Кто провел опыты по определению давления света. Примеры решенных задач по физике на тему "давление света". Свет и цвет

Давлением света называется давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Существование давления было предсказано Дж. Максвеллом в его электромагнитной теории света.

Если, например, электромагнитная волна падает на металл (рис. 19.9), то под действием электрического поля волны с напряженностью \(\vec E\) электроны поверхностного слоя металла будут двигаться в направлении, противоположном вектору \(\vec E,\) со скоростью \(\vec \upsilon = const.\) Магнитное поле волны с индукцией \(~В\) действует на движущиеся электроны с силой Лоренца F Л в направлении, перпендикулярном поверхности металла (согласно правилу левой руки). Давление р, оказываемое волной на поверхность металла, можно рассчитать как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

\(p = \dfrac{ \sum_{n=1}^n \vec F_{iL} }{S}.\)

На основании электромагнитной теории Максвелл получил формулу для светового давления. С ее помощью он рассчитал давление солнечного света в яркий полдень на абсолютно черное тело, расположенное перпендикулярно солнечным лучам. Это давление оказалось равным 4,6 мкПа:

\(~p = (1 + \rho)\dfrac{J}{c}.\)

где J - интенсивность света, \(~\rho\) - коэффициент отражения света (см. § 16.3), с - скорость света в вакууме. Для зеркальных поверхностей \(~\rho = 1,\) при полном поглощении (для абсолютно черного тела) \(~\rho = 0\)

С точки зрения квантовой теории, давление является следствием того, что у фотона имеется импульс \(p_f = \dfrac{h \nu}{c}.\) Пусть свет падает перпендикулярно поверхности тела и за 1 с на 1 м 2 поверхности падает N фотонов. Часть из них поглотится поверхностью тела (неупругое соударение), и каждый из поглощенных фотонов передает этой поверхности свой импульс \(p_f = \dfrac{h \nu}{c}.\) Часть же фотонов отразится (упругое соударение). Отраженный фотон полетит от поверхности в противоположном направлении. Полный импульс, переданный поверхности отраженным фотоном, будет равен

\(\Delta p_f = p_f - (-p_f) = 2p_f = 2\dfrac{h \nu}{c}.\)

Давление света на поверхность будет равно импульсу, который передают за 1 с все N фотонов, падающих на 1 м 2 поверхности тела (\(F\Delta t=\Delta p \Rightarrow F=\frac{\Delta p}{\Delta t}; p = \frac{F}{S}=\frac{\Delta p}{S\Delta t}\)). Если \(~\rho\) - коэффициент отражения света от произвольной поверхности, \(k\) - коэффициент пропускания света, то \(~\rho \cdot N\) - это число отраженных фотонов, а \(~(1 - k - \rho)N\) - число поглощенных фотонов. Следовательно, давление света

\(p = 2 \rho N \dfrac{h \nu}{c}+(1-k-\rho)N\dfrac{h \nu}{c} = (1 - k + \rho) N \dfrac{h \nu}{c}.\)

Произведение представляет собой энергию всех фотонов, падающих на 1 м 2 поверхности за 1 с. Это есть интенсивность света (поверхностная плотность потока излучения падающего света):

\(Nh\nu = \dfrac{W}{S \cdot t} = I.\)

Таким образом, давление света \(p = (1 - k + \rho)\dfrac{I}{c}.\)

Предсказанное Максвеллом световое давление было экспериментально обнаружено и измерено русским физиком П. Н. Лебедевым. В 1900 г. он измерил давление света на твердые тела, а в 1907-1910 гг. - давление света на газы.

Прибор, созданный Лебедевым для измерения давления света, представлял собой очень чувствительный крутильный динамометр (крутильные весы). Его подвижной частью являлась подвешенная на тонкой кварневой нити легкая рамка с укрепленными на ней крылышками - светлыми и черными дисками толщиной до 0,01 мм. Крылышки делали из металлической фольги (рис. 19.10). Рамка была подвешена внутри сосуда, из которого откачали воздух.

Свет, падая на крылышки, оказывал на светлые и черные диски разное давление. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

Трудности измерения светового давления вызывались его исключительно малым значением и существованием явлений, сильно влияющих на точность измерений. К их числу относилась невозможность полностью откачать воздух из сосуда, что приводило к возникновению так называемого радиометрического эффекта.

