Получение и применение целлюлозы. Техническая целлюлоза и ее применение. Целлюлоза Информацию О

Целлюлоза (клетчатка) – растительный полисахарид, являющийся самым распространенным органическим веществом на Земле.

1. Физические свойства

Это вещество белого цвета, без вкуса и запаха, нерастворимое в воде, имеющее волокнистое строение. Растворяется в аммиачном растворе гидроксида меди (II ) – реактиве Швейцера.

Видео-опыт «Растворение целлюлозы в аммиачном растворе гидроксида меди (II)»

2. Нахождение в природе

Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток. В большом количестве целлюлоза содержится в тканях древесины (40-55%), в волокнах льна (60-85%) и хлопка (95-98%). Основная составная часть оболочки растительных клеток. Образуется в растениях в процессе фотосинтеза.

Древесина состоит на 50% из целлюлозы, а хлопок и лён, конопля практически чистая целлюлоза.

Хитин (аналог целлюлозы) – основной компонент наружного скелета членистоногих и других беспозвоночных, а также в составе клеточных стенок грибов и бактерий.

3. Строение

Состоит из остатков β - глюкозы

4. Получение

Получают из древесины

5. Применение

Целлюлоза используется в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, для получения гидролизного спирта и др.

· Получение ацетатного шёлка – искусственное волокно, оргстекла, негорючей плёнки из ацетилцеллюлозы.

· Получение бездымного пороха из триацетилцеллюлозы (пироксилин).

· Получение коллодия (плотная плёнка для медицины) и целлулоида (изготовление киноленты, игрушек) из диацетилцеллюлозы.

· Изготовление нитей, канатов, бумаги.

· Получение глюкозы, этилового спирта (для получения каучука)

К важнейшим производным целлюлозы относятся:
- метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы

N (х = 1, 2 или 3);

- ацетилцеллюлоза (триацетат целлюлозы) – сложный эфир целлюлозы и уксусной кислоты

- нитроцеллюлоза (нитраты целлюлозы) – сложные азотнокислые эфиры целлюлозы:

N (х = 1, 2 или 3).

6. Химические свойства

Гидролиз

(C 6 H 10 O 5) n + nH 2 O t,H2SO4 → nC 6 H 12 O 6

глюкоза

Гидролиз протекает ступенчато:

(C 6 H 10 O 5) n → (C 6 H 10 O 5) m → xC 12 H 22 O 11 →n C 6 H 12 O 6 ( Примечание , m

крахмал декстринымальтозаглюкоза

Видео-опыт «Кислотный гидролиз целлюлозы»

Реакции этерификации

Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом. Целлюлоза не дает реакции "серебряного зеркала".

1. Нитрование:

(C 6 H 7 O 2 (OH ) 3) n + 3 nHNO 3 H 2 SO 4(конц.)→ (C 6 H 7 O 2 (ONO 2 ) 3) n + 3 nH 2 O

пироксилин

Видео-опыт «Получение и свойстванитроцеллюлозы»

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

2. Взаимодействие с уксусной кислотой:

(C 6 H 7 O 2 (OH) 3) n + 3nCH 3 COOH H2SO4( конц .)→ (C 6 H 7 O 2 (OCOCH 3) 3) n + 3nH 2 O

При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка . Для этого ацетилцеллюлозу растворяют в смеси дихлорметана и этанола и этот раствор продавливают через фильеры в поток теплого воздуха.

А сама фильера схематично выглядит так:

1 - прядильный раствор,
2 - фильера,
3 - волокна.

Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

Говоря о применении целлюлозы, нельзя не сказать о том, что большое количество целлюлозы расходуется для изготовления различной бумаги. Бумага – это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной бумагоделательной машине.

Который состоит из остатков молекулы глюкозы и является необходимым элементом для образования оболочки всех растительных клеток. Молекулы ее имеют и содержат три гидроксильные группы. Благодаря этому, она проявляет свойства .

Физические свойства целлюлозы

Целлюлоза является белым твердым веществом, которое способно достигать температуры в 200оС и при этом не разрушаться. Но при повышении температуры до 275оС она начинает воспламеняться, что говорит о ее принадлежности к горючим веществам.

