Вилами по воде значение. Происхождение и значение фразеологизма "вилами по воде писано". Что такое вилы

М-60 с двигателями соосной схемы

Гидросамолет М-60М

Вариант компоновки гидросамолета М-60М

Профиль полета М-30

Береговая база атомных гидросамолетов

Схема высотного бомбардировщика М-30

Появление атомной бомбы породило у обладателей этого чудо-оружия искушение выиграть войну всего несколькими точными ударами по промышленным центрам противника. Останавливало их только то, что эти центры располагались, как правило, в глубоком и хорошо защищенном тылу. Все послевоенные силы сосредоточились как раз на надежных средствах доставки «спецгруза». Выбор оказался невелик — баллистические и крылатые ракеты и сверхдальняя стратегическая авиация. В конце 40-х весь мир склонился к бомбардировщикам: на развитие дальней авиации были выделены такие гигантские средства, что последующее десятилетие стало «золотым» для развития авиации. За короткое время в мире появилось множество самых фантастических проектов и летательных аппаратов. Даже обескровленная войной Великобритания блеснула великолепными стратегическими бомбардировщиками Valient и Vulcan. Но самыми невероятными проектами были стратегические сверхзвуковые бомбардировщики с атомными силовыми установками. Даже спустя полстолетия они завораживают своей смелостью и безумием.

Атомный след

В 1952 году в США взлетает легендарный B-52, через год — первый в мире сверхзвуковой тактический бомбардировщик A-5 Vigilante, а еще через три — сверхзвуковой стратегический XB-58 Hustler. СССР не отставал: одновременно с B-52 в воздух поднимается стратегический межконтинентальный бомбардировщик Ту-95, а 9 июля 1961 года весь мир шокирует показанный на авиапараде в Тушино гигантский сверхзвуковой бомбардировщик М-50, который, промчавшись над трибунами, сделал горку и растворился в небе. Мало кто догадывался, что это был последний полет супербомбардировщика.

Дело в том, что радиус полета построенного экземпляра не превышал 4000 км. И если для США, окруживших СССР военными базами, этого было достаточно, то для достижения американской территории с советских аэродромов требовалась дальность не менее 16 тыс. км. Расчеты показывали, что даже при двух заправках топливом дальность М-50 со «спецгрузом» массой 5 т не превышала 14 тыс. км. При этом такой полет требовал целое озеро топлива (500 т) для бомбардировщика и топливозаправщиков. Для поражения же удаленных целей на территории США и свободного выбора трассы полета для обхода районов ПВО требовалась дальность в 25 тыс. км. Обеспечить ее на сверхзвуковом полете могли только самолеты с ядерными силовыми установками.

Подобный проект только сейчас кажется диким. В начале 50-х он казался не более экстравагантным, чем размещение реакторов на подводных лодках: и то и другое давало практически неограниченный радиус действия. Вполне обычным постановлением Совета Министров СССР от 1955 года ОКБ Туполева было предписано создать на базе бомбардировщика Ту-95 летающую атомную лабораторию, а ОКБ Мясищева — выполнить проект сверхзвукового бомбардировщика «со специальными двигателями главного конструктора Архипа Люльки».

Специальные двигатели

Турбореактивный двигатель с атомным реактором (ТРДА) по конструкции очень сильно напоминает обычный турбореактивный двигатель (ТРД). Только если в ТРД тяга создается расширяющимися при сгорании керосина раскаленными газами, то в ТРДА воздух нагревается, проходя через реактор.

Активная зона авиационного атомного реактора на тепловых нейтронах набиралась из керамических тепловыделяющих элементов, в которых имелись продольные шестигранные каналы для прохода нагреваемого воздуха. Расчетная тяга разрабатываемого двигателя должна была составить 22,5 т. Рассматривалось два варианта компоновки ТРДА — «коромысло», при котором вал компрессора располагался вне реактора, и «соосный», где вал проходил по оси реактора. В первом варианте вал работал в щадящем режиме, во втором требовались специальные высокопрочные материалы. Но соосный вариант обеспечивал меньшие размеры двигателя. Поэтому одновременно прорабатывались варианты с обеими двигательными установками.

Первым в СССР самолетом с атомным двигателем должен был стать бомбардировщик М-60, разрабатываемый на основе существующего М-50. При условии создания двигателя с компактным керамическим реактором, разрабатываемый самолет должен был иметь дальность полета не менее 25 тыс. км при крейсерской скорости 3000−3200 км/ч и высоте полета порядка 18−20 км. Взлетная масса супербомбардировщика должна была превысить 250 т.

Летающий Чернобыль

При взгляде на эскизы и макеты всех атомных самолетов Мясищева сразу бросается в глаза отсутствие традиционной кабины экипажа: она неспособна защитить летчиков от радиационного излучения. Поэтому экипаж ядерного самолета должен был располагаться в герметичной многослойной капсуле (преимущественно, свинцовой), масса которой вместе с системой жизнеобеспечения составляла до 25% массы самолета — более 60 т! Радиоактивность внешнего воздуха (ведь он проходил через реактор) исключала возможность использования его для дыхания, поэтому для наддува кабины использовалась кислородноазотная смесь в пропорции 1:1, получаемая в специальных газификаторах путем испарения жидких газов. Аналогично противорадиационным системам, применяемым на танках, в кабине поддерживалось избыточное давление, исключающее попадание внутрь атмосферного воздуха.

Отсутствие визуального обзора должно было компенсироваться оптическим перископом, телевизионным и радиолокационными экранами.

Катапультная установка состояла из кресла и защитного контейнера, ограждающего экипаж не только от сверхзвукового воздушного потока, но и от мощного радиационного излучения двигателя. Задняя стенка имела 5сантиметровое свинцовое покрытие.

Понятно, что поднять в воздух, а тем более посадить 250-тонную машину, прильнув к окуляру перископа, было практически невозможно, поэтому бомбардировщик оборудовался полностью автоматической системой самолетовождения, которая обеспечивала автономный взлет, набор высоты, заход и наведение на цель, возвращение и посадку. (Все это в 50-х годах — за 30 лет до автономного полета «Бурана»!)

