Неорганические вещества клетки и живых организмов. Химический состав клетки. Неорганические вещества клетки

Химический состав клетки. Неорганические вещества клетки

Основные свойства и уровни организации живой природы

Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни:

Молекулярно-генетический - отдельные биополимеры (ДНК, РНК, белки);

Клеточный - элементарная самовоспроизводящаяся единица жизни (прокариоты, одноклеточные эукариоты), ткани, органы;

Гофрированное гофрировочное покрытие. Осаждение соединений на поверхности клеточной стенки растений. Внешняя поверхность первичной стенки подвергается внешнему распаду. Подробнее Биологический словарь - это процесс осаждения полисахаридов и липидов на внешней первичной стенке.

Эти структуры расположены в форме сплюснутых цистерн, которые обрабатывают переработку белков и всевозможных других соединений, которые обычно служат для создания клеточной стенки. Внутриплазматическая сетка. Как и в аппарате Гольджи, как и в аппарате Гольджи, происходит прикрепление или отделение различных функциональных групп от соединений, предназначенных для сборки клетки.

Организменный - самостоятельное существование отдельной особи;

Популяционно-видовой - элементарная эволюционирующая единица - популяция;

Биогеоценотический - экосистемы, состоящие из разных популяций и среды их обитания;

Биосферный - все живое население Земли, обеспечивающее круговорот веществ в природе.

Природа - это весь существующий материальный мир во всем многообразии его форм. Единство природы проявляется в объективности ее существования, общности элементного состава, подчиненности одним и тем же физическим законам, в системности организации. Различные природные системы, как живые, так и неживые, взаимосвязаны и взаимодействуют между собой. Примером системного взаимодействия является биосфера.

Цитоплазма, также называемая цитоскелем, заполняет внутреннюю часть клетки. Все остальные органеллы в нем приостановлены. Цитоплазма Цитоплазма является неэукариотической частью протоплазмы эукариотической клетки, которая также включает клеточную мембрану. Он состоит из первичной цитоплазмы, называемой гиалаплазией и органеллами, суспендированными в ней. Подробнее Биологический словарь показывает характерные, видимые под движением микроскопа.

Циркуляция. Читайте словарь иностранных слов. Основными компонентами цитоскелета являются. Микротрубочки, которые образуют кариокинетический шпиндель. Микрофильмы, в основном поддерживают диаметр 12 нанометров, благодаря которым можно изменить форму ячейки.

Биология - это комплекс наук, изучающих закономерности развития и жизнедеятельности живых систем, причины их многообразия и приспособленности к окружающей среде, взаимосвязь с другими живыми системами и объектами неживой природы.

Объектом исследования биологии является живая природа.

Предметом исследования биологии являются:

Микрофиламенты Актиновые филаменты - волокнистые белковые структуры, образующие наряду с микротрубочками и промежуточными волокнами цитоскелет эукариотических клеток. Подробнее Биологический медиатор. Основная роль цитоскелета заключается в том, чтобы держать все органеллы в одном положении.

Эта органелла окружена одноклеточной мембраной, называемой тонопластом. Внутри это сотовый сок. Эта жидкость образует как органические, так и неорганические вещества. В дополнение к воде, ионам и соединениям, которые избавляются от раствора, найдены органические кислоты, белки, аминокислоты и сахара. Водная война - это накопление вредных соединений и детоксикация клетки.

Общие и частные закономерности организации, развития, обмена веществ, передачи наследственной информации;

Разнообразие форм жизни и самих организмов, а также их связи с окружающей средой.

Все многообразие жизни на Земле объясняется эволюционным процессом и действием окружающей среды на организмы.

Сущность жизни определяется М.В. Волькенштейном как существование на Земле «живых тел, представляющих собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот».

Вакуолярный сок также содержит гликозиды, такие как флавоны и антоцианы. Антоцианы Растворимые в воде растительные красители являются красными, розовыми, пурпурными и синими, которые могут варьироваться в зависимости от рН окружающей среды. Подробнее Биологический словарь и алкалоиды, морфин и никотин. Некоторые танины присутствуют.

