с атмосферой.[ ...]

Наиболее активный верхний слой океана, где господствует живое вещество планктон, до 150-200 м. Загрязнения подвергаются здесь воздействию живых организмов. Последние связывают огромное количество растворенных и взвешеных веществ. Такой мощной биофильтрационной системы на суше не существует.[ ...]

Своеобразной зоной Мирового океана, характеризующейся высокой рыбопродуктивностью, является апвеллинг, т.е. подъем вод из глубины в верхние слои океана, как правило, на западных берегах контингентов.[ ...]

Нагреватель - теплая вода из верхних слоев океана. Наиболее высокая температура воды наблюдается в Персидском заливе в августе - более 33 °С (а самая высокая температура воды зафиксирована в Красном море - плюс 36 °С). Но на максимальную температуру рассчитывать преобразователь нельзя: она встречается на ограниченных участках Мирового океана, а обширные районы имеют температуру поверхностного слоя около 25 °С. Это достаточно высокая температура, при которой кипят многие жидкости. Д’Арсонваль предложил применить в качестве рабочей жидкости аммиак - жидкость с температурой; кипення минус 33,4 “С, которая будет хорошо кипеть ■ при 25 °С. При нормальной температуре (20 °С) аммиак - бесцветный газ с едким запахом. При повышении давления газообразный аммиак снова превращается в жидкость. При 20 °С для этого давление надо повысить до 8,46 атм, но при 5 °С - значительно меньше.[ ...]

Энергоактивные области Мирового океана - это минимальные структурные составляющие, участвующие в формировании крупномасштабного обмена теплом между океаном и атмосферой. За-, нимая «¿20 % площади Мирового океана, они отвечают за «40 % общего теплообмена в системе океан-атмосфера-суша. Это области максимального рассогласования между тепловыми и влажностными полями верхнего слоя океана и планетарного пограничного слоя атмосферы: именно здесь интенсивность работы по согласованию этих полей максимальна. И хотя мы утверждаем, что ЭАО - характерные структуры в крупномасштабных полях, это не значит, что пространственное их расположение жестко фиксировано, а интенсивность постоянна. Этим же областям присущи максимальные диапазоны изменчивости потоков тепла, что говорит о том, что они служат наиболее информативными акваториями для слежения за состоянием климатической системы. То есть все они одновременно могут не находиться в активном состоянии, но именно в этих областях в некоторой полициклической последовательности формируется и возбуждается наиболее активный локальный теплообмен.[ ...]

В результате действия этих факторов верхний слой океана обычно хорошо перемешан. Он так п называется - перемешанный. Толщина его зависит от времени года, силы ветра и географического района. Например, летом в штиль толщина перемешанного слоя на Черном море всего 20- 30 м. А в Тихом океане близ экватора был обнаружен (экспедйцией на научно-исследовательском судне «Дмитрий Менделеев») перемешанный слой толщиной около 700 м. От поверхности до глубины в 700 м располагался слой теплой и прозрачной воды с температурой около 27 °С. Этот район Тихого океана по своим гидрофизическим свойствам похож на Саргассово море в Атлантическом океане. Зимой на Черном море перемешанный слой в 3-4 раза толще летнего, его глубина доходит до 100-120 м. Столь большая разница объясняется интенсивным перемешиванием в зимнее время: чем сильнее ветер, тем больше волнение на поверхности и сильнее идет перемешивание. Такой слой скачка называют еще сезонным, поскольку глубина залегания слоя зависит от сезона года.[ ...]

АПВЕЛЛИНГ [англ. upwelling] - подъем вод из глубины в верхние слои океана (моря). Обычен на западных берегах континентов, где ветры отгоняют поверхностные воды от берега, а их место занимают богатые биогенными веществами холодные массы воды.[ ...]

Обмен углекислым газом происходит также между атмосферой и океаном. В верхних слоях океана растворено большое количество углекислого газа, находящегося в равновесии с атмосферным. Всего в гидросфере содержится около 13-1013 т растворенного углекислого газа, а в атмосфере - в 60 раз меньше. Жизнь на Земле и газовый баланс атмосферы поддерживаются относительно небольшими количествами углерода, участвующего в малом круговороте и содержащегося в растительных тканях (5-1011 т), в тканях животных (5-109 т). Круговорот углерода в биосферных процессах представлен рис. 2.[ ...]

В целом же следует отметить, что амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15°С, в континентальных водах -30-35°С.[ ...]