После того как выяснилось, что самолет сможет решать практически все задачи сам, появилась логическая идея сделать беспилотный вариант — легче как раз на те самые 60 т. Отсутствие громоздкой кабины также уменьшало на 3 м диаметр самолета и на 4 м — длину, что позволяло создать аэродинамически более совершенный планер по типу «летающее крыло». Однако в ВВС проект поддержки не нашел: считалось, что беспилотный самолет не в состоянии обеспечить маневр, необходимый в создавшейся конкретной обстановке, что приводит к большей поражаемости беспилотного аппарата.

Пляжный бомбардировщик

Наземный комплекс обслуживания атомных самолетов представлял собой не менее сложное сооружение, чем сами машины. Ввиду сильного радиационного фона практически все работы были автоматизированы: заправка, подвеска вооружения, доставка экипажа. Атомные двигатели хранились в специальном хранилище и монтировались на самолете непосредственно перед вылетом. Мало того, облучение материалов в полете потоком нейтронов приводило к активации конструкции самолета. Остаточное излучение было настолько сильным, что делало невозможным свободный подход к машине без применения специальных мер в течение 23 месяцев после снятия двигателей. Для отстоя таких самолетов в аэродромном комплексе отводились специальные площадки, а конструкция самих машин предусматривала быстрый монтаж основных блоков посредством манипуляторов. Гигантская масса атомных бомбардировщиков требовала особых взлетных полос, с толщиной покрытия около 0,5 м. Ясно было, что такой комплекс в случае начала войны был чрезвычайно уязвим.

Именно поэтому под индексом М-60М параллельно разрабатывался сверхзвуковой гидросамолет с атомным двигателем. Каждый район базирования таких самолетов, рассчитанный на обслуживание 10−15 гидросамолетов, занимал участок побережья в 50−100 км, что обеспечивало достаточную степень рассредоточения. Базы могли располагаться не только на юге страны. В СССР был тщательно изучен опыт Швеции по поддержанию в 1959 году водных акваторий круглый год в незамерзающем состоянии. Используя несложное оборудование для подачи воздуха по трубам, шведам удалось обеспечить циркуляцию теплых слоев воды со дна водоемов. Сами базы предполагалось строить в мощных прибрежных скальных массивах.

Атомный гидросамолет был довольно необычной компоновки. Воздухозаборники были удалены от поверхности воды на 1,4 м, что исключало попадание в них воды при волнении до 4-х баллов. Реактивные сопла нижних двигателей, расположенные на высоте 0,4 м, в случае необходимости наполовину перекрывались специальными заслонками. Впрочем, целесообразность заслонок подвергалась сомнению: гидросамолет должен был находиться на воде только с включенными двигателями. Со снятыми реакторами самолет базировался в специальном самоходном доке.

Для взлета с водной поверхности применялась уникальная комбинация выдвижных подводных крыльев, носовой и подкрыльевых гидролыж. Подобная конструкция на 15% снижала площадь поперечного сечения самолета и уменьшала его массу. Гидросамолет М-60М, как и сухопутный родственник М-60, мог находиться с боевой нагрузкой в 18 т на высоте 15 км более суток, что позволяло решать основные поставленные задачи. Однако сильное предполагаемое радиационное загрязнение мест базирования привело к тому, что в марте 1957 года проект был закрыт.

По следам подводных лодок

Закрытие проекта М-60 вовсе не означало прекращение работ над атомной тематикой. Был поставлен крест только на атомных силовых установках с «открытой» схемой — когда атмосферный воздух проходил напрямую через реактор, подвергаясь сильному радиационному заражению. Надо отметить, что проект М-60 начинал разрабатываться, когда еще не было даже опыта создания атомных подводных лодок. Первая АПЛ К-3 «Ленинский комсомол» была спущена на воду в 1957-м — как раз в год прекращения работ над М-60. Реактор К-3 работал по «закрытой» схеме. В реакторе происходил нагрев теплоносителя, который потом превращал воду в пар. Ввиду того, что теплоноситель постоянно находился в замкнутом изолированном контуре, радиационного заражения окружающей среды не происходило. Успех такой схемы во флоте активизировал работы в этой области и в авиации. Постановлением правительства от 1959 года ОКБ Мясищева поручается разработка нового высотного самолета М-30 с атомной силовой установкой «закрытого» типа. Самолет предназначался для нанесения ударов бомбами и управляемыми ракетами по особо важным малоразмерным целям на территории США и авианосным ударным соединениям на океанских просторах.

Разработка двигателя для нового самолета была поручена ОКБ Кузнецова. При проектировании конструкторы столкнулись с неприятным парадоксом — падением тяги атомного двигателя с понижением высоты. (Для обычных самолетов все было в точности наоборот — тяга падала с набором высоты.) Начались поиски оптимальной аэродинамической схемы. В конце концов остановились на схеме «утка» с крылом переменной стреловидности и пакетным расположением двигателей. Единый реактор по мощным замкнутым трубопроводам должен был доставлять жидкий теплоноситель (литий и натрий) к 6 воздушно-реактивным двигателям НК-5. Предусматривалось дополнительное использование углеводородного топлива на взлете, выходе на крейсерскую скорость и выполнении маневров в районе цели. К середине 60-го года предварительный проект М30 был готов. В связи с гораздо меньшим радиоактивным фоном от новой двигательной установки, существенно была облегчена защита экипажа, а кабина получила остекление из свинцового стекла и плексигласа общей толщиной 11 см. В качестве основного вооружения предусматривались две управляемые ракеты К-22. По планам подняться в воздух М-30 должен был не позже 1966 года.

Кнопочная война

Однако в 1960 году произошло историческое совещание по перспективам развития стратегических систем оружия. В результате Хрущев принял решения, за которые его до сих пор называют могильщиком авиации. По правде говоря, Никита Сергеевич тут ни при чем. На совещании ракетчики во главе с Королевым выступили куда более убедительно, чем разобщенные авиастроители. На вопрос, сколько времени требуется на подготовку вылета стратегического бомбардировщика с ядерным боеприпасом на борту, самолетчики ответили — сутки. Ракетчикам потребовались минуты: «Нам бы только гироскопы раскрутить». К тому же им не требовались многокилометровые дорогостоящие взлетно-посадочные полосы. Преодоление бомбардировщиками средств ПВО также вызывало большие сомнения, тогда как эффективно перехватывать баллистические ракеты не научились до сих пор. Вконец сразила военных и Хрущева красочно описанная ракетчиками перспектива «кнопочной войны» будущего. Результат совещания — самолетостроителям было предложено взять на себя часть заказов по ракетным темам. Все самолетные проекты были приостановлены. М-30 стал последним авиационным проектом Мясищева. В октябре ОКБ Мясищева окончательно переводится на ракетно-космическую тематику, а сам Мясищев отстраняется от должности руководителя.