Роль вакуолей заключается в поддержании клетки в надлежащей гидратации, накоплении вредных метаболитов, а в случае углеводов, а также переваривании процесса разложения сложных питательных веществ на простые. Подробнее Биологический словарь пищи. Эти органеллы характерны для клетки животных. Первичные лизосомы Лизосомы эукариотических эукариотических лимфоидных органелл окружены одной цитоплазматической мембраной. Подробнее Биологический словарь изготовлен из аппарата Гольджи или сети внутри тромбоцитов.

Основные свойства живых систем:

Обмен веществ;

Саморегуляция;

Раздражимость;

Изменчивость;

Наследственность;

Размножение;

Химический состав клетки. Неорганические вещества клетки

Цитология - наука, изучающая строение и функции клеток. Клетка является элементарной структурной и функциональной единицей живых организмов. Клеткам одноклеточных организмов присущи все свойства и функции живых систем. Клетки многоклеточных организмов дифференцированы по строению и функциям.

Они содержат в основном ферменты ферментативных биокатализаторов ферментов, увеличивая скорость биохимических реакций путем специфической активации субстратов. Подробнее Биологический словарь гидролиза, происходящий в форме, предшественник, т.е. неактивный.

Микросферы, расположенные в клетке, представляют собой пероксисомы. Пероксисомы представляют собой тип микроба, окруженный одной мембраной и заполненный мелкозернистой матрицей. Подробнее Биологический словарь и глиоксисомы Гликсисомы представляют собой небольшие сферические клеточные органеллы, которые содержат ферменты, которые участвуют в метаболизме липидов в углеводы. Подробнее Биологический словарь.

Атомный состав: в состав клетки входит около 70 элементов Периодической системы элементов Менделеева, причем 24 из них присутствуют во всех типах клеток.

Макроэлементы - Н, О, N, С, микроэлементы - Mg, Na, Са, Fe, К, Р, CI, S, ультрамикроэлементы - Zn, Сu, I, F, Мn, Со, Si и др.

Молекулярный состав: в состав клетки входят молекулы неорганических и органических соединений.

Основная роль микробов заключается в превращении перекиси водорода, участии в фотохимии и окислении субстратов. Это эллипсоидальная форма органеллы, которая участвует в дыхательных процессах. Они окружены двойной клеточной мембраной. Между двумя мембранами имеется перимитохондриальное пространство.

Митохондриальный митохондриальный органелл внутри цитоплазмы эукариотических дыхательных клеток. Подробнее Биологический словарь заполнен веществом, называемым митохондриальной матрицей. Это коллоидный раствор, в котором собираются ферменты цикла Кребса. Митохондрии являются полуавтономными органеллами, потому что они имеют свой собственный генетический материал и свой собственный поступательный аппарат, который похож на прокариотический аппарат.

Неорганические вещества клетки

Вода. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами образуются водородные связи, определяющие физические и химические свойства воды.

Рис. 1. Молекула воды Рис. 2. Водородные связи между молекулами воды

Физические свойства воды:

Эти органеллы характерны только для растительных клеток. В клетке может быть несколько различных типов пластид. Пропласты, которые являются основной формой большинства пластид. Лейкопласты, которые в основном находятся в корнях и резервных органах, обладают способностью синтезировать и хранить крахмал, когда они превращаются в свет, они превращаются в хлоропласты.

Хлоропласты, благодаря содержащимся в них хлорофиллам и другим красителям, позволяют проводить процессы ассимиляции. Хромопласты содержат в основном вспомогательные красители, дают цветы, фрукты, листья красного или желтовато-оранжевого цвета. Эти органеллы состоят из двух субъединиц. Они очень многочисленны в камере. Их основная роль - участвовать в процессе биосинтеза белка. Благодаря им можно проводить процессы перевода.

