Гармонические колебания происходят. Гармонические колебания. Уравнение гармонических колебаний

Изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Рисунок 1.

Уравнение гармонических колебаний можно записать следующим образом:

$q=q_0cos({\omega }_0t+{\alpha }_0)$ (1)

где $t$-время; $q$ заряд, $q_0$-- максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; ${\omega }_0t+{\alpha }_0$- фаза колебаний; ${\alpha }_0$- начальная фаза; ${\omega }_0$- циклическая частота. За период фаза меняется на $2\pi $.

Уравнение вида:

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac{\pi }{2}.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Рисунок 2.

Если сопротивление, которое входит в состав контура $R \

где $\omega =\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}$ -- циклическая частота колебаний. $\beta =\frac{R}{2L}-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Пример 1

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

\[{\omega }_0=\frac{2\pi }{T}\left(1.4\right).\]

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Пример 2

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что ${\omega }_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

\ \

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Вычислим емкость:

Ответ: $T=0,1$ c, $C=2,5\cdot {10}^{-4}Ф.$

Гармонические колебания

Графики функций f (x ) = sin(x ) и g (x ) = cos(x ) на декартовой плоскости.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

,

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

Эволюция во времени перемещения, скорости и ускорения при гармоническом движении

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).
  • Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Применение

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

См. также

Примечания

Литература

  • Физика. Элементарный учебник физики / Под ред. Г. С. Лансберга. - 3 изд. - М ., 1962. - Т. 3.
  • Хайкин С. Э. Физические основы механики. - М ., 1963.
  • А. М. Афонин. Физические основы механики. - Изд. МГТУ им. Баумана, 2006.
  • Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. - М .: Физматлит, 1959. - 572 с.

Wikimedia Foundation . 2010 .

  • Гмина Мальборк
  • Народы Африки

Смотреть что такое "Гармонические колебания" в других словарях:

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ Современная энциклопедия

    Гармонические колебания - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь

    Гармонические колебания - Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный. момент времени t (для механич. Г. к., напр., смещение или скорость, для… … Физическая энциклопедия

    гармонические колебания - Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - колебания, при к рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону, где х значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич. напряжение и сила тока) … Физическая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… … Большой Энциклопедический словарь

    Гармонические колебания - 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса. Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Математический маятник

Колебания математического маятника.

Математический маятник – материальная точка, подвешенная на невесомой нерастяжимой нити (физическая модель).

Будем рассматривать движение маятника при условии, что угол отклонения мал, тогда, если измерять угол в радианах, справедливо утверждение: .

На тело действуют сила тяжести и сила натяжения нити. Равнодействующая этих сил имеет две составляющие: тангенциальную, меняющую ускорение по величине, и нормальную, меняющую ускорение по направлению (центростремительное ускорение, тело движется по дуге).

Т.к. угол мал, то тангенциальная составляющая равна проекции силы тяжести на касательную к траектории: . Угол в радианах равен отношению длины дуги к радиусу (длине нити), а длина дуги приблизительно равна смещению (x ≈ s ): .

Сравним полученное уравнение с уравнением колебательного движения .

Видно, что или- циклическая частота при колебаниях математического маятника.

Период колебаний или(формула Галилея).

Формула Галилея

Важнейший вывод: период колебаний математического маятника не зависит от массы тела!

Аналогичные вычисления можно проделать с помощью закона сохранения энергии.

Учтем, что потенциальная энергия тела в поле тяготения равна , а полная механическая энергия равна максимальной потенциальной или кинетической:

Запишем закон сохранения энергии и возьмем производную от левой и правой частей уравнения: .

Т.к. производная от постоянной величины равна нулю, то .

Производная суммы равна сумме производных: и.

Следовательно: , а значит.

Уравнение состояния идеального газа

(уравнение Менделеева – Клапейрона).

Уравнением состояния называется уравнение, связывающее параметры физической системы и однозначно определяющее ее состояние.

В 1834 г. французский физик Б. Клапейрон , работавший дли тельное время в Петербурге, вывел уравнение состояния идеаль­ного газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул.

В МКТ и термодинамике идеального газа макроскопическими параметрами являются: p, V, T, m.

Мы знаем, что . Следовательно,. Учитывая, что, получим:.

Произведение постоянных величин есть величина постоянная, следовательно: - универсальная газовая постоянная (универсальная, т.к. для всех газов одинаковая).

Таким образом, имеем:

Уравнение состояния (уравнение Менделеева – Клапейрона).

Другие формы записи уравнения состояния идеального газа.

1.Уравнение для 1 моля вещества.

Если n=1 моль, то, обозначив объем одного моля V м, получим: .

Для нормальных условий получим:

2. Запись уравнения через плотность: - плотность зависит от температуры и давления!

3. Уравнение Клапейрона.

Часто необходимо исследовать ситуацию, когда меняется состояние газа при его неизменном количестве (m=const) и в отсутствие химических реакций (M=const). Это означает, что количество вещества n=const. Тогда:

Эта запись означает, что для данной массы данного газа справедливо равенство:

Для постоянной массы идеального газа отношение произве­дения давления на объем к абсолютной температуре в данном состоянии есть величина постоянная: .

Газовые законы.

1. Закон Авогадро.

В равных объемах различных газов при одинаковых внешних условиях находится одинаковое число молекул (атомов).