Будь авиаконструкторы в 1960 году более убедительны, как знать, какие бы самолеты летали сегодня в небе. А так, нам остается только любоваться смелыми мечтами на обложке «Популярной механики» и восхищаться сумасшедшими идеями 60-х.

С 1951 г. в США в рамках программы по оценки возможности постройки бомбардировщика с неограниченной дальностью и продолжительностью полёта начался практический этап по испытанию ядерного реактора для ядерной силовой установки стратегического бомбардировщика. А уже 17 сентября 1955 г. экспериментальный самолёт NB-36H с ядерным реактором на борту совершил свой первый полёт. Данная программа после серии лётных испытаний в 1957 г. была закрыта.

Эта информация стала известна руководству СССР и в 1955 г. рамках пресловутого «догнать и обогнать Америку» в соответствии с постановлением Совета министров начались работы над авиационным двигателем, авиационным ядерным реактором, а с 1956 г. и над самим самолётом с ядерной силовой установкой. Цель данной работы, как и в США – оценка возможности создания самолёт – носитель ядерного оружия с неограниченной дальностью и большой продолжительностью полёта.

NB-36H — американский самолёт для испытания авиационного ядерного реактора

Он должен быть способен в угрожаемый период подняться со своего аэродрома и дежурить в воздухе в районе ожидания. Таким образом, в случае начала ядерной войны обеспечивалась его неуязвимость от первого удара противника. После начала ядерной войны, самолёт должен был нанести ответный ядерный удар по территории противника. Бомбардировщик с ядерной силовой установкой лучше всего подходил на эту роль.

Для проверки возможности размещения и эксплуатации на самолёте основного элемента ядерной силовой установки – ядерного реактора (в первую очередь с точки зрения влияния на экипаж и оборудование) было принято решение о переоборудовании самого большого на тот момент в СССР летательного аппарата – стратегического бомбардировщика Ту-95 в летающую лабораторию – Ту-95ЛАЛ.

Работы по созданию авиационного ядерного реактора велись в институте И.В.Курчатова под руководством А.П.Александрова. Для размещения на летающей лаборатории был выбран созданный ранее в Курчатовском институте экспериментальный водо – водяной реактор (вода выступает и в роли замедлителя нейтронов и в роли теплоносителя) с 2-х контурной системой охлаждения (первый контур: активная зона реактора – промежуточный теплообменник, второй контур: промежуточный теплообменник – наружный теплообменник). С целью сокращения лётного этапа испытаний и приобретения опыта работы с реактором в 1958 г. на одном из аэродромов под Семипалатинском (Казахская ССР) был создан наземный испытательный стенд, копия самолётного отсека с ядерным реактором. Ядерный реактор установили на специальной платформе с подъемником и при необходимости он мог опускаться. С июня 1959 по 1961 гг. на данном стенде проходили испытания авиационного ядерного реактора. В ходе его испытаний удалось выйти на заданный уровень мощности, опробовать приборы управления реактором и контроля радиации, проверить систему защиты, выработать рекомендации экипажу летающей лаборатории.

В летающую лабораторию Ту-95ЛАЛ был переоборудован серийный стратегический бомбардировщик Ту-95М с четырьмя турбовинтовыми двигателями НК-12М мощностью по 15000 л.с. Все вооружение с самолета было снято. Экипаж находились в передней герметической кабине, где также размещался радиационный датчик. За кабиной был установлен защитный экран из свинцовой 5-см плиты и комбинированных материалов (полиэтилен и церезин) общей толщиной около 20 см. В бомбоотсеке был установлен второй радиационный датчик. Ближе к хвостовой части самолета располагался ядерный реактор. Третий радиационный датчик находился в задней части самолёта в кабине кормового стрелка. Еще два датчика смонтировали под консолями крыльев в несъемных металлических обтекателях. Все датчики радиационного контроля были поворотными вокруг вертикальной оси для ориентации в нужную сторону.

Сам реактор был окружен мощной биологической защитной, состоявшей из свинца и комбинированных материалов, и никакой связи с двигателями самолета не имел. Нагретая в активной зоне реактора вода первого контура отдавала тепло в промежуточном теплообменнике воде второго контура, которая в свою очередь охлаждалась в наружном теплообменнике. Наружный теплообменник представлял собой обычный радиатор, который охлаждался в полете потоком воздуха через большой воздухозаборник под фюзеляжем. Реактор немного выходил за обводы фюзеляжа самолета и прикрывался металлическими обтекателями сверху, снизу и по бокам. Поскольку биологическая защита ядерного реактора считалась достаточно эффективной, в ней были предусмотрены дистанционно открываемые в полете окна для проведения экспериментов по отраженному излучению. Окна позволяли создавать пучки излучения в различных направлениях.

Эксплуатация Ту-95ЛАЛ осуществлялась следующим образом. Ядерный реактор с системой биологической защиты устанавливался на платформу, которая аналогично системе подвески бомб поднималась в бомбоотсек самолёта и там проводилась стыковка самолётных систем с реактором. Запуск ядерного реактора в работу из – за условия обеспечения гарантированного теплосъёма с активной зоны (при наличии достаточного расхода воздуха через наружный теплообменник) производился в полёте. Остановка реактора также осуществлялась в воздухе заблаговременно до посадки самолёта (необходимо определённое время для расхолаживания уже заглушенного реактора).