Если рассматривать целлюлозу под микроскопом, можно заметить, что ее структура образована волокнами, имеющими длину не более 20 мм. Волокна целлюлозы соединены множеством водородных связей, но при этом они не имеют ответвлений. Это придает целлюлозе наибольшую прочность и способность к сохранению эластичности.

Химические свойства целлюлозы

Остатки молекул глюкозы, составляющие целлюлозу, образуются при . Серная кислота и йод в процессе гидролиза окрашивают целлюлозу в синий цвет, а просто йод- в коричневый.

Существует множество реакций с целлюлозой, при которых происходит образование новых молекул. Реагируя с азотной кислотой, целлюлоза превращается в нитроцеллюлозу. А в процессе уксусной кислотой образуется триацетат целлюлозы.

Целлюлоза не растворяется в воде. Самым эффективным ее растворителем является ионная жидкость.

Как получают целлюлозу?

Древесина состоит на 50% из целлюлозы. Путем длительной варки щепы в растворе реагентов, а затем проведения очистки полученного раствора, можно получить ее в чистом виде.

Способы варки целлюлозы различаются по типу реагентов. Они могут быть кислыми и щелочными. Кислые реагенты содержат сернистую кислоту и применяются для получения целлюлозы из малосмолистых деревьев. Щелочные реагенты существуют двух типов: натронные и сульфатные. Благодаря натронным реагентам, целлюлозу можно получать из лиственных деревьев и однолетних растений. Но, используя этот реагент, целлюлоза получается очень дорогой, поэтому натронные реагенты используют редко или не используют совсем.

Самым распространенным способом получения метод, основанный на сульфатных реагентах. Сульфат натрия - основа для белого щелока, который используется как реагент и пригоден для получения целлюлозы из любого растительного сырья.

Применение целлюлозы

Целлюлоза и ее эфиры используются для создания искусственных волокон, вискозного и ацетатного. Древесная целлюлоза используется для создания разнообразных вещей: бумаги, пластмассы, взрывных устройств, лаков и т. д.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 → n + 3n H2O.

Применение целлюлозы.

Получение ацетатного волокна

68. Целлюлоза, ее физические свойства

Нахождение в природе. Физические свойства.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

1) целлюлоза, как и крахмал, является природным полимером;

2) эти вещества имеют даже одинаковые по составу структурные звенья – остатки молекул глюкозы, одну и ту же молекулярную формулу (С6H10O5)n;

3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;

4) основное различие между крахмалом и целлюлозой – в структуре их молекул.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

Каковы химические и физические свойства целлюлозы

В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

69. Химические свойства целлюлозы и ее применение

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I).

69. Химические свойства целлюлозы и ее применение

То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С6H10O5)n + nН2О = nС6H12O6.

7. Структурные звенья целлюлозы (С6H10O5)n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 -> n + 3n H2O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

О.А. Носкова, М.С. Федосеев

Химия древесины

И синтетических полимеров

ЧАСТЬ 2

Утверждено

Редакционно-издательским советом университета

в качестве конспекта лекций

Издательство

Пермского государственного технического университета

Рецензенты:

канд. техн. наук Д.Р. Нагимов

(ЗАО «Карбокам»);

канд. техн. наук, проф. Ф.Х. Хакимова

(Пермский государственный технический университет)

Носкова, О.А.

Н84 Химия древесины и синтетических полимеров: конспект лекций: в 2 ч. / О.А. Носкова, М.С. Федосеев. – Пермь: Изд-во Перм. гос. техн. ун-та, 2007. – Ч. 2. – 53 с.

ISBN 978-5-88151-795-3

Приведены сведения, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина и экстрактивных веществ). Рассмотрены химические реакции этих компонентов, которые протекают при химической переработке древесины или при химической модификации целлюлозы. Также приведены общие сведения о варочных процессах.

Предназначен для студентов специальности 240406 «Технология химической переработки древесины».