Вода может находиться в трех состояниях - жидком, твердом и газообразном;

Вода - растворитель. Полярные молекулы воды растворяют полярные молекулы других веществ. Вещества, растворимые в воде, называют гидрофильными. Вещества, не растворимые в воде, - гидрофобными;

Высокая удельная теплоемкость. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство воды обеспечивает поддержание теплового баланса в организме;

Эта органелла окружена оболочкой, в которой есть многочисленные поры. Внутри ядра присутствует хроматин, который содержит хромосомы. Иногда в клетке, кроме ядра, есть ядро. Ячейка является основной анатомической и функциональной единицей живых организмов. Он способен выполнять все жизненные функции - он извлекает энергию из окружающей среды и превращает ее в работу, используемую для метаболических процессов, роста и размножения.

Органические соединения, которые содержат каждую клетку, представляют собой белки, сахара и липиды. Эти вещества строят органеллы - структуры, которые выполняют различные функции в клетке. Каждая клетка окружена клеточной мембраной. Внутри - цитоплазма, в которой все органеллы суспендированы: клеточное ядро, митохондрии, пластиды, рибосомы, аппарат Гольджи, лизосомы, эндоплазматический ретикулум.

Высокая теплота парообразования. Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева;

Молекулы воды находятся в постоянном движении, они сталкиваются друг с другом в жидкой фазе, что немаловажно для процессов обмена веществ;

Белки представляют собой полимеры из аминокислот, количество которых колеблется от нескольких десятков до одной тысячи. Аминокислотная последовательность и пространственная структура молекулы белка определяют его биологические свойства. Наиболее важной группой белков являются ферменты, которые катализируют химические реакции в клетке. Благодаря им тело функционирует хорошо. Белки, помимо аминокислот, также могут быть присоединены к небелковым группам - такие молекулы называются комплексными белками.

В дополнение к выполнению ферментативной функции белки являются основным строительным блоком тканей. Сложность сюжета делится на простое и сложное. Комплексные сахара состоят из двух или более простых молекул сахара. Моносахариды - например, глюкоза глюкозы - прямой сахар, содержит шесть атомов углерода - гексозу. Он чаще всего используется как дыхательный субстрат, то есть источник энергии. Подробнее Биологический словарь и фруктоза - легко растворяются в воде и кристаллизуются. Они функционируют как энергия, действуя как топливо в дыхательных процессах.

Сцепление и поверхностное натяжение. Водородные связи обусловливают вязкость воды и сцепление ее молекул с молекулами других веществ (когезия). Благодаря силам сцепления молекул на поверхности воды создается пленка, которую характеризует поверхностное натяжение;

Плотность. При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшую плотность вода имеет при 4°С. Замерзая, вода расширяется (необходимо место для образования водородных связей), и ее плотность уменьшается, поэтому лед плавает на поверхности воды, что защищает водоем от промерзания;

Комплексные комплексы выполняют функции резервного копирования и сборки. Жиры нерастворимы в воде. Химически они представляют собой сложные эфиры глицерина и жирных кислот. Они функционируют как энергия и строительные блоки. Вся клетка заполняет желатиновую, полужидкую или полутвердую цитоплазму в постоянном движении. Он окружает белково-липидную цитоплазматическую мембрану. Его структура представляет собой липидный бислой, в котором расположены белки. Читать дальше Словарь литературных символов проникает через него на обратный осмос, а транспортный элемент транспорта национальной экономики называется коммуникацией.

Способность к образованию коллоидных структур. Молекулы воды образуют вокруг нерастворимых молекул некоторых веществ оболочку, препятствующую образованию крупных частиц. Такое состояние этих молекул называется дисперсным (рассеянным). Мельчайшие частицы веществ, окруженные молекулами воды, образуют коллоидные растворы (цитоплазма, межклеточные жидкости).