С мая по август 1961 г. было выполнено 34 полёта с «холодным» и работающим ядерным реактором. Полученные результаты дали большой статистический материал по размещению и эксплуатации ядерного реактора на летательном аппарате (в первую очередь по радиационному излучению и системе биологической защиты) и подтвердили принципиальную возможность создания ядерной силовой установки для стратегического бомбардировщика. Была также обозначена и главная проблема которая может возникнуть при эксплуатации данного типа самолётов – опасность радиоактивного заражения огромной территории при авиационной катастрофе.

На основании наземных стендовых и лётных испытаний на летающей лаборатории Ту-95ЛАЛ в 1965 г. были начаты работы над прототипом будущего стратегического бомбардировщика — экспериментальным самолётом с ядерной силовой установкой Ту-119, а в 1966 г. и над противолодочным самолётом Ан-22ПЛО.

В конце 60-х – начале 70-х годов XX века с появлением новых средств доставки ядерного оружия (в первую очередь атомных подводных лодок, оснащенных баллистическими ракетами межконтинентальной дальности и способными наносить ответные удары из прибрежных районов своей страны) необходимость в стратегическом бомбардировщике с неограниченной дальностью и большой продолжительностью полёта отпала. Работы по Ту-119 так и не продвинулись дальше чертёжной доски, но программа создания противолодочного самолёта Ан-22ПЛО была продолжена.

Расчетные ТТХ Ан-22ПЛО с ядерной силовой установкой:

— дальность полёта — 27500 км
— продолжительность полёта — 50 часов

На выделенном для испытаний Ан-22 «Антей» в рамках программы «Аист» в районе г. Семипалатинск была проведена серия лётных экспериментов по эксплуатации нового типа авиационного ядерного ректора – основе будущей ядерной силовой установки. Всего в течении 1972 г. было выполнено 23 полёта. Новая серия летных экспериментов с действующим ядерным реактором на борту была успешно завершена, были получены необходимые данные для проектирования достаточно эффективной и безопасной авиационной ядерной силовой установки. Советский Союз все-таки обогнал США, вплотную подойдя к созданию реального ядерного самолета. Эта машина радикально отличалась от концепций 1950-х гг. с реакторами открытого цикла, эксплуатация которых была бы связана с огромными трудностями и нанесением колоссального вреда окружающей среде. Благодаря новой защите и закрытому циклу радиационное заражение конструкции самолета и воздуха сводилось к минимуму, а в экологическом плане такая машина даже имела определенные преимущества перед самолетами на химическом топливе. Во всяком случае, если все исправно работает, то выхлопная струя атомного двигателя не содержит ничего, кроме чистого нагретого воздуха. В случае же лётного происшествия проблемы экологической безопасности в проекте Ан-22ПЛО не были решены в достаточной мере. Стержни аварийной защиты реактора прекращали цепную реакцию, но опять же, если реактор не поврежден. А что будет, если это случится в результате удара о землю, и стержни не займут нужное положение? Представляется, что именно опасность подобного развития событий не позволила реализовать в металле этот проект.

Однако советские конструкторы и ученые продолжали поиск решения проблемы. Тем более, что кроме противолодочной функции, атомному самолету нашли новое применение. Оно возникло как логическое развитие тенденции повышения неуязвимости носителей стратегического ядерного оружия. Для повышения неуязвимости межконтинентальных баллистических ракет в СССР их устанавливали на мобильные носители – автомобильные шасси и железнодорожные платформы. Следующим логическим шагом было бы поместить их на самолет, который бы барражировал над своей территорией либо над океанскими просторами. Ввиду своей подвижности этот стратегический авиационный комплекс был бы неуязвим для средств поражения противника, а поднятый в воздух в угрожаемый период обеспечивал неотвратимость ответного удара в случае начала ядерной войны. Главным качеством такого самолета было как можно большее время пребывания в полете, а значит, ядерная силовая установка подходила ему как нельзя лучше.

Наконец, было найдено решение, гарантирующее ядерную безопасность даже в случае летного происшествия. Реактор вместе с первым контуром теплообмена выполнялся в виде автономного блока, оснащенного парашютной системой и способного отделиться от самолета в критический момент и выполнить мягкую посадку. Таким образом, даже если бы самолет разбился, опасность радиационного заражения местности была бы незначительной.

Но реализации этого проекта помешал конец «холодной войны» и распад Советского Союза. Повторился мотив, довольно часто встречающийся в отечественной истории: как только все готово к решению задачи, исчезла сама задача.

Будем надеяться, что человечеству когда – нибудь вновь потребуется летательный аппарат с неограниченной дальностью и продолжительностью полёта. И пусть он будет не военный а гражданский. И тогда будущие конструкторы смогут опереться на результаты труда наших современников.

Литература:

  1. В.С.Егер. Неизвестный Туполев.- М.: Яуза, Эксмо, 2009.
  2. Н.В.Якубович. Неизвестный Антонов.- М.: Яуза, Эксмо, 2009.
  3. Сайт «Мастерок. ЖЖ. РФ». Статья «Атомный самолёт «.
  4. Сайт «Мы следим за информацией». Статья «

Во время холодной войны стороны бросили все силы на поиск надежного средства доставки «спецгруза».
В конце 40-х чаша весов склонилась к бомбардировщикам. Следующее десятилетие стало «золотым веком» развития авиации.
Огромное финансирование способствовало появлению самых фантастических летательных аппаратов, но самыми невероятными и по сей день кажутся проекты сверхзвуковых бомбардировщиков с атомными реактивными установками, разрабатывавшиеся в СССР.

М-60

Бомбардировщик М-60 должен был стать первым в СССР самолетом, работающим на атомном двигателе. Он создавался по адаптированным под атомный реактор чертежам его предшественника М-50. Разрабатываемый самолет должен был развивать скорость до 3200 км/ч, при весе свыше 250 тонн.

Особый двигатель



Турбореактивный двигатель с атомным реактором (ТРДА) создан на основе обычного турбореактивного двигателя (ТРД). Только в отличие от двигателя ТРД, тягу в атомном движке обеспечивает нагретый воздух, проходящий через реактор, а не выделяемые при сжигании керосина раскаленные газы.

Особенность конструкции



Глядя на макеты и эскизы всех атомных самолетов того времени, можно заметить одну важную деталь: в них отсутствует кабина для экипажа. Для защиты от радиационного излучения экипаж ядерного самолета располагался в герметичной свинцовой капсуле. А отсутствие визуального обзора заменили оптическим перископом, телевизионным и радиолокационными экранами.