Сущность этого явления в следующем. Сторона крылышек, обращенная к источнику света, нагревается сильнее противоположной стороны. Поэтому  молекулы воздуха, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны. Так появляется дополнительный вращающий момент.

Схема установки Лебедева для измерения давления света на газы изображена на рисунке 19.11. Свет, проходящий сквозь стеклянную стенку А, действует на газ, заключенный в цилиндрическом канале В. Под давлением света газ из канала В перетекает в сообщающийся с ним канал С. В канале С находится легкий подвижный поршень D, подвешенный на тонкой упругой нити Е, перпендикулярной плоскости чертежа. Световое давление рассчитывалось по углу закручивания нити.

Одним из экспериментальных подтверждений наличия у фото­нов импульса является существование светового давления (опыты Лебедева).

Волновое объяснение (по Максвеллу): взаимодействие индуцированных токов с магнитным полем волны.

С квантовой точки зрения давление света на поверхность обусловлено тем, что при соударении с этой поверхностью каждый фотон передает ей свой импульс. Так как фотон может двигаться только со скоростью света в вакууме, то отражение света от поверхности тела следует рассматривать как процесс «переизлучения» фотонов - падающий фотон поглощается поверхностью, а затем вновь излучается ею с противоположным направлением импульса.

Рассмотрим световое давление, которое оказывает на поверхность тела поток монохроматического излучения, падающего перпендикулярно поверхности.

Пусть в единицу времени на единицу площади поверхности тела падает п фотонов. Если коэффициент отражения света от поверхности тела равен R, то Rn фотонов отражается, а (1 R) п- поглощается. Каждый отраженный фотон передает стенке импульс, равный 2р ф =2hv/c (при отражении импульс фотона изменяется на – р ф). Каждый поглощенный фотон передает стенке свой импульс р ф =hv/c .Давление света на поверхность, равно импульсу, который передают поверхности за 1 с все п фотонов:

, (11-12)

где I=nhv – энергия всех фотонов, падающих на единицу поверх­ности за единицу времени, т. е. интенсивность света, а w=I/c – объ­емная плотность энергии падающего излучения. Эта формула проверялась экспериментально и была подтверждена в опытах Лебедева.

4. Фотонный газ. Бозоны. Распределение Бозе − Эйнштейна.

Рассмотрим свет как совокупность фотонов, которые находятся внутри замкнутой полости с зеркальными стенками. Давление света на зеркально отражающую поверхность должно быть таким же, каким оно было бы если фотоны зеркально отражались от поверхности подобно абсолютно упругим шарикам.

Найдем давление, производимое на идеально отражающие стенки| замкнутой полости.

Для простоты предположим, что полость имеет форму куба. Ввиду изотропности излучения можно считать, что все направления движения фотонов равновероятны. Взаимодействие между фотонами отсутствует (частота их при столкновениях не меняется). Поэтому фотоны движутся подобно молекулам идеального одноатомного газа.

Давление идеального газа на стенки полости найдем из основного уравнения кинетической теории газов:

Но для фотонов m=hv i /c 2 , υ i =с и поэтому mυ i 2 = hv i .Таким образом,

где W - полная энергия всех фотонов в полости, а давление на ее стенки



(11-13)

Здесь w - объемная плотность энергии излучения. Если фотоны внутри нашей полости имеют частоты от 0 до ∞, то w можно определить по формуле:

(11-14)

Здесь ρ(ν) - объемная плотность энергии излучения в интервале частот от ν до ν+dν.

Функция ρ(ν) находится с помощью специального квантового распределения фотонов по энергиям (частотам), - распределения Бо­зе -Эйнштейна (Б-Э).

1. В отличие от распределения Максвелла, которое характеризует распределение частиц в пространстве скоростей (импульсов), квантовое распределение описывает энергии частиц в фазовом пространстве, образованном импульсами и координатами частиц.

2. Элементарный объем фазового пространства равен (перемножим все приращения координат):

3. Объем, приходящийся на одно состояние равен h 3 .