Перемещение груза и людей. Животные во многих частях мира являются основным средством передвижения. Подробнее Географический глоссарий других веществ является избирательным, пассивным или активным. Клеточная мембрана и цитоплазма Цитоплазма неэпителиальной части протоплазмы эукариотической клетки, включая клеточную мембрану. Подробнее Биологический словарь - это элемент, присутствующий в строительстве каждой живой клетки без исключения. Ядро клетки - самый важный элемент, ответственный за функционирование клетки - отсутствует в прокариотических организмах, то есть в бактериях и цианобактериях.

Биологические функции воды:

Транспортная - вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам;

Метаболическая - вода является средой для всех биохимических реакций и донором электронов при фотосинтезе, она необходима для гидролиза макромолекул до их мономеров;

Ядро содержит генетический материал и окружено двойной, пористой мембраной. Форма и размер ядра могут различаться в разных клетках. В зависимости от структуры это может быть гетерохроматин Гетерохроматин хроматин с высокой степенью спирализации, сильно окрашивающий в гистологические препараты. Он считается физиологически неактивным, а не транскрибированным. Подробнее Биологический словарь - компактная форма, не активная или эухромоатин - свободная форма, биологически активная. Функции ядра - это контроль всех клеточных процессов и передача генетической информации из поколения в поколение в процессе воспроизведения.

Участвует в образовании:

1) смазывающих жидкостей, которые уменьшают трение (синовиальная - в суставах позвоночных животных, плевральная, в плевральной полости, перикардиальная - в околосердечной сумке);

2) слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей;

Рибосомы связаны с функционированием ядра - гранулемами, связанными с клеточной мембранной системой или свободно расположенными в цитоплазме. Каждая рибосома состоит из двух субъединиц: больших и малых. Это митохондрии и пластмассы. Митохондрии - это энергетические центры, которые осуществляют клеточное дыхание и производство энергии. Подробнее Биологический словарь - это матрица, разрезанная гребнями, содержащими гранулы белка. Плиты встречаются только в растительных клетках. В молодых клетках они имеют форму пропластидов и только в ходе индивидуальной жизни различаются различные типы пластид: лейкопласты, хлоропласты.

3) секретов (слюна, слезы, желчь, сперма и т.д.) и соков в организме.

Неорганические ионы. Неорганические ионы клетки представлены: катионами К+, Na+, Са2+, Mg2+, NH3 и анионами Сl-, NOi2-, H2PO4-, HCO3-, HPO42-.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Хлоропласты типа пластид. Органные клетки, происходящие исключительно в растительных клетках и участвующие в фотосинтезе. Подробнее Биологический словарь или хромопластика. Хлорофилл содержит хлорофилл - зеленый фотосинтетический краситель. В отсутствие света развиваются бесцветные лейкопласты. Хромопласты Хромопласты Цветные пластики в сосудистых растениях. Содержит только каротиноидные красители - от желтых ксантофиллов до красных каротинов. Подробнее Биологические словари содержат другие цвета, они могут быть созданы из любых других пластид.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6-9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 4-7.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей, они также необходимы для осуществления мышечного сокращения, свертывания крови.

Вода – один из самых основных компонентов живой клетки, составляет в среднем 70-80% массы клетки. В клетке вода находится в свободной (95%) и связанной (5%) формах. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции:

1. Вода - универсальный растворитель для полярных веществ, например солей, сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными.

2. Молекулы воды участвуют во многих химических реакциях, например при гидролизе полимеров.

3. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.

4. Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными.

5. Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде.

6. Вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.

7. Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.

8. Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет большое значение для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.

9. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

10. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

11. Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез и др.

Свойства, функции и значение воды

Минеральные соли . Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg2+, NH4+) и анионы (Сl- , Н2Р04 -, НР042- , НС03 -, NO3 2-, SO4 2-) .Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др. Ряд катионов и анионов необходим для синтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеотидов, гемоглобина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы. Соляная кислота входит в состав желудочного сока. Соли кальция и фосфора присутствуют в костной ткани животных и человека.