УДК 630*813. + 541.6 + 547.458.8

ISBN 978-5-88151-795-3 © ГОУ ВПО

«Пермский государственный

технический университет», 2007

Введение……………………………………………………………………… ……5
1. Химия целлюлозы……………………………………………………….. …….6
1.1. Химическое строение целлюлозы………………………………….. .…..6
1.2. Химические реакции целлюлозы…………………………………….. .……8
1.3. Действие растворов щелочей на целлюлозу………………………… …..10
1.3.1. Щелочная целлюлоза…………………………………………. .…10
1.3.2. Набухание и растворимость технической целлюлозы в растворах щелочей………………………………………………… .…11
1.4. Окисление целлюлозы……………………………………………….. .…13
1.4.1. Общие сведения об окислении целлюлозы. Оксицеллюлоза… .…13
1.4.2. Основные направления окислительных реакций…………… .…14
1.4.3. Свойства оксицеллюлозы………………………………………

Химические свойства целлюлозы.

.…15
1.5. Сложные эфиры целлюлозы…………………………………………. .…15
1.5.1. Общие сведения о получении сложных эфиров целлюлозы.. .…15
1.5.2. Нитраты целлюлозы…………………………………………… .…16
1.5.3. Ксантогенаты целлюлозы…………………………………….. .…17
1.5.4. Ацетаты целлюлозы…………………………………………… .…19
1.6. Простые эфиры целлюлозы…………………………………………… .…20
2. Химия гемицеллюлоз…………………………………………………… .…21
2.1. Общие понятия о гемицеллюлозах и их свойствах…………………. .…21
.2.2. Пентозаны…………………………………………………………….. .…22
2.3. Гексозаны……………………………………………………………… …..23
2.4. Уроновые кислоты……………………………………………………. .…25
2.5. Пектиновые вещества………………………………………………… .…25
2.6. Гидролиз полисахаридов…………………………………………….. .…26
2.6.1. Общие понятия о гидролизе полисахаридов…………………. .…26
2.6.2. Гидролиз полисахаридов древесины разбавленными минеральными кислотами……………………………………………….. …27
2.6.3. Гидролиз полисахаридов древесины концентрированными минеральными кислотами………………………………………………. …28
3. Химия лигнина…………………………………………………………….. …29
3.1. Структурные единицы лигнина………………………………………. …29
3.2. Методы выделения лигнина…………………………………………… …30
3.3. Химическое строение лигнина………………………………………… …32
3.3.1. Функциональные группы лигнина………………….……………..32
3.3.2. Основные типы связей между структурными единицами лигнина…………………………………………………………………….35
3.4. Химические связи лигнина с полисахаридами……………………….. ..36
3.5. Химические реакции лигнина………………………………………….. ….39
3.5.1. Общая характеристика химических реакций лигнина……….. ..39
3.5.2. Реакции элементарных звеньев………………………………… ..40
3.5.3. Макромолекулярные реакции………………………………….. ..42
4. Экстрактивные вещества………………………………………………… ..47
4.1. Общие сведения………………………………………………………… ..47
4.2. Классификация экстрактивных веществ……………………………… ..48
4.3. Гидрофобные экстрактивные вещества………………………………. ..48
4.4. Гидрофильные экстрактивные вещества……………………………… ..50
5. Общие понятия о варочных процессах…………………………………. ..51
Библиографический список…………………………………………………. ..53

Введение

Химия древесины – это раздел технической химии, изучающий химический состав древесины; химизм образования, строения и химические свойства веществ, составляющих мертвую древесную ткань; методы выделения и анализа этих веществ, а также химическую сущность природных и технологических процессов переработки древесины и ее отдельных компонентов.

В первой части конспекта лекций «Химия древесины и синтетических полимеров», изданной в 2002 г., рассмотрены вопросы, касающиеся анатомии древесины, строения клеточной оболочки, химического состава древесины, физических и физико-химических свойств древесины.

Во второй части конспекта лекций «Химия древесины и синтетических полимеров» рассмотрены вопросы, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина).

В конспекте лекций приведены общие сведения о варочных процессах, т.е. о получении технической целлюлозы, которая используется в производстве бумаги и картона. В результате химических превращений технической целлюлозы получают ее производные – простые и сложные эфиры, из которых производят искусственные волокна (вискозные, ацетатные), пленки (кино-, фото-, упаковочные пленки), пластмассы, лаки, клеи. В этой части конспекта также кратко рассмотрены получение и свойства эфиров целлюлозы, которые нашли широкое применение в промышленности.