Автономное управление



Осуществлять взлеты и посадки при помощи перископа – задача не из легких. Когда инженеры это осознали, появилась логичная мысль – сделать самолет беспилотным. Это решение также позволяло уменьшить вес бомбардировщика. Однако по стратегическим соображениям проект в ВВС не одобрили.

Атомный гидросамолет М-60



Вместе с тем, под индексом М-60М параллельно разрабатывался сверхзвуковой самолет с атомным двигателем, способный осуществлять посадку на воду. Такие гидросамолеты размещали в специальных самоходных доках на базах на побережье. В марте 1957 года проект был закрыт, так как самолеты на атомном двигателе излучали сильный радиационный фон в местах базирования и прилегающей акватории.

М-30



Отказ от проекта М-60 вовсе не означал прекращения работ в этом направлении. И уже в 1959 году авиаконструкторы принимаются за разработку нового реактивного самолета. На этот раз тягу его двигателей обеспечивает новая атомная силовая установка «закрытого» типа. К 1960 году предварительный проект М-30 был готов. Новый двигатель снижал радиоактивный выброс, и на новый самолет стало возможным установить кабину для экипажа. Считалось, что уже не позднее 1966 года М-30 поднимется в воздух.

Похороны ядерного самолета



Но в 1960 году Хрущев на совещании по перспективам развития стратегических систем оружия принял решение, за которое его до сих пор называют могильщиком авиации. После разобщенных и нерешительных докладов авиаконструкторов, им было предложено взять на себя часть заказов по ракетным темам. Все разработки самолетов на атомном двигателе были заморожены. По счастью или к сожалению, узнать каким был бы наш мир, если бы авиаконструкторы прошлого все-таки завершили свои начинания, теперь уже не представляется возможным.
  1. Изобретения
  2. Нефть представляет собой маслянистую жидкость с характерным острым запахом и различным, в зависимости от места добычи, цветом. По своему химическому строению она является чрезвычайно сложной смесью различных химических соединений, прежде всего органических веществ - углеводородов. Углеводороды называются так потому, что представляют…

  3. С древнейших времен одним из основных занятий человека было собирательство. Под этим словом современные ученые подразумевают сбор съедобных семян, орехов, фруктов, корней, личинок, яиц и т.п. Основным орудием при собирательстве была толстая палка-копалка, один конец которой был заострен и обожжен на…

  4. Одним из замечательнейших событий в истории техники стало появление в середине XIX века скоропечатной ротационной машины, позволившей в тысячи раз увеличить выпуск печатных изданий, прежде всего газет и журналов. Это изобретение, точно так же как создание в свое время Гутенбергом первого…

  5. Паровой молот господствовал в машиностроении на протяжении 90 лет и был одной из важнейших машин своего времени. Его создание и внедрение в производство по своему значению для промышленной революции можно сравнить только с введением механизированного суппорта токарного станка, осуществленным Генри Модсли…

  6. Первое значительное изобретение сделанное человеком стало колесо. Первоначальным прототипом колеса стал каток из бревна, который подкладывались под тяжелые предметы для перетаскивания их.

  7. Современные цифровые технологии позволили создать достаточно портативные микроскопы, которые возможно подключить к компьютеру для отображения изображения на экран монитора.

  8. Робот пылесос agait. Специально для тех, кто хочет сделать так, чтобы уборка была не просто уборкой, а развлечением, специально можно предложить такой робот пылесос, как Робот пылесос agait.

  9. Первая в мире атомная электростанция была построена в СССР через девять лет после атомной бомбардировки Хиросимы. Этому важнейшему в истории техники событию предшествовала лихорадочная и напряженная работа по созданию собственного ядерного оружия. Эту работу возглавил видный ученый и талантливый организатор Игорь…

  10. На протяжении многих тысячелетий своей начальной истории люди не знали употребления металлов. Основным материалом для изготовления первых орудий труда служил камень, и именно с обработкой камня связаны первые великие открытия в истории человечества. Не из каждого камня можно сделать хорошее орудие…

  11. Люди рано открыли полезные свойства огня - его способность освещать и согревать, изменять к лучшему растительную и животную пищу. "Дикий огонь", который вспыхивал во время лесных пожаров или извержений вулканов, был страшен и опасен для человека, но, принеся огонь в свою…

  12. Важным достижением человека стало освоение составных орудий. Их появление произвело настоящую революцию в технике каменного века. Долгое время ручное рубило и палка существовали и использовались раздельно. Соединив их с помощью жил или ремешков кожи, люди получили принципиально новое орудие - каменный…

  13. К важнейшим составным вкладышевым орудиям относятся лук и стрелы. Их изобретение тоже составило эпоху в истории человеческой мысли. По меркам каменного века лук был очень сложным орудием, и его создание сродни гениальному озарению. Действительно, все предшествовавшие усовершенствования орудий труда происходили в…

  14. Можно назвать несколько причин, подтолкнувших человека к освоению водной стихии. Древние люди часто переходили с одного места на другое и должны были во время своих странствований тащить на себе свои пожитки. Стараясь облегчить эту непростую работу, они стали задумываться о средствах…

  15. По мере усложнения хозяйственной деятельности человек стал испытывать нужду в более совершенных инструментах с тщательно отделанными лезвиями. Изготовление их требовало новых приемов в обработке камня. Около восьми тысяч лет назад люди освоили технику пиления, сверления и шлифовки. Эти открытия были настолько…

Стратегический бомбардировщик с атомными двигателями


«Проект атомной/>летающей лаборатории/>на базе М-50 »

В разгар холодной войны между СССР и США, каких только не было предложений по военному доминированию перед страной соперницей.

Дальность полетов самолетов в 1950-х годах была ограничена многими факторами, но для СССР во время отсутствие еще межконтинентальных ракетных комплексов встал серьезный вопрос о доставке атомной бомбы на территорию противника.

Потому что бомбардировщики США используя аэродромы стран НАТО могли доставить атомную бомбу на территорию СССР пролетев не более 10 тысячи км., а для авиации СССР требовалось преодолеть более 20 тысячи км., чтобы войти в воздушное пространство США. Самолет способный пролететь без посадки такое огромное расстояние в СССР не существовал.