Кислое А. В., Семенченко Б. А., Тужилкин В. С. О факторах изменчивости структуры верхнего слоя океана в тропиках//Метеорология и гидрология, № 4, 1983, с. 84-89.[ ...]

Биосфера сконцентрирована в основном в виде относительно тонкой пленки на поверхности суши и преимущественно (но не исключительно) в верхних слоях океана. Она не может функционировать без тесного взаимодействия с атмосферой, гидросферой и литосферой, а педосфера без живых организмов просто не существовала бы.[ ...]

Возможны и другие интегральные показатели. Так, для моделирования распределения сайры в Тихом океане такой интегральной характеристикой оказалась температура в верхнем слое океана поскольку распределение течений, водных масс, солености и других гидрологических и гидрохимических показателей северо-западной части Тихого океана тесно коррелирует с распределением температуры воды верхнего слоя (Кашкин, 1986).[ ...]

Нагрев сверху (контактным образом и из-за сильного поглощения водой проникающего в нее света) и опреснение (выпадающими осадками, стоком рек, таянием льда) могут влиять лишь на очень тонкий верхний слой океана, всего в десятки метров, так как из-за гидростатической устойчивости нагретого или опресненного слоя он не может самостоятельно перемешиваться с нижележащей водой, а вынужденное перемешивание, создаваемое обрушивающимися поверхностными волнами, проникает неглубоко (перемешивание же в турбулентных пятнах, образующихся в местах гидродинамической неустойчивости внутренних волн, в среднем очень слабо и действует, по-видимому, крайне медленно).[ ...]

Если уравнение (4.9.2) или его эквивалентную форму со штрихами у переменных проинтегрировать по всему океану, то получим то же самое очевидное противоречие, как и в случае с уравнением механической энергии. На больших масштабах имеется приток через поверхность океана (так как соленость поверхности высока там, где имеется поток соли в океан, см., например, ), но потери соли за счет диффузии незначительны на больших масштабах. Как и в случае с энергией, имеет место перенос солености от одного масштаба к другому из-за нелинейного адвективного члена в (4.3.8), прпчем существенный вклад в правую часть (4.9.2) вносят очень малые масштабы. По оценке , среднеквадратичный градиент солености в верхнем слое океана в 1000 раз превосходит средний градиент.[ ...]

Соединения азота (нитраты, нитриты) в растворах поступают в организмы растений, участвуя в образовании органического вещества (аминокислоты, сложные белки). Часть соединений азота выносится в реки, моря, проникает в подземные воды. Из соединений, растворенных в морской воде, азот поглощается водными организмами, а после их отмирания перемещается в глубь океана. Поэтому концентрация азота в верхних слоях океана заметно возрастает.[ ...]

Анализ причин существующего фазового соотношения между годовыми температурными колебаниями в воздухе и воде приводится на основе модельных интерпретаций годового хода в . Как правило, такие модели исходят из уравнения переноса тепла, в котором различные авторы с разной степенью полноты учитывают факторы формирования цикличности в океане и в атмосфере. А. А. Пивоваров и Во Ван Лань построили нелинейную модель для стратифицированного океана и учли объемное поглощение лучистой энергии верхним слоем океана. В анализируется суточный ход температур поверхности воды и воздуха. Получено отставание по фазе температуры воздуха от температуры воды, что не согласуется с эмпирическими данными, согласно которым и в суточном ходе температура воздуха опережает температуру воды.[ ...]

Встречающиеся в природе гуминовая и стеариновая кислоты, которые являются обычными примесями многих сточных вод, также сильно замедляли образование кальцита. Это ингибирование, вероятно, вызывается адсорбцией аниона кислоты, так как в условиях эксперимента преобладают ионные формы этих соединений. Сьюесс и Майерс и Квайн обнаружили, что стеариновая кислота и другие природные органические вещества могут сильно адсорбироваться при контакте карбоната кальция с морской водой. По-видимому, такой адсорбцией объясняется ингибирование образования карбоната кальция в верхних слоях океана. В присутствии стеариновой кислоты (1-1О-4 М) происходит в незначительной степени, но поддающаяся измерению реакция кристаллизации (см. рис. 3.4), которая показывает, что эта кислота не так полно ингибирует реакцию кристаллизации, как метафосфат.[ ...]