4. Число состояний dg i излучения, находящегося в элементарном фазовом объеме в квантовой статистике получается путем деления объема (11-15) на h 3 :

5. Распределению Б-Э подчиняются системы частиц с целым спином. Они получили название бозоны . К этим частицам относятся и фотоны. Их спин принимает целочисленные значения. Момент импульса фотона принимает значение mh/2π , где m = 1. 2,3… Функция распределения Бозе - Эйнштейна для фотонов имеет вид:

, (11-16)

где. ΔN –число фотонов в объеме dV, n i - среднее число частиц в одном энергетическом состоянии с энергией W i , которое называется, k - постоянная Больцмана, T абсолютная температура. Коэффициент 2 появляется в связи с наличием двух возможных направлений по­ляризации света (левое и правое вращение плоскости поляризации).

Полное число состояний в объеме V (после интегрирования по объему и использования соотношений между импульсом фотона р и его энергией W,ν р =hv/c, W= hv ):

где ν - частота, с - скорость света в вакууме.

Число фотонов с энергией от W до W + d W в объеме V:

(11-17)

Объемную плотность энергии излучения в интервале частот от ν до ν +dν найдем умножив (11-16) на энергию одного фотона :

. (11-18)

Давление излучения найдем по формулам (11-13), (11-14) и (11-18):

Уравнение состояния для излучения:

.

Энергия излучения из объема V (закон Стефана-Больцмана):

Связь между энергетической светимостью и объемной плотностью энергии излучения (следует из сопоставления формулы Планка с формулой (11-18):

R Э (ν,Т)= (с/4)ρ(ν,Т).

Оказывается, давление могут создавать не только твёрдые тела, жидкости и газы. Пáдая на поверхность тела, световое электромагнитное излучение также оказывает на неё давление.

Теория светового давления

Иоганн Кеплер

Впервые предположение о том, что давление света существует, было сделано немецким учёным Иоганном Кеплером в XVII веке. Изучая поведение комет, пролетающих вблизи Солнца, он обратил внимание на то, что хвост кометы всегда отклоняется в сторону, противоположную Солнцу. Кеплер предположил, что каким-то образом это отклонение вызывается воздействием солнечных лучей.

Теоретически существование светового давления было предсказано в XIX веке британским физиком Джеймсом Клерком Максвеллом , создавшим электромагнитную теорию и утверждавшим, что свет - это также электромагнитные колебания, и он должен оказывать давление на препятствия.

Джеймс Клерк Максвелл

Свет - это электромагнитная волна. Она создаёт электрическое поле, под действием которого электроны в теле, встречающемся на её пути, совершают колебания. В теле возникает электрический ток, направленный вдоль напряжённости электрического поля. Со стороны магнитного поля на электроны действует сила Лоренца . Её направление совпадает с направлением распространения световой волны. Эта сила и есть сила светового давления .

По расчётам Максвелла, солнечный свет производит на чёрную пластину, расположенную на Земле, давление определённой величины (р = 4 ·10 -6 Н/м 2). А если вместо чёрной пластины взять светоотражающую, то световое давление будет в 2 раза больше.

Но это было всего лишь теоретическое предположение. Чтобы доказать его, нужно было подтвердить теорию практическим экспериментом, то есть измерить величину светового давления. Но так как его величина очень мала, то практически сделать это чрезвычайно сложно.

Пётр Николаевич Лебедев

На практике это осуществил русский физик-экспериментатор Пётр Николаевич Лебедев . Опыт, проведенный им в 1899 г., подтвердил предположение Максвелла о том, что световое давление на твёрдые тела существует.

Опыт Лебедева

Схематичное изображение эксперимента Лебедева

Для проведения своего опыта Лебедев создал специальный прибор, который представлял собой стеклянный сосуд. Внутрь сосуда помещался лёгкий стерженёк на тонкой стеклянной нити. По краям этого стерженька были прикреплены тонкие лёгкие крылышки из различных металлов и слюды. Из сосуда выкачивался воздух. С помощью специальных оптических систем, состоящих из источника света и зеркал, пучок света направлялся на крылышки, расположенные с одной стороны стерженька. Под воздействием светового давления стерженёк поворачивался, и нить закручивалась на какой-то угол. По величине этого угла и определяли величину светового давления.