Органические вещества. Основой всех органических соединений является углерод (С), который образует связи с другими атомами и их группами. В результате образуются сложные химические соединения, разные по строению и функциям, - макромолекулы (от греч. macros – большой).

Макромолекулы состоят из повторяющихся низкомолекулярных соединений, - мономеров (от греч. monos – один).

Полимер (от греч. poly – много) макромолекула, образованная мономерами.

В молекулах полимеров мономеры могут быть одинаковые или разные. В зависимости от того, какие мономеры входят в состав полимеров, полимеры делятся на следующие группы:

Полимеры


Регулярные Нерегулярные

А-А-А-А-A-A- - А-В-А-С- В-А-А-D- C- A-

A-S-D-A-S-D-A-S-D-

Полимеры, входящие в состав живых организмов, называются биополимеры, свойства которых зависят от строения их молекул, числа и разнообразия мономеров. Биополимеры универсальны, так как построены по единому плану у всех живых организмов. Разнообразие свойств биополимеров обусловлено различным сочетанием мономеров, образующих различные варианты. Свойства биополимеров проявляются только в живой клетке.

Углеводы, или сахариды , - органические соединения, в состав которых входят углерод, водород и кислород. Название «углеводы» они получили из-за своего химического состава: общая формула большинства из них Сn(H2O)n.

Состав и строение углеводов

Моносахариды – простые сахара, имеющие общую формулу (СН2О)n , где n=3-9. Среди моносахаридов различают триозы (3С), тетраозы (4С), пентозы (5С) – рибоза, дезоксирибоза, гексозы (6С) – глюкоза, галактоза. Моносахариды хорошо растворяются в воде, они сладкие на вкус. Фруктоза входит в состав меда, находится в плодах, зеленых частях растений. Глюкоза находится в плодах, крови, лимфе, является основным источником энергии, входит в состав дисахаридов и полисахаридов.

Дисахариды – вещества, образованные в результате конденсации двух молекул моносахаридов с потерей одной молекулы воды. У растений - это сахароза (С12Н22О11) и мальтоза, у животных – лактоза. Сахароза – основная транспортная форма углеводов в растениях. Лактоза образуется в молочной железе и присутствует в молоке.

глюкоза + глюкоза = мальтоза;
глюкоза + галактоза = лактоза;
глюкоза + фруктоза = саxароза.

По своим свойствам дисахариды близки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды – это высокомолекулярные углеводы, образованные путем соединения большого числа молекул моносахаридов, У растений – крахмал, целлюлоза (клетчатка), формула (С6Н10О5)n ; у животных – гликоген, хитин. Целлюлоза – основной опорный компонент клеточной стенки у растений. Крахмал – основной резервный углевод растений. Гликоген – резервный полисахарид животных (накапливается в печени и мышцах. Хитин входит в состав покровов членистоногих, обеспечивает прочность покровных структур грибов.

Локализация в клетке и организме: клеточная стенка, клеточные включения, клеточный сок растений, покровы членистоногих.

Функции углеводов :

1) Энергетическая. Углеводы – это основной источник энергии для организмов. В процессе окисления 1 г углеводов освобождается 17,6 кДж.

2) Структурная. Клеточные стенки растений построены из целлюлозы. Покровы тела членистоногих, клеточные стенки грибов состоят из хитина. Углеводы входят в состав органоидов, молекул ДНК и РНК.

3) Запасающая. Эту функцию выполняют у растений крахмал, у животных гликоген. Они обладают способностью накапливаться в клетках и расходоваться по мере возникновения потребности в энергии.

4) Защитная. Железы выделяют секреты, которые содержат углеводы. Секреты защищают стенки полых органов (желудок, кишечник) от механических повреждений, проникновения болезнетворных бактерий.

Липиды - это жироподобные вещества, большинство из которых состоит из жирных кислот и трехатомного спирта; это сложные эфиры высших жирных кислот и трехатомного спирта глицерина.