Химия целлюлозы

Химическое строение целлюлозы

Целлюлоза – один из важнейших природных полимеров. Это основ-ной компонент растительных тканей. Природная целлюлоза содержится в больших количествах в хлопке, льне и других волокнистых растениях, из которых получают природные текстильные целлюлозные волокна. Хлопковые волокна представляют собой почти чистую целлюлозу (95–99 %). Более важным источ-ником промышленного получения целлюло-зы (технической целлюлозы) служат древесные растения. В древесине различных пород деревьев массовая доля целлюлозы составляет в сред-нем 40–50 %.

Целлюлоза – полисахарид, макромолекулы которого построены из остатков D -глюкозы (звеньев β-D -ангидроглюкопиранозы), соеди-ненных β-гликозидными связями 1–4:

Целлюлоза представляет собой линейный гомополимер (гомополи-сахарид), относящийся к гетероцепным полимерам (полиацеталям). Это стереорегулярный полимер, в цепи которого стереоповторяющимся звеном служит остаток целлобиозы. Суммарную формулу целлюлозы можно представить (С6Н10О5)п или [С6Н7О2 (ОН)3]п . В каждом мономерном звене содержатся три спиртовых гидроксильных группы, из которых одна первичная –СН2ОН и две (у С2 и С3) вторичные –СНОН–.

Концевые звенья отличаются от остальных звеньев цепи. Одно кон-цевое звено (условно правое – нередуцирующее) имеет дополнительный свободный вторичный спиртовый гидроксил (у С4). Другое концевое звено (условно левое – редуцирующее) содержит свободный гликозидный (полуацетальный) гидрок-сил (у С1) и, следовательно, может существовать в двух таутомерных формах – циклической (цолуацетальной) и открытой (альдегидной) :

Концевая альдегидная группа придает целлюлозе редуцирующую (восстанавливающую) способность. Например, целлюлоза может вос-станавливать медь из Сu2+ в Сu+:

Количество восстановленной меди (медное число ) служит качественной характеристикой длины цепей целлюлозы и показывает ее степень окислительной и гидролитической деструкции.

Природная целлюлоза имеет высокую степень полимеризации (СП): древесная – 5000–10000 и выше, хлопковая – 14000–20000. При выделении из растительных тканей целлюлоза несколько разрушается. Техническая древесная целлюлоза имеет СП около 1000–2000. СП целлюлозы определяют главным образом вискозиметрическим методом, используя в качест-ве растворителей некоторые комплексные основания: медноаммиачный реактив(ОН)2, куприэтилендиамин (ОН)2, кадмийэтилендиамин (кадоксен) (ОН)2 и др.

Выделенная из растений целлюлоза всегда полидисперсна, т.е. содер-жит макромолекулы различной длины. Степень полидисперсности целлю-лозы (молекулярную неоднородность) определяют методами фракцио-нирования, т.е. разделения образца целлюлозы на фракции с определенной молекулярной массой. Свойства образца целлюлозы (механическая прочность, растворимость) зависят от средней СП и степени полидисперс-ности.

12345678910Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 1100 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Структура, свойства, функции полисахаридов (гомо- и гетерополисахариды).

ПОЛИСАХАРИДЫ – это высокомолекулярные вещества (полимеры) , состоящие из большого количества моносахаридов. По составу их делят на гомополисахариды и гетерополисахариды.

Гомополисахариды – полимеры, состоящие из моносахаридов одного вида . Например, гликоген, крахмал построены только из молекул α-глюкозы (α-D-глюкопиранозы), мономером клетчатки (целлюлозы) так же является β-глюкоза.

Крахмал. Это резервный полисахарид растений. Мономером крахмала является α-глюкоза . Остатки глюкозы в молекуле крахмала на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Крахмал представляет собой смесь двух гомополисахаридов: линейного – амилозы (10-30%) и разветвленного – амилопектина (70-90%).

Гликоген. Это основной резервный полисахарид тканей человека и животных. Молекула гликогена имеет примерно в 2 раза более разветвленное строение, чем амилопектин крахмала. Мономером гликогена является α-глюкоза . В молекуле гликогена остатки глюкозы на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Клетчатка. Это наиболее распространенный структурный растительный гомополисахарид. В линейной молекуле клетчатки мономеры β-глюкозы соединены между собой β-1,4-гликозидными связями . Клетчатка не усваивается в организме человека, но, ввиду своей жесткости, раздражает слизистую желудочно-кишечного тракта, тем самым, усиливает перистальтику и стимулирует выделение пищеварительных соков, способствует формированию каловых масс.