Прибор Лебедева

Но этот эксперимент не давал точных результатов. При его проведении существовали свои сложности. Так как вакуумных насосов в те времена не существовало, пользовались обычными механическими. А с их помощью в сосуде невозможно было создать абсолютный вакуум. Даже после откачивания в нём оставалось некоторое количество воздуха. Крылышки и стенки сосуда нагревались неодинаково. Сторона, обращённая к световому лучу, нагревалась быстрее. И это вызывало движение молекул воздуха. Наверх поднимались потоки более нагретого воздуха. Так как абсолютно вертикально крылышки установить невозможно, то эти потоки создавали дополнительные крутящие моменты. Кроме того, сами крылышки нагревались неодинаково. Сторона, обращённая к источнику света, нагревалась сильнее. В результате оказывалось дополнительное воздействие на угол поворота нити.

Чтобы сделать эксперимент более точным, Лебедев взял сосуд очень большого объёма. Крылышко он сделал из двух пар очень тонких кружочков из платины. Причём толщина кружочков одной пары отличалась от толщины кружочков другой пары. По одну сторону стерженька кружочки были блестящими с обеих сторон, по другую - одну из сторон покрыли платиновой чернью. Пучки света направлялись на них то с одной, то с другой стороны, чтобы уравновесить силы, действующие на крылышки. В результате давление света на крылышки было измерено. Результаты опыта подтвердили теоретические предположения Максвелла о существовании светового давления. А его величина была почти такой же, как и предсказал Максвелл.

В 1907 - 1910 г.г. с помощью более точных экспериментов Лебедев измерил давление света на газы.

Свет, как любое электромагнитное излучение, обладает энергией Е .

Его импульс р = E v / c 2 ,

где v - скорость электромагнитного излучения,

c - скорость света.

Так как v = с , то р = E/с .

С появлением квантовой теории свет стали рассматривать как поток фотонов - элементарных частиц, квантов света. Ударяясь о тело, фотоны передают ему свой импульс, то есть оказывают давление.

Солнечный парус

Фридрих Артурович Цандер

Хоть величина светового давления очень мала, тем не менее, оно может принести пользу человеку.

Ещё в 1920 г. советский учёный и изобретатель Фридрих Артурович Цандер , один из создателей первой ракеты на жидком топливе, выдвинул идею полетов в космос с помощью солнечного паруса . Она была очень проста. Солнечный свет состоит из фотонов. А они создают давление, передавая свой импульс любой освещённой поверхности. Следовательно, для того чтобы привести в движение космический аппарат, можно использовать давление, создаваемое солнечным светом или лазером на зеркальной поверхности. Такой парус не нуждается в ракетном топливе, и время его действия не ограничено. А это позволит взять больше груза по сравнению с обычным космическим кораблём с реактивным двигателем.

Солнечный парус

Но пока что это только проекты по созданию звездолётов с солнечным парусом в качестве основного двигателя.

Сегодня посвятим разговор такому явлению, как давление света. Рассмотрим предпосылки открытия и следствия для науки.

Свет и цвет

Загадка человеческих способностей волновала людей с древних времен. Как видит глаз? Почему существуют цвета? В чем причина того, что мир такой, каким мы его ощущаем? Насколько далеко способен видеть человек? Опыты с разложением солнечного луча в спектр производил еще Ньютон в 17 веке. Он же заложил строгую математическую основу в ряд разрозненных фактов, которые на тот момент были известны о свете. И ньютоновская теория предсказала немало: например, открытия, которые объяснила только квантовая физика (отклонение света в поле тяготения). Но точную природу света физика того времени не знала и не понимала.

Волна или частица

С тех пор как ученые всего мира стали проникать в суть света, велся спор: что такое излучение, волна или частица (корпускула)? Одни факты (преломление, отражение и поляризация) подтверждали первую теорию. Другие (прямолинейное распространение в отсутствии препятствий, давление света) - вторую. Однако только квантовая физика смогла утихомирить этот спор, объединив две версии в одну общую. утверждает, что любая микрочастица, в том числе фотон, обладает как свойствами волны, так и частицы. То есть квант света имеет такие характеристики, как частота, амплитуда и длина волны, а также импульс и масса. Сразу оговоримся: у фотонов масса покоя отсутствует. Будучи квантом электромагнитного поля, они несут энергию и массу только в процессе движения. Такова сущность понятия «свет». Физика в наши дни объяснила его достаточно подробно.