Второй специальный эксперимент по изучению синоптической изменчивости океанских течений («Полигон-70») был проведен советскими океанологами во главе с Институтом океанологии АН СССР в феврале-сентябре 1970 г. в северной пассатной зоне Атлантики, где в течение шести месяцев были осуществлены непрерывные измерения течений на 10 глубинах от 25 до 1500 м на 17 заякоренных буйковых станциях, образовывавших крест размерами 200X200 км с центром в точке 16°ЗГ 14, 33°30 Ш, и был также выполнен ряд гидрологических съемок.[ ...]

Крупномасштабный контраст теплозапаса в океане намного превосходит как потенциальную энергию наклона уровня, так и энергию плотностной дифференциации вод. Сами тепловые различия вод, как правило, формируются на больших пространствах и сопровождаются плавными пространственно протяженными движениями конвективного типа. В неравномерно прогретых водах с меняющимися в пространстве плотностями существуют горизонтальные градиенты, которые могут быть и источниками локальных движений. В таких случаях в них переходит часть доступной потенциальной энергии. Если при ее вычислении исходить из разности запасов потенциальных энергий двух соседних равных объемов с разными плотностями в верхних частях, то для всего океана мы приходим к той оценке, которую ранее определили, как энергию дифференциации плотности, т. е. к 1018- Ю19 Дж. Возраст вод верхнего слоя океана (»1000 м) оценивается 10-20 годами . Из сопоставления энергии теплового контраста вод океана и контраста поступления солнечной энергии к теплым и холодным водам океана [(1-3) -1023 Дж/год] следует, что для накопления этого контраста необходимо примерно 10- 15 лет. Тогда можно ориентировочно принять, что основные черты плотностной дифференциации верхнего слоя сформируются за 10 лет. Десятая часть этой энергии ежегодно передается механическим движениям океана. Следовательно, ежегодное поступление энергии в результате бароклинной неустойчивости ориентировочно следует оценить примерно в 1018 Дж.[ ...]

В 1905 г. шведский ученый В. Экман создал теорию ветрового течения, получившую математическое и графическое выражение, известное как спираль Экмана. Согласно ей, поток воды должен быть направлен под прямым углом к направлению ветра, с глубиной он настолько отклоняется силой Кориолиса, что начинает течь в противоположном ветру направлении. Одно из следствий переноса воды, по теории Экмена, состоит в том, что пассатные ветры становятся причиной смещения потока, направленного к северу и югу от экватора. Для компенсации оттока здесь происходит подъем холодных глубинных вод. Вот почему температура поверхностной воды на экваторе оказывается ниже на 2-3°С, чем в соседних с ним тропических областях. Медленный подъем глубинных вод в верхние слои океана называют апвеллингом, а опускание - даунвеллингом.

Давно известно, что океанические воды покрывают большую часть поверхности нашей планеты. Они составляют непрерывную водную оболочку, на долю которой приходится более 70% всей географической плоскости. Но мало кто задумывался о том, что свойства океанических вод уникальны. Они оказывают огромное влияние на климатические условия и хозяйственную деятельность людей.

Свойство 1. Температура

Океанские воды способны накапливать тепло. (около 10 см в глубину) удерживают огромное количество тепла. Охлаждаясь, океан обогревает нижние слои атмосферы, благодаря чему средняя температура земного воздуха составляет +15 °С. Если бы на нашей планете не было океанов, то средняя температура с трудом дотягивала бы до -21 °С. Получается, что благодаря способности Мирового океана накапливать тепло нам досталась комфортная и уютная планета.

Температурные свойства океанических вод изменяются скачкообразно. Прогретый поверхностный слой постепенно перемешивается с более глубокими водами, в результате чего на глубине нескольких метров происходит резкий температурный перепад, а затем плавное понижение до самого дна. Глубинные воды Мирового океана имеют примерно одинаковую температуру, измерения ниже трех тысяч метров обычно показывают от +2 до 0 °С.

Что же касается поверхностных вод, то их температура зависит от географической широты. Шарообразная форма планеты определяет угол падения солнечных лучей на поверхность. Ближе к экватору солнце отдает больше тепла, чем у полюсов. Так, например, свойства океанических вод Тихого океана напрямую зависят от средних температурных показателей. Поверхностный слой имеет самую высокую среднюю температуру, которая составляет более +19 °С. Это не может не влиять и на окружающий климат, и на подводную флору и фауну. Далее следует поверхностные воды которого в среднем прогреты до 17,3 °С. Затем Атлантика, где этот показатель равен 16,6 °С. И самые низкие средние температуры - в Северном Ледовитом океане - примерно +1 °С.