Имеющиеся сверхзвуковые бомбардировщики в СССР способные нести груз в 5 тонн теоретически требовали две дозаправки в воздухе, чтобы преодолеть 15 тысяч километров. К тому же в 1957 году СССР обладал лишь двумя десятками бомбардировщиками Ту-95 и М-4, дальность полетов которых позволяло лишь пролететь через Арктику и достичь границу Канада и США. Вооруженные силы США в это время обладали около 2 тысяч бомбардировщиков B-52 и B-47, а также старые B-36.

В связи с таким раскладом сил перспективным оружием возмездия в СССР стал стратегический сверхзвуковой бомбардировщик с атомным двигателем или проект М-60, способный к неограниченным расстояниям перелетов.

В те годы данный проект не считался абсурдным.


«Летающая/>лаборатория,/>построенная на базе/>Ту-95»

СССР за десять лет после создания атомной бомбы создала мощную научную базу для применения ядерной энергии, которая могла себе позволить неограниченные производственные мощности и крупное финансовое обеспечение из бюджета страны.

Научная элита в ядерной области была воспитана благодаря лаборатории №2 Академии наук СССР, которая была создана и руководилась Игорем Курчатовым. Многие последующие знаменитые ученые были его учениками и коллегами.

На научно-технических советах при Совете Министров СССР обсуждался вопрос об использовании ядерной энергии в энергозависимых установка, устанавливаемые на корабли, подводных лодок, что сейчас не удивишь, но и самолетов.

Энергосиловые установки для самолетов стал разрабатывать Анатолий Петрович Александров, заместитель И.В.Курчатова в Лаборатории №2 АН СССР.

Первоначально для ядерного авиационного двигателя был предложен открытый и закрытый цикл на основе прямоточных турбореактивных и турбовинтовых двигателей. Реакторная установка с различным видом охлаждения от воздушного до жидкого.

Просчитывались варианты защиты экипажа и оборудования самолета от вредного воздействия. Исследования проходили настолько успешно, что в июне 1952 года Александров доложил Курчатову о возможности создания в ближайшее время авиационного двигателя.

Через три года в 1955 года, когда в СССР начала работу первая атомная электростанция и готовый проект первой атомной подлодки СССР начали уже строить на верфях, разведка сообщает что в США существует проект по созданию сверхзвукового бомбардировщика с атомным двигателем.

Эта информация подстегнула Совет Министров СССР издать Постановление предписывающее целому ряду ОКБ авиационной промышленности начать проектирование бомбардировщика с атомными двигателями.

ОКБ под руководством С.А.Лавочкина разработала двигатель с прямоточным воздушно-реактивным принципом работы.


«Турбореактивный/>двигатель с атомным/>реактором открытого/>типа»

Конструкция была применена по открытому циклу: атомный реактор занял место камеры сгорания, т. е. воздух проходил сквозь активную зону. Смерть Лавочкина в 1960 году вместе с проектом двигателя был не получил дальнейшего развития.

ОКБ под руководством Мясищева в ходе реализации проекта сверхзвукового бомбардировщика с ядерным двигателем первоначально виделась простой, но к середине 1956 года выявились сложно выполнимые задачи.

При установке новой силовой установки авиаконструкторы столкнулись с трудными задачами, с которыми ранее не решались.

Первая задача - это радиоактивное излучение при открытом цикле атомного двигателя. Защита от излучения требуется экипажу и оборудованию самолета. Защита требует толстостенные свинцовые щиты, что влияет на рабочие места экипажа и весовые ограничения.

Вторая задача - это не возможность использования привычных сплавов металлов в конструкции самолета из-за радиации и выделяемого тепла от реактора. Требуются новые сплавы способные выдерживать такие нагрузки и при этом быть достаточно легкими.

Третья задача - это необходимость постройки специальных авиабаз оснащенными дезактивационными и дистанционными системами по обслуживанию самолета, потому что открытый цикл атомного двигателя вызывает сильное заражение его поверхностей.


«Турбореактивный/>двигатель с/>кольцевым атомным/>двигателем открытого/>типа»

Остановленный реактор двигателя смертельно опасен для человека долгое время.

И самая главная задача - обеспечение безопасности, особенно при аварии самолета.

Все эти проблемы вынудили отказаться от первоначальной идеи и перейти к новой компоновке самолета, который разрабатывался в рамках проекта самолета М-60. Конструкция самолета М-60 представляла из себя средне план со трапециевидным крылом и горизонтальным оперением на вершине киля.

Вся силовая установка самолета находилась в хвостовой части в максимальном отдалении от экипажа. Самолет обладал четырьмя атомными турбореактивными двигателями, которые располагались по парно друг над другом.

Общая длина самолета составляла 66 метров, при этом его расчетная масса должна была составлять 250 тонн. Расчетная крейсерская скорость свыше 3000 км/час, а максимальный потолок высоты до 20 тысяч метров.

Кабина экипажа спроектирована была, как многослойная капсула из специальных сплавов металлов, которая была полностью изолирована от внешней атмосферы из-за наличия радиоактивности. Забор воздуха в капсулу из вне не возможен, поэтому предполагалось генерация кислородно-азотной смеси путем газификации жидких газов из баков на борту самолета.

Капсула экипажа не подразумевала окна, поэтому для визуального обзора предполагалось использовать телевизионные экраны и перископы.


«Проект/>стратегического/>атомного/>бомбардировщика М-30»

Предлагалось оснастить капсулу для экипажа системой автоматического управления самолет, которая будет способна обеспечить не только взлет, посадку и маневрирование самолетом, но и исполнять боевые задачи.

Все это подразумевало вообще отказаться от людей и создать беспилотный управляемый стратегический бомбардировщик, но руководство военно-воздушных сил СССР посчитало человека более надежным для исполнения боевой задачи.

Экспериментальные атомные турбореактивные двигатели для самолета М-60 рассчитывались для создания взлетной тяги до 23 тысяч кг. ОКБ под руководством А.М.Люльки подготовила два варианта новых двигателей.