Длина волны и энергия

Чуть выше упоминалось понятие «энергия волны». Эйнштейн убедительно доказал, что энергия и масса - идентичные понятия. Если фотон несет энергию, он должен обладать массой. Однако квант света - частица «хитрая»: когда фотон сталкивается с препятствием, он полностью отдает свою энергию веществу, становится им и теряет свою индивидуальную сущность. При этом определенные обстоятельства (сильное нагревание, например) могут заставить до того темные и спокойные недра металлов и газов излучать свет. Импульс фотона, непосредственное следствие наличия массы, можно определить с помощью давления света. исследователя из России, убедительно доказали этот удивительный факт.

Опыт Лебедева

Российский ученый Петр Николаевич Лебедев в 1899 году произвел следующий опыт. На тонкой серебряной нити он подвесил перекладину. К концам перекладины ученый прикрепил две пластины одинакового вещества. Это были и серебряная фольга, и золото, и даже слюда. Таким образом были созданы своеобразные весы. Только они измеряли вес не груза, который давит сверху, а груза, который давит сбоку на каждую из пластин. Всю эту конструкцию Лебедев поместил под стеклянную крышку, чтобы ветер и случайные колебания плотности воздуха не могли на нее повлиять. Далее, хотелось бы написать, что под крышкой он создал вакуум. Но в то время даже среднего вакуума добиться было невозможно. Так что мы скажем, что он создал под стеклянной крышкой сильно И попеременно освещал одну пластину, оставляя другую в тени. Количество света, направленного на поверхности, было задано заранее. По углу отклонения Лебедев определил, какой импульс передал свет пластинкам.

Формулы для определения давления электромагнитного излучения при нормальном падении пучка

Поясним для начала, что такое «нормальное падение»? Свет падает на поверхность нормально, если он направлен строго перпендикулярно поверхности. Это накладывает ограничения на задачу: поверхность должна быть идеально гладкой, а пучок излучения направлен очень точно. В этом случае вычисляется давление :

k - коэффициент пропускания, ρ - коэффициент отражения, I - интенсивность падающего пучка света, c - скорость света в вакууме.

Но, наверное, читатель уже догадался, что такого идеального сочетания факторов не существует. Даже если не принимать в расчет идеальность поверхности, падение света строго перпендикулярно организовать довольно сложно.

Формулы для определения давления электромагнитного излучения при его падении под углом

Давление света на зеркальную поверхность под углом рассчитывается по другой формуле, которая уже содержит элементы векторов:

p= ω ((1-k)i+ρi’)cos ϴ

Величины p, i, i’ - это векторы. При этом k и ρ, как и в предыдущей формуле, - коэффициенты пропускания и отражения соответственно. Новые величины обозначают следующее:

  • ω - объемная плотность энергии излучения;
  • i и i’ - единичные векторы, которые показывают направление падающего и отраженного пучка света (они задают направления, по которым следует складывать действующие силы);
  • ϴ - угол к нормали, под которым падает луч света (и соответственно, отражается, так как поверхность зеркальная).

Напомним читателю, что нормаль перпендикулярна к поверхности, так что если в задаче дается угол падения света к поверхности, то ϴ - это 90 градусов минус заданная величина.

Применение явления давления электромагнитного излучения

Школьнику, который изучает физику, многие формулы, понятия и явления кажутся скучными. Потому что, как правило, учитель рассказывает теоретические аспекты, но редко может привести примеры пользы тех или иных феноменов. Не будем винить в этом школьных наставников: они сильно ограничены программой, за время урока надо рассказать обширный материал и еще успеть проверить знания учеников.

Тем не менее у объекта нашего исследования много интересных приложений:

  1. Сейчас почти каждый школьник в лаборатории своего учебного заведения может повторить опыт Лебедева. Но тогда совпадение экспериментальных данных с теоретическими выкладками было настоящим прорывом. Сделанный впервые с 20-процентной погрешностью опыт позволил ученым всего мира развивать новый раздел физики - квантовую оптику.
  2. Получение протонов с высокой энергией (например, для облучения разных веществ) путем ускорения тонких пленок лазерным импульсом.
  3. Учет давления электромагнитного излучения Солнца на поверхность околоземных объектов, в том числе спутников и космических станций, позволяет корректировать их орбиту с большей точностью и не дает этим устройствам падать на Землю.