Пектиновые вещества - полисахариды, мономером которых является D-галактуроновая кислота , остатки которой соединены α-1,4-гликозидными связями. Содержатся в плодах и овощах и для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности (желе, мармелад).

Гетерополисахариды (мукополисахариды, гликозаминогликаны)– полимеры, состоящие из моносахаридов различного вида . По строениюони представляют

неразветвленные цепи построены из повторяющихся дисахаридных остатков , в состав которых обязательно входят аминосахара (глюкозамин, или галактозамин) и гексуроновые кислоты (глюкуроновая, или идуроновая).

Физические, химические свойства целлюлозы

Представляют собой желеподобные вещества, выполняют ряд функций, в т.ч. защитную (слизь), структурную, являются основой межклеточного вещества.

В организме гетерополисахариды не встречаются в свободном состоянии, а всегда связаны с белками (гликопротеины и протеогликаны) или липидами (гликолипиды).

По строению и свойствам делятся на кислые и нейтральные.

КИСЛЫЕ ГЕТЕРОПОЛИСАХАРИДЫ :

В своём составе имеют гексуроновую или серную кислоты. Представители:

Гиалуроновая кислота является основным структурным компонентом межклеточного вещества, способным связывать воду («биологический цемент»). Растворы гиалуроновой кислоты обладают высокой вязкостью, поэтому служат барьером для проникновения микроорганизмов, участвует в регуляции водного обмена, является основной частью межклеточного вещества).

Хондроитинсульфаты.являются структурными компонентами хрящей, связок, сухожилий, костей, клапанов сердца.

Гепарин антикоагулянт (препятствует свёртыванию крови), обладает противовоспалительным действием, активатор ряда ферментов.

НЕЙТРАЛЬНЫЕ ГЕТЕРОПОЛИСАХАРИДЫ: входят в состав гликопротеинов сыворотки крови, муцинов слюны, мочи и др, построенны из аминосахаров и сиаловых к-т. Нейтральные ГП входят в состав мн. ферментов и гормонов.

СИАЛОВЫЕ КИСЛОТЫ – соединение нейраминовой кислоты с уксусной или с аминокислотой – глицином, входят в состав клеточных оболочек, биологических жидкостей. Сиаловые кислоты определяют для диагностики системных заболеваний (ревматизм, системная красная волчанка).

Целлюлоза – один из самых распространенных природных полисахаридов, главная составляющая часть и основной структурный материал клеточных стенок растений. Содержание целлюлозы в волокнах хлопковых семян 95-99.5%, в лубяных волокнах (лен, джут, рами) 60-85%, в тканях древесины (в зависимости от породы дерева, его возраста, условий произрастания) 30-55%, в зеленых листьях, траве, низших растениях 10-25%. Почти в индивидуальном состоянии целлюлоза находится в бактериях рода Acetobacter . Спутниками целлюлозы в клеточных стенках большинства растений являются другие структурные полисахариды, отличающиеся по строению и называемые гемицеллюлозами – ксилан, маннан, галактан, арабан и др. (см. раздел «Гемицеллюлозы»), а также вещества неуглеводного характера (лигнин – пространственный полимер ароматического строения, диоксид кремния, смолистые вещества и др.).

Целлюлоза определяет механическую прочность клеточной оболочки и растительной ткани в целом. Распределение и ориентация целлюлозных волокон по отношению к оси растительной клетки на примере древесины показаны на рис.1. Там же представлена субмикронная организация клеточной стенки.

Стенка зрелой клетки древесины, как правило, включает в себя первичную и вторичную оболочки (рис.1). Последняя содержит три слоя - внешний, средний и внутренний.

В первичной оболочке природные волокна целлюлозы расположены беспорядочно и образуют сетчатую структуру (дисперсную текстуру ). Целлюлозные волокна во вторичной оболочке ориентированы в основном параллельно друг другу, что обуславливает высокую прочность растительного материала на разрыв. Степень полимеризации и кристалличности целлюлозы во вторичной оболочке выше, чем в первичной.