Жиры – наиболее простые и широко распространенные липиды. Жидкие жиры называются маслами. У животных масла встречаются в молоке, но чаще встречаются у растений в семенах, плодах.

Состав и строение липидов

Место синтеза в клетке: на мембранах гладкой эндоплазматической сети.

Локализация в клетке и организме: клеточная мембрана, клеточные включения, подкожная жировая клетчатка и сальники.

Функции липидов :

1) Энергетическая. Липиды – «энергетическое депо». При окислении 1 г липидов до СО2 и Н2О освобождается 38,9 кДж, что в два раза больше по сравнению с углеводами и белками.

2) Структурная. Липиды принимают участие в построении мембран клеток и образовании важных биологических соединений, например, гормонов, витаминов.

3) Запасающая. В растениях чаще накапливаются масла, а не жиры. Семена сои и подсолнечника богаты маслами.

4) Защитная и теплоизоляционная. Жиры плохо проводят тепло. Они откладываются под кожей животных, у некоторых достигают такие скопления толщины до 1 м, например, у китов. Жировой слой защищает животных от переохлаждения. Жировая ткань выполняет функцию терморегулятора. У китов, кроме того, он играет еще и другую роль - способствует плавучести. Благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.

5) Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений. Такой слой защищает листья во время сильных дождей от намокания.

6) Регуляторная. Многие биологически активные вещества (половые гормоны - тестостерон у

мужчин и прогестерон у женщин), витамины (A, D, E) являются соединениями липидной

7) Источник метаболической воды. Одним из продуктов окисления жира является вода, которая

очень важна для некоторых обитателей животного мира пустынь, например, для верблюдов.

Жир, который запасают эти животные в горбах, является источником воды. Окисление 100 г

жира дает примерно 105 г воды. Необходимую для жизнедеятельности воду медведи, сурки и

другие животные, впадающие в спячку, получают в результате окисления жира.

8) В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

9) Воск используется пчелами в строительстве сот.

Липиды могут образовывать комплексы с другими биологическими молекулами - белками и сахарами.

Белки, или протеины (от греч. protos – первый) – самые многочисленные, разнообразные и имеющие первостепенное значение органические соединения. Белки – макромолекулы, так как имеют большие размеры.

Химический состав молекул белка: углерод, кислород, водород, азот, сера, также могут быть фосфор, железо, цинк, медь.

Белки - это полимеры, состоящие из повторяющихся низкомолекулярных мономеров. Аминокислоты – мономеры белковых молекул. Известно около 200 аминокислот, встречающихся в живых организмах, но только 20 из них входят в состав белков. Это так называемые основные, или белокобразующие аминокислоты. 20 аминокислот обеспечивают многообразие белков. У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин и гистидин (всего 10).

Строение аминокислоты:

Между аминогруппой одной аминокислоты и карбоксильной группой другой аминокислоты образуется ковалентная связь, которая называется пептидная связь, а молекула белка – полипептид .


В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа -СООН способна отдавать протон, функционируя как кислота, а аминная - NH2 - принимать протон, проявляя таким образом свойства основания.

Структура белков. Каждому белку в определенной среде свойственна особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Уровни структурной организации белка: а - первичная структура - аминокислотная последовательность белка; б - вторичная структура - полипептидная цепь закручена в виде спирали; в - третичная структура белка; г - четвертичная структура гемоглобина.

Место синтеза белков в клетке: на рибосомах.

Локализация белков в клетке и организме: присутствуют во всех органоидах и цитоплазматическом матриксе.

Пространственная структура белка:

Первичная структура белка – последовательность аминокислот, соединенных друг с другом пептидными связями в полипептидную цепь. От первичной структуры зависят все свойства и функции белков. Замена одной-единственной аминокислоты в составе молекул белка или нарушение порядка в их расположении обычно влечет за собой изменение функции белка.