Условие: V 1 =V 2 =…=V n ; p 1 =p 2 =…=p n ; T 1 =T 2 =…=T n

Доказательство:

Следовательно, при одинаковых условиях (давление, объем, температура) число молекул не зависит от природы газа и одинаково.

2. Закон Дальтона.

Давление смеси газов равно сумме парциальных (частных) давлений каждого газа.

Доказать: p=p 1 +p 2 +…+p n

Доказательство:

3. Закон Паскаля.

Давление, производимое на жидкость или газ, передается во все стороны без изменения.

Уравнение состояния идеального газа. Газовые законы.

Числа степеней свободы : это число независимых переменных (координат), которые полностью определяют положение системы в пространстве. В некоторых задачах молекулу одноатомного газа (рис. 1, а) рассматривают как материальную точку, которой задают три степени свободы поступательного движения. При этом не учитывается энергия вращательного движения. В механике молекула двухатомного газа в первом приближении считается совокупностью двух материальных точек, которые жестко связанны недеформируемой связью (рис. 1, б). Данная система кроме трех степеней свободы поступательного движения имеет еще две степени свободы вращательного движения. Вращение вокруг третьей оси, проходящей через оба атома, лишено смысла. Значит, у двухатомного газа пять степеней свободы (i = 5). У трехатомной (рис. 1, в) и многоатомной нелинейной молекулы шесть степеней свободы: три поступательных и три вращательных. Естественно считать, что жесткой связи между атомами не существует. Поэтому необходимо учитывать для реальных молекул также степени свободы колебательного движения.

При любом числе степеней свободы данной молекулы три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, значит на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <ε 0 > (энергия поступательного движения молекул): В статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул : для статистической системы, которая находится в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы - в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией, т.к. на нее приходится как кинетическая энергия (как в случае поступательного и вращательного движений), так и потенциальная, причем средние значения потенциальной и кинетической и энергии одинаковы. Значит, средняя энергия молекулы где i - сумма числа поступательных, числа вращательных в удвоенного числа колеба¬тельных степеней свободы молекулы:i =i пост +i вращ +2i колеб В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы. Так как в идеальном газе взаимная потенциальная энергия взаимодействия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия для одного моля газа, будет равна сумме кинетических энергий N A молекул: (1) Внутренняя энергия для произвольной массы m газа. где М - молярная масса, ν - количество вещества.

Движение маятника в часах, землетрясение, переменный ток в электрической цепи, процессы радиопередачи и радиоприема - это совершенно различные, не связанные друг с другом процессы. Каждый из них имеет свои особые причины, но их объединяет один признак - признак общности характера изменения физических величин с течением времени. Эти и многие другие процессы различной физической природы во многих случаях оказывается целесообразным рассматривать как один особый тип физических явлений - колебания.

Общий признак физических явлений, называемых колебаниями, - это их повторяемость во времени. При различной физической природе многие колебания происходят по одинаковым законам, что позволяет применять общие методы для их описания и анализа.

Гармонические колебания. Из большого числа различных колебаний в природе и технике особенно часто встречаются гармонические колебания. Гармоническими называют колебания, совершающиеся по закону косинуса или синуса:

где - величина, испытывающая колебания; - время; - постоянная величина, смысл которой будет выяснен далее.

Максимальное значение величины, изменяющейся по гармоническому закону, называют амплитудой колебаний. Аргумент косинуса или синуса при гармонических колебаниях называют фазой колебания

Фазу колебания в начальный момент времени называют начальной фазой. Начальная фаза определяет значение величины в начальный момент времени

Значения функции синуса или косинуса при изменении аргумента функции на повторяются, поэтому при гармонических колебаниях значения величины повторяются при изменении фазы колебания на . С другой стороны, при гармоническом колебании величина должна принимать те же значения через интервал времени, называемый периодом колебаний Т. Следовательно, изменение фазы на происходит

через период колебаний Т. Для случая, когда получим:

Из выражения (1.2) следует, что постоянная в уравнении гармонических колебаний есть число колебаний, происходящих за секунд. Величину называют циклической частотой колебаний. Используя выражение (1.2), уравнение (1.1) можно выразить через частоту или период Т колебаний:

Наряду с аналитическим способом описания гармонических колебаний широко используют графические способы их представления.

Первый способ - задание графика колебаний в декартовой системе координат. По оси абсцисс откладывают время I, а по оси ординат - значение изменяющейся величины Для гармонических колебаний этот график - синусоида или косинусоида (рис. 1).

Второй способ представления колебательного процесса - спектральный. По оси ординат отсчитывают амплитуду, а по оси абсцисс - частоту гармонических колебаний. Гармонический колебательный процесс с частотой и амплитудой представлен в этом случае вертикальным отрезком прямой длиной проведенным от точки с координатой на оси абсцисс (рис. 2).

Третий способ описания гармонических колебаний - метод векторных диаграмм. В этом способе используют следующий, чисто формальный прием для нахождения в любой момент времени значения величины изменяющейся по гармоническому закону:

Выберем на плоскости произвольно направленную координатную ось по которой будем отсчитывать интересующую нас величину Из начала координат вдоль оси проведем вектор модуль которого равен амплитуде гармонического колебания хт. Если теперь представим себе, что вектор вращается вокруг начала координат в плоскости с постоянной угловой скоростью со против часовой стрелки, то угол а между вращающимся вектором и осью в любой момент времени определится выражением.

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.