В слое S 1 вторичной оболочки (рис.1, 3 ) направление волокон целлюлозы почти перпендикулярно оси клетки, в слое S 2 (рис.1, 4 ) они образуют с осью клетки острый (5-30) угол. Ориентация волокон в слое S 3 сильно варьирует и может различаться даже в рядом расположенных трахеидах. Так, у трахеид ели угол между преимущественной ориентацией целлюлозных волокон и осью клетки колеблется в пределах 30-60, а у волокон большинства лиственных пород – 50-80. Между слоями Р и S 1 , S 1 и S 2 , S 2 и S 3 наблюдаются переходные области (ламеллы) с иной микроориентацией волокон, чем в основных слоях вторичной оболочки.

Техническая целлюлоза – волокнистый полуфабрикат, получается очисткой растительных волокон от нецеллюлозных компонентов. Целлюлозу принято называть по виду исходного сырья (древесная, хлопковая ), методу выделения из древесины (сульфитная, сульфатная ), а также по назначению (вискозная, ацетатная и др. ).

Получение

1. Технология получения древесной целлюлозы включает следующие операции: удаление коры с древесины (окорка); получение древесной щепы; варка щепы (в промышленности варку ведут по сульфатному или сульфитному способу); сортирование; отбелка; сушка; резка.

Сульфитный способ. Еловую древесину обрабатывают водным раствором бисульфита кальция, магния, натрия или аммония, затем в течение 1,5-4 часов повышают температуру до 105-110С, варят при этой температуре в течение 1-2 часов. Далее повышают температуру до 135-150С и варят в течение 1-4 часов. При этом все нецеллюлозные компоненты древесины (главным образом лигнин и гемицеллюлозы) переходят в растворимое состояние, и остается обезлигниненная целлюлоза.

Сульфатный способ. Щепу любых пород древесины (а также тростник) обрабатывают варочным щелоком, представляющим собой водный раствор едкого натра и сульфида натрия (NaOH + Na 2 S). В течение 2-3 часов повышают температуру до 165-180С и варят при этой температуре в течение 1-4 часов. Переведенные в растворимое состояние нецеллюлозные компоненты удаляются из реакционной смеси, и остается очищенная от примесей целлюлоза.

2. Хлопковая целлюлоза получается из хлопкового линта. Технология получения включает механическую очистку, щелочную варку (в 1-4%-ном водном растворе NaOH при температуре 130-170С) и отбелку. Электронные микрофотографии волокон хлопковой целлюлозы приведены на рис.2.

3. Бактериальная целлюлоза синтезируется бактериями рода Acetobacter . Образующаяся бактериальная целлюлоза имеет высокую молекулярную массу и узкое молекулярно-массовое распределение.

Узкое молекулярно-массовое распределение объясняется следующим. Поскольку в бактериальную клетку углевод поступает равномерно, средняя длина образующихся целлюлозных волокон увеличивается во времени пропорционально. При этом заметного увеличения поперечных размеров микроволокон (микрофибрилл) не происходит. Средняя скорость роста волокон бактериальной целлюлозы составляет ~0.1 мкм/мин, что соответствует полимеризации 10 7 -10 8 глюкозных остатков в час на одну бактериальную клетку. Следовательно, в среднем в каждой бактериальной клетке к растущим концам нерастворимых целлюлозных волокон в секунду присоединяется 10 3 глюкопиранозных звеньев.

Микроволокна бактериальной целлюлозы растут с двух концов фибриллы в обе с одинаковой скоростью. Макромолекулярные цепи внутри микрофибрилл расположены антипараллельно. Для других видов целлюлоз такие данные не получены. Электронная микрофотография волокон бактериальной целлюлозы приведена на рис.3. Видно, что волокна имеют приблизительно одинаковую длину и площадь поперечного сечения.

Целлюлоза - что это такое? Данный вопрос волнует всех, кто связан с органической химией. Попробуем выяснить основные характеристики данного соединения, выявить его отличительные особенности, сферы практического применения.

Особенности строения

Химическая целлюлоза имеет формулу (С 6 Н 10 О 5)п. Она является полисахаридом, который включает в себя остатки β-глюкозы. Для целлюлозы характерно линейное строение. Каждый остаток ее молекулы включает в себя три группы ОН, поэтому для данного соединения характерны свойства многоатомных спиртов. Присутствие в молекуле кольцевой альдегидной группы придает целлюлозе восстановительные (редуцирующие) свойства. Именно это органическое соединение является важнейшим природным полимером, основным компонентом растительной ткани.