Вторичная структура белковой молекулы достигается ее спирализацией: полипептидная цепь, состоящая из последовательно соединенных аминокислот, закручивается в спираль, образуются непрочные водородные связи между – СО- и – NН- группами.

При образовании третичной структуры спирализованная белковая молекула еще многократно сворачивается, образуя шарик – глобулу. Прочность третичной структуры определяется различными связями, например, дисульфидными связями (-S-S-), ионные, водородные, гидрофобное взаимодействие.

Четвертичная структура - это соединение, состоящее из нескольких молекул белка, имеющих третичную структуру. Химические связи - ионные, водородные, гидрофобное взаимодействие.

И так, первичная структура – это линейная структура, в виде полипептидной цепи; вторичная – спиральная, за счет водородных связей; третичная – глобулярная; четвертичная – объединение нескольких молекул белка с третичной структурой.

Свойство белка – денатурация - нарушение природной структуры белка, которая бывает обратимая, если не разрушена первичная структура, и необратимая, если первичная структура разрушена.

Воздействие факторов среды

(температура, химические вещества, излучение и др.)


Денатурация белка (разрушение структур)

Ренатурация – полное восстановление структуры белка.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение вторичной, третичной и четвертичной структур белка вследствие разрыва водородных и ионных связей. Процесс нарушения естественной структуры белка называется денатурацией. При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации может быть полным или частичным. В некоторых случаях переход к нормальным условиям среды сопровождается самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией.

Простые и сложные белки. По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложный - белки, содержащие белковую часть и небелковую - ионы металлов, остаток фосфорной кислоты, углеводы, липиды и др.

Функции белков :

1) Ферментативная , или каталитическая. Катализаторы – это вещества, ускоряющие химические реакции. Ферменты – это катализаторы биохимических реакций. Ферменты ускоряют реакции в организме в десятки и сотни тысяч раз. Они высокоспецифичны, так как каждый фермент катализирует только определенную реакцию.

Ферменты = Биокатализаторы (ускорители химических реакций, протекающих в клетках)

2) Структурная. Белки входят в состав всех мембран и органоидов клетки (например, в соединении с РНК белок образует рибосомы).

3) Энергетическая . При распаде 1 г белков до конечных продуктов (СО2, Н2О и азотсодержащие вещества) выделяется 17,6 кДж.

4) Запасающая. Эту функцию выполняют белки – источники питания (белок яйца – альбумин,

белок молока – казеин, клетки эндосперма и яйцеклетки).

5) Защитная. Все живые клетки и организмы имеют защитные системы. У человека и животных - это иммунная защита. В лимфоцитах образуются антитела – защитные белки, которые обезвреживают чужеродные тела. Другой пример защитной функции – свертывание белка фибриногена в крови, что приводит к образованию сгустка крови – тромба, который закупоривает сосуд, кровотечение прекращается. Механическую защиту обеспечивают роговые образования – волосы, рога, копыта. В состав этих образований входят белки. Растения тоже образуют защитные белки, например, алкалоиды, благодаря которым покровы растений становятся более прочными и устойчивыми.

6) Регуляторная. Многие белки – гормоны , регулирующие физиологические процессы (белковую природу имеют инсулин и глюкагон). Клетки поджелудочной железы вырабатывают гормон инсулин, регулирующий содержание глюкозы в крови.

Поджелудочная железа

Гормон инсулин

Глюкоза (в крови) à Гликоген (в клетках печени)

7) Транспортная. Функция транспортных белков заключается в присоединении химических элементов или биологически активных веществ и переносе их к тканям и органам.

Гемоглобин (находится в эритроцитах)


Гемоглобин + кислород Гемоглобин + углекислый газ

8) Двигательная. Сократительные белки участвуют во всех видах движения, к которым способны клетки и организмы. Примеры: движение жгутиков и ресничек у простейших одноклеточных животных, сокращение мышц у многоклеточных животных (белки миозин и актин обеспечивают сокращение мышечных клеток), движение листьев у растений.