Первый, по «соосной схеме», когда реактор кольцевой формы находиться позади камеры сгорания, соответственно вал турбокомпрессора проходить через него.

Второй, по схеме «коромысло», когда реактор находиться за пределами вала и образует изогнутую проточную камеру.

ОКБ Мясищева пробовали оба двигателя, но в каждом были свои плюсы и минусы. Инженерами были решены многие проблемы в проектировании, но главную проблему - безопасность в обслуживании самолета на земле, они еще не знали каким образом решить.

Вопросы безопасности по обеспечению наземной эксплуатации и обслуживанию самолета, защите экипажа и персонала, местности в месте хранения самолета, а также в случаи падения самолета стали пророческими в целесообразности создания такого самолета.

В.М.Мясищев перевел решения этих проблем в практическую область начав создание летающей лаборатории взяв за основу проект самолета М-50.


«Проект/>стратегического/>атомного/>бомбардировщика М-60»

Радикальным решением стало то, что самолет должен был использовать для взлета и посадки водную поверхность. Это решение отчасти решало ряд вопросом более легче, но не все.

Конструкторы должны были решить сложнейшие проблемы и они сами были уверены в успехе своего дела. В.М.Мясищев в 1958 году обратился с докладом к Президиуму ЦК КПСС, где указывал на наличие критики дальности действия текущих проектов обычных бомбардировщиков и необходимости сосредоточения всех работ на бомбардировщиках с атомными двигателями.

Перед этим докладом Мясищев был воодушевлен проектом ядерного двигателя с закрытым циклом, созданным в ОКБ под руководством Н.Д.Кузнецовым. Закрытый цикл двигателя облегчал многие вопросы в обеспечении безопасности и Мясищев рассчитывал за 7 лет представить готовый самолет.

Шесть атомных турбореактивных двигателей размещались в хвостовой части, а сам реактор в фюзеляже. Теплоносителем предполагалось быть литию и натрию. Капсула экипажа становиться вентилируемой и более облегченной.

Также общая длина самолета сократилась до 46 метров, размах крыльев 27 метров. Общая масса самолета также снизилась до 170 тонн, масса двигателей и реактора около 30 тонн, капсула экипажа и оборудование самолета 38 тонн, а полезная боевая нагрузка 25 тонн.

Но данному самолету было не суждено быть построенным.


«Проект атомного/>гидросамолета»

ОКБ Мясищева срочно привлекли к созданию многоступенчатой баллистической ракеты, а в 1960 году вообще ликвидировали путем присоединения к другому конструкторскому бюро.

Для коллектива ОКБ А.Н.Туполева была более реальная задача разработки стратегического бомбардировщика, который должен был быть дозвуковой.

В 1955 году очередная информация от разведки СССР вынудили в очередной раз заставить ускорить создание самолета. США провели испытательные полеты B-36 с атомным двигателем.

Был созван научный совет, которые решил что полет был на обыкновенных двигателях, но с ядерным реактором. Туполеву было предложено сделать такой же эксперимент совместно с Курчатовым.

ОКБ Туполева начало разработку летающей атомной лаборатории на базе уже существующего серийного самолета Ту-95. Для инженеров Туполева был организованы циклы лекции лучшими физиками-ядерщиками по атомным процессам, реакторах, защите, материалах, управления реакцией и т. д.

На этих лекциях возникали совместные обсуждения вопросов использования атомных технологий дополнительно в ограничениях требовании самолетостроения. В итоге команда ученых и конструкторов разработала компактных атомный реактор, способный поместиться в фюзеляж самолета Ту-95.

Основная цель создания летающей атомной лаборатории на базе Ту-95 - это исследования радиационного влияния на жизнедеятельность самолета; оценка систем защиты от радиационного излучения; исследование отражения радиационного излучения от воздушных масс на разных высотах.

На созданием ЛАЛ на базе Ту-95 работали множество ОКБ, которые модифицировали базовое оборудование самолета.


«Наземный стенд для/>испытаний атомного/>реактора »

Для оценки и тестирования работы реактора была построена наземная модель из части фюзеляжа от Ту-95.

Защита от радиации на ЛАЛ применили новые сплавы металлов ранее не применяемые в производстве самолетов. Все сплавы разрабатывались в ОКБ неметаллов совместно с НИИ химической промышленности.

Наземный стенд был готов к 1958 году на Семипалатинском полигоне, а в июне был запущен реактор на макете. Первый запуск оказался успешным: реактор разогнался до рабочий мощности, системы управления и защиты от излучения, а также выработаны инструкции для экипажа ЛАЛ.

Летающая лаборатория получала индекс Ту-95ЛАЛ, ранее потом был переоборудован стратегический бомбардировщик Ту-95М с которого было снято вооружение. Экипаж был защищен в герметичной кабине, которая закрывалась свинцовой пяти сантиметровой плитой и двадцати сантиметровой плитой из защитных материалов полиэтилена и церезина.

Самолет оснастили датчиками для фиксации уровня излучения радиации в бомбоотсеке, в салоне экипажа, по одному датчику на крыльях и в хвостовой части самолета.

Атомный реактор был изолирован в специальной оболочке из свинца и комбинированных материалов. При этом с двигателями был не связан, а использовался лишь источником излучения.


«Размещение реактора/>на Ту-95ЛАЛ»

В качестве теплоносителя использовалась дистиллированная вода, которая нагревалась и передавала свое тепло теплообменнику другого контура воды. Далее, второй контур охлаждался через водовоздушный радиатор, продуваемый потоками воздуха через имеющейся воздухозаборник в фюзеляже самолета.

Реактор получился чуть больше фюзеляжа самолета, поэтому пришлось его чуть расширить по кругу фюзеляжа. В результате защита реактора оказалась эффективной, что позволило снизить защиту в капсуле экипажа и другого оборудования.

В период 1959-1960 годов самолет с атомным реактором Ту-95ЛАЛ был готов и базировался на аэродроме в Московской области. На него лично приехал смотреть министр Деменьтев. За осень 1961 года самолет сделал успешные 34 вылета. Летчики-испытатели М.М.Нюхтиков, М.А.Жила, Е.А.Горюнов и ученые разработчики совершили полеты самолета, как с работающим реактором, так и остановленным реактором.