В большом количестве она содержится во льне, хлопке, иных волокнистых растениях, являющихся основным источником получения целлюлозного волокна.

Техническую целлюлозу выделяют из древесных растений.

Химия древесины

Производство целлюлозы рассматривается в этом отдельном разделе химии. Именно здесь предполагается рассмотрение особенностей состава дерева, его химических и физических свойств, способов анализа и выделения веществ, химической сущности процессов переработки дерева и его отдельных составных частей.

Древесная целлюлоза является полидисперсной, содержащей макромолекулы различной длины. Для выявления степени полидисперсности применяют метод фракционирования. Образец подразделяют на отдельные фракции, затем изучают их характеристики.

Химические свойства

Рассуждая над тем, целлюлоза что такое, необходимо провести детальный анализ химических свойств данного органического соединения.

Техническую целлюлозу можно применять в производстве картона и бумаги, так как он без особых проблем подвергается химической переработке.

Любая технологическая цепочка, касающаяся переработки природной целлюлозы, направлена на сохранение в ней ценных свойств. Современная переработка целлюлозы дает возможность осуществлять процесс растворения этого вещества, изготавливать из целлюлозы абсолютно новые химические вещества.

Какими свойствами обладает целлюлоза? Что такое процесс деструкции? Эти вопросы включены в школьный курс органической химии.

Среди характерных химических свойств целлюлозы можно отметить:

При деструкции наблюдается разрыв в цепи макромолекулы гликозидных связей, сопровождающийся понижением степени полимеризации. В некоторых случаях возможен и полный разрыв молекулы.

Варианты деструкции целлюлозы

Выясним, какие основные виды деструкции имеет целлюлоза, что такое разрыв макромолекул.

В настоящее время в химическом производстве выделяют несколько видов деструкции.

При механическом варианте наблюдается разрыв связей С-С в циклах, а также разрушение гликозидных связей. Подобный процесс происходит при механическом измельчении вещества, к примеру, во время ее размола для изготовления бумаги.

Термическая деструкция происходит под воздействием тепловой энергии. Именно на этом процессе базируется технологический пиролиз древесины.

Фотохимическая деструкция предполагает разрушение макромолекул под воздействием ультрафиолетового облучения.

Для радиационного типа разрушения природного полимера, предполагается присутствие рентгеновского излучения. Такой вид деструкции используют в специальных приборах.

При воздействии кислорода воздуха возможно окислительное разрушение целлюлозы. Процесс характеризуется одновременным окислением спиртовых и альдегидных групп, присутствующих в данном соединении.

Под действием на целлюлозы воды, а также водных растворов кислот и щелочей происходит процесс гидролиза целлюлозы. Реакцию целенаправленно осуществляют в тех случаях, когда необходимо провести качественный анализ структуры вещества, а вот при варке данного вещества он не желателен.

Микроорганизмы, например, грибы, могут проводить биологическое разрушение целлюлозы. Для получения качественного продукта важно предупреждать ее биологическое разрушение при получении бумаги, хлопчатобумажных тканей.

В связи с присутствием в молекулах двух функциональных групп целлюлоза проявляет свойства, характерные для многоатомных спиртов и альдегидов.

Реакции сшивания

Подобные процессы подразумевают возможность получения макромолекул с заданными физическими и химическими свойствами.

Они широко применяются в промышленном производстве целлюлозы, придают ей новые эксплуатационные характеристики.

Получение щелочной целлюлозы

Что собой представляет такая целлюлоза? Отзывы свидетельствуют о том, что именно эта технология считается самой старой и распространенной в мире. В наше время подобным способом облагораживают полимер, получаемый при изготовлении вискозного волокна и пленок, создания простых эфиров целлюлозы.

Лабораторными исследованиями было установлено, что после подобной обработки повышается блеск ткани, увеличивается ее механическая прочность. Щелочная целлюлоза - отличное сырье для изготовления волокон.

Существует три разновидности таких продуктов: физико-химические, структурные, химические. Все они востребованы в современном химическом производстве, применяются при изготовлении бумаги, картона. Мы выяснили, какое строение имеет целлюлоза, что такое процесс ее производства.