Свойство 2. Соленость

Какие еще свойства океанических вод изучают современные ученые? их интересует состав морской воды. Вода в океане - коктейль из десятков химических элементов, и важная роль в нем отведена солям. Соленость океанических вод измеряется в промилле. Обозначают ее значком «‰». Промилле означает тысячную долю числа. Подсчитано, что литр океанической воды имеет среднюю соленость 35‰.

При исследовании Мирового океана ученые не раз задавались вопросом о том, каковы свойства океанических вод. Везде ли в океане они одинаковы? Оказывается, соленость, как и средняя температура, неоднородна. На показатель влияет целый ряд факторов:

  • количество атмосферных осадков - дождь и снег значительно понижают общую соленость океана;
  • сток крупных и мелких рек - соленость океанов, омывающих материки с большим количеством полноводных рек, ниже;
  • льдообразование - этот процесс повышает соленость;
  • таяние льдов - этот процесс понижает соленость воды;
  • испарение воды с поверхности океана - соли не испаряются вместе с водами, и соленость повышается.

Получается, что различная соленость океанов объясняется температурой поверхностных вод и климатическими условиями. Самая высокая средняя соленость у воды Атлантического океана. Однако самая соленая точка - Красное море, принадлежит Индийскому. Наименьшим показателем характеризуется Северный Ледовитый океан. Эти свойства океанических вод Северного Ледовитого океана наиболее сильно ощущаются вблизи впадения полноводных рек Сибири. Здесь соленость не превышает 10‰.

Интересный факт. Общее количество соли в Мировом океане

Ученые не сошлись во мнениях, какое количество химических элементов растворено в водах океанов. Предположительно от 44 до 75 элементов. Но они подсчитали, что всего в Мировом океане растворено просто астрономическое количество солей, примерно 49 квадриллионов тонн. Если выпарить и высушить всю эту соль, то она покроет поверхность суши слоем более чем в 150 м.

Свойство 3. Плотность

Понятие «плотность» изучается уже давно. Это отношение массы вещества, в нашем случае Мирового океана, к занимаемому объему. Знание о величине плотности необходимо, например, для поддержания плавучести судов.

И температура, и плотность - неоднородные свойства океанских вод. Среднее значение последней - 1,024 г/см³. Этот показатель измерялся при средних значениях температуры и содержания солей. Однако на разных участках Мирового океана плотность изменяется в зависимости от глубины измерения, температуры участка и его солености.

Рассмотрим для примера свойства океанических вод Индийского океана, а конкретно изменение их плотности. Наибольшим этот показатель будет в Суэцком и Персидском заливе. Здесь он доходит до 1,03 г/см³. В теплых и соленых водах северо-западной части Индийского океана показатель падает до 1,024 г/см³. А в распресненных северо-восточной части океана и в Бенгальском заливе, где выпадает много осадков, показатель наименьший - примерно 1,018 г/см³.

Плотность пресной воды ниже, именно поэтому держаться на воде в реках и других пресных водоемах несколько сложнее.

Свойства 4 и 5. Прозрачность и цвет

Если набрать в банку морскую воду, то она покажется прозрачной. Однако при увеличении толщины водного слоя она приобретает голубоватый или зеленоватый оттенок. Изменение цвета связано с поглощением и рассеиванием света. Кроме того, на окрас океанских вод влияют взвеси различного состава.

Голубоватый цвет чистой воды - результат слабого поглощения красной части видимого спектра. При высокой концентрации в океанической воде фитопланктона, она приобретает сине-зеленый или зеленый цвет. Это происходит из-за того, что фитопланктон поглощает красную часть спектра и отражает зеленую.

Прозрачность океанической воды косвенно зависит от количества взвешенных частиц в ней. В полевых условиях прозрачность определяют диском Секки. Плоский диск, диаметр которого не превышает 40 см, опускают в воду. Глубина, на которой он становится не виден, принимается за показатель прозрачности в этом районе.

Свойства 6 и 7. Распространение звука и электропроводность

Звуковые волны способны распространяться под водой на тысячи километров. Средняя скорость распространения - 1500 м/с. Этот показатель для морской воды выше, чем для пресной. Звук всегда немного отклоняется от прямой.

Имеет более значительную электропроводность, чем пресная. Разница - 4000 раз. Это зависит от числа ионов на единицу водного объема.