Приведенные выше применения существуют сейчас в реальном мире. Но есть и потенциальные возможности, которые еще не реализованы, потому что техника человечества пока не достигла нужного уровня. Среди них:

  1. С его помощью можно было бы передвигать в околоземном и даже околосолнечном пространстве достаточно большие грузы. Свет дает небольшой импульс, но при нужном положении поверхности паруса ускорение было бы постоянным. При отсутствии трения его достаточно для набора скорости и доставки грузов в нужную точку Солнечной системы.
  2. Фотонный двигатель. Эта технология, возможно, позволит человеку преодолеть притяжение родной звезды и полететь к другим мирам. Отличие от солнечного паруса в том, что генерировать солнечные импульсы будет искусственно созданное устройство, например, термоядерный двигатель.

Свет не только поглощается и отражается веществом, но и создает давление на поверхность тела. Еще в 1604 г. немецкий астроном И. Кеплер объяснял форму хвоста кометы действием светового давления (рис. 1). Английский физик Дж. Максвелл 250 лет спустя вычислил световое давление на тела, использовав разработанную им теорию электромагнитного поля. По расчетам Максвелла выходило, что если за 1 с перпендикулярно единичной площадке с коэффициентом отражения R падает световая энергия Е, то свет оказывает давление , выраражающееся зависимостью: где с - скорость света.

Эту формулу можно получить также, рассматривая свет как поток фотонов, взаимодействующих с поверхностью (рис. 2). Некоторые ученые сомневались в теоретических расчетах Максвелла, а опытным путем проверить полученный им результат долгое время не удавалось. В средних широтах в солнечный полдень на поверхности, отражающей полностью световые лучи, создается давление, равное всего . Впервые световое давление в 1899 г. измерил русский физик П. Н. Лебедев. Он подвесил на тонкой нити две пары крылышек: поверхность у одной из них была зачерненной, а у другой - зеркальной (рис. 3). Свет практически полностью отражался от зеркальной поверхности, и его давление на зеркальное крылышко было вдвое большим , чем на зачерненное . Создавался момент сил, поворачивающий устройство. По углу поворота можно было судить о силе, действовавшей на крылышки, а значит измерить световое давление.

Опыт осложняют посторонние силы, возникающие при освещении устройства, которые по величине превосходят в тысячи раз давление света, если не принять особых предосторожностей. Одна из таких сил связана с радиометрическим эффектом. Этот эффект возникает благодаря разности температур освещенной и темной сторон- крылышка. Нагретая светом сторона отражает молекулы остаточного газа с большей скоростью, чем более холодная, неосвещенная сторона. Поэтому молекулы газа передают освещенной стороне больший импульс и крылышки стремятся повернуться в том же направлении, что и под действием светового давления, - возникает ложный эффект. Радиометрическое действие П. Н. Лебедев свел к минимуму, изготовив крылышки из тонкой, хорошо проводящей тепло фольги и поместив их в вакууме. В результате уменьшились и разница в импульсах, передаваемая отдельными молекулами черной и блестящей поверхностей (благодаря меньшему перепаду температур между ними), и общее число молекул, падающих на поверхности (благодаря малому давлению газа).

Экспериментальные исследования Лебедева подкрепили предположение Кеплера о природе кометных хвостов. С уменьшением радиуса частицы притяжение ее Солнцем убывает пропорционально кубу, а световое давление - пропорционально квадрату радиуса. Частицы малого размера будут испытывать отталкивание от Солнца независимо от расстояния г от него, так как плотность излучения и гравитационные силы притяжения убывают по одинаковому закону . Световое давление ограничивает предельный размер звезд, существующих во Вселенной. С увеличением массы звезды растет тяготение ее слоев к центру. Поэтому внутренние звездные слои сильно сжимаются, и их температура возрастает до миллионов градусов. Естественно, что при этом значительно увеличивается направленное наружу световое давление внутренних слоев. У нормальных звезд возникает равновесие между гравитационными силами, стабилизирующими звезду, и силами светового давления, стремящимися ее разрушить. Для звезд очень большой массы такого равновесия не наступает, они неустойчивы, и их не должно быть во Вселенной. Астрономические наблюдения подтвердили: самые «тяжелые» звезды обладают как раз той предельной массой, которую еще допускает теория, учитывающая равновесие гравитационного и светового давления внутри звезд.