9) Сигнальная. Белки, встроенные в мембрану клетки, осуществляют прием сигналов из

внешней среды и передачу информации в клетку. Такие белковые молекулы способны

изменять свою третичную структуру в ответ на действия факторов внешней среды.

10) Токсическая (токсины, обеспечивающие защиту от врагов и умерщвление добычи).

Функции белка Характеристика
1. Структурная Белки входят в состав клеточных мембран и органоидов
2. Энергетическая При окислении 1 г белков выделяется 17,6 кДж
3. Запасающая Белки – запасной питательный и энергетический материал
4. Каталитическая, ферментативная Белки – ферменты, ускоряющие химические реакции
5. Регуляторная Многие белки – гормоны, регулирующие физиологические процессы
6. Транспортная Перенос различных веществ (гемоглобин + кислород)
7. Двигательная Сократительные белки обеспечивают движение (хромосомы к полюсам клетки)
8. Защитная Защищают организм от чужеродных тел
9. Сигнальная Осуществляют прием сигналов из внешней среды и передачу информации в клетку
10. Токсическая Токсины обеспечивают защиту от врагов и умерщвление добычи

Белки используются как источник энергии редко, поскольку они выполняют ряд других важных функций. Белки обычно используются, когда истощаются такие источники, как углеводы и жиры. Углеводы и жиры откладываются в запас; когда в пище не хватает какого-либо органического соединения, возможно превращение в организме одних органических соединений в другие: белков в жиры и углеводы, углеводы и жиры друг в друга. Но углеводы и жиры не могут превращаться в белки.

УГЛЕВОДЫ ЖИРЫ

Аминокислоты, которые образуются при расщеплении белковых молекул, необходимы для построения новых белков. Недостаток белков в пище является невосполнимым, так как они образуются только из аминокислот. Поэтому белковое голодание опасно для организма.

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г. И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот - хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.

Нуклеиновые кислоты

Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.

Строение нуклеотида ДНК

Строение нуклеотида РНК

Молекула ДНК – двойная цепь, закрученная по спирали.

Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК. Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.

Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц. Эти пары оснований называют комплементарными парами.

Таким образом, принцип комплементарности (от лат. complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание. Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.

Водородные связи между азотистыми основаниями нуклеотидов

Г ≡ Ц Г ≡ Ц

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:

1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.

2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.

3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация). Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки. Способность молекулы ДНК исправлять ошибки, возникающие в ее цепях, то есть восстанавливать правильную последовательность нуклеотидов, называется репарацией .

Молекулы ДНК находятся в основном в ядрах клеток и в небольшом количестве в митохондриях и пластидах – хлоропластах. Молекулы ДНК – носители наследственной информации.

Строение, функции и локализация в клетке. Различают три вида РНК. Названия связаны с выполняемыми функциями:

Сравнительная характеристика нуклеиновых кислот

Аденозинфосфорные кислоты - аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), аденозинмонофосфорная кислота (АМФ).

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, осуществляет активный транспорт веществ, биение жгутиков и ресничек.

АТФпо строению сходна с адениновым нуклеотидом, входящим в состав РНК, только вместо одной фосфорной кислоты в состав АТФ входят три остатка фосфорной кислоты.

Строение молекулы АТФ:

Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией. При разрыве этих связей выделяется энергия, которая используется каждой клеткой для обеспечения процессов жизнедеятельности:

АТФ АДФ + Ф + Е

АДФ АМФ + Ф + Е,

где Ф – фосфорная кислота Н3РО4, Е – освобождающаяся энергия.

Химические связи в АТФ между остатками фосфорной кислоты, богатые энергией, называются макроэргическими связями . Отщепление одной молекулы фосфорной кислоты сопровождается выделением энергии – 40 кДж.

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием.

При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях. Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

АТФ играет важную роль в биоэнергетике клетки: выполняет одну из важнейших функций – накопителя энергии, это универсальный биологический аккумулятор энергии.