В ходе испытаний Ту-95ЛАЛ были получены удовлетворительные характеристики по защите экипажа от радиационного излучения, но громоздкая защита требовала дальнейшее снижения весовых характеристик.

Главная проблема в эксплуатации Ту-95ЛАЛ стала последствия разрушения реактора от возможной аварии самолета.


«Демонтаж реактора с/>самолета Ту-95ЛАЛ»

Степень заражения огромных пространств радиоактивными компонентами предрешило дальнейшую судьбу Ту-95ЛАЛ. Почти десять лет он находился на аэродроме около Семипалатинского полигона и в 1970-м году после снятия реактора был передан в Иркутский военно-авиационное училище в качестве музейного экспоната.

Во время «горбачевской перестройки» и сокращения военного наступательного вооружения самолет признали боевым и распили на металлолом.

Казалось бы проект стратегического бомбардировщика с ядерными двигателями был заброшен, но полученные результаты позволили ОКБ Туполева параллельно в 1970-е годы продолжить разработки еще одного экспериментального проекта самолета Ту-119 с двигателями способными работать на киросине и энергии от ядерного реактора.

Окончательно отказаться от таких самолетов пришлось, когда баллистические ракеты смогли преодолевать континенты и могли нести достаточно ядерных боеголовок для полного уничтожения вероятного противника. К тому же проблема безопасности эксплуатации самолетов с ядерным реактором была по прежнему не решена, как в прочем и в США.

В итоге Правительство СССР посчитало, что выделяемые огромные средства на создание самолета менее выгодно, чем созданные межконтинентальные ракеты, и проекты самолетов с ядерными реакторами закрыли.

Тем неменее благодаря проекту самолета Ту-95ЛАЛ были получены уникальные результаты исследовании, которые дали знания для других проектов с использованием ядерного реактора.

18+, 2015, сайт, «Seventh Ocean Team». Координатор команды:

Осуществляем безвозмездную публикацию на сайте.
Публикации на сайте, являются собственностью их соответствующих владельцев и авторов.

В одном из изданий книги польской афористики Яна Жабчица (первая публикация — 1616 г.) есть тематическая рубрика «Не познаемо». В ней помещены четыре поговорки: Путь на воде после лодки. //Птичье летание на воздухе. //Змия ползуща по камени. // Дева чистоту потерявшая (Симони 1899, 44-45).


Как видно из их переносного смысла, под «непознаемым» собиратель имеет в виду не то, что непознаваемо, а то, что не оставляет после себя следа, то, что неузнаваемо после совершения каких-либо действий. И след на воде от проплывшей лодки не случайно в этом ряду занял первое место: ничто так быстро не расплывается и не разглаживается, как линия, прочерченная по водной поверхности.


Не случайно поэтому писание по воде издавна у многих народов считалось заведомо бесполезным и ненужным делом. Выражения kath" hýdatos grápheis (греч.) и in aqua scribis (лат.) "на воде пишешь" значили уже у древних греков и римлян — "ты выполняешь заведомо бесполезную работу, переливаешь из пустого в порожнее". Есть такие выражения и во многих современных славянских и неславянских языках: чеш. na vodé psát, пол. na wodzie pisać, иерхнелуж. na wodu napisać, с.-х. pisati po vodi, ит. scrivere su una pozza d"acqua (букв, "писать на колодце с водой"), англ. write in (on) water и т. п. Именно поэтому оборот писать наводе , встречающийся у Софокла, Платона, Лукиана, Катулла, считают интернационализмом, калькой с греческого или латыни (Снегирев 1831 1,85; Тимошенко 1897, 42-43; Попов 1976, 25).


Такая точка зрения вполне приемлема, хотя в разных языках встречаются варианты нашего выражения, свидетельствующие не только о книжном, но и о речевом распространении и обогащении древнего образа. Бессмысленность какого-либо дела может характеризоваться, например, и писанием на песке (фр. être écrit sur le sable), на ветре, льде или снеге (пол. pisać na wietrze, pisać na ledzie, pisać na śniegu) и другом непригодном для долговременного хранения информации материале.


Немало таких вариантов обусловлено и попытками экспрессивной конкретизации орудия писания. В одном лишь польском языке записаны такие варианты, как palcem na wodzie pisano "пальцем на воде писано", pisanymi gałązką na wodzie "веточками писано на воде", na wodzie patykiem pisane "палкой на воде писано" и даже prątkiem na piasku pisane "прутиком на песке написано" (NKPII, 940).


Известны подобные варианты и русскому языку. В стихотворном собрании пословиц середины прошлого века, например, встречаем вариант о писании пальцем по воде:



Иному твердить о душевном вреде,


Что пальцем писать на воде:


И ухом себе не ведет,


Пока его в крюк не согнет.


(НРП 2, ч. II, 75-76)



Записаны в народной речи и такие обороты, как сорока на воде хвостом писала (Михельсон 1912, 830), пишет, как черт шестом по Неглинной (улица и речка в Москве) (ДП, 420; Даль IV, 598) или писал Марка (Макарка) своим огарком (Даль II, 572).(Ср. «утешительное» обращение одной старушки к своему петуху в деревне Симоняты Псковской области: «Петенька, твая смерть ешіію мелом писана», т. е. неизвестно, когда настанет.)


Выражение вилами на воде написано — один из таких вариантов. Он, пожалуй, имеет наиболее широкое распространение и употребление, ибо известен не только русскому, но и белорусскому, украинскому и польскому языкам: вілами на вадзе пісана, вилами по воді написане, to jeszcze widłami pisano. Характерно, что в диалектах оно может употребляться и в форме сравнения—как в лем- ковских говорах украинского языка: як би вилами по воді написане було.


Если по поводу писания на воде у историков фразеологии практически нет разногласий, то вариант о писании вилами—предмет ожесточенной дискуссии.


Гидромантия—гадание по воде—действительно, была популярна и у восточных народов, и у славян. Свидетельством ее является, в частности, выражение как в воду глядел, связанное именно с предсказанием будущего по воде. Однако у славян, в отличие от персов, пока еще не зафиксировано такого гадания гидромантии, которое основано на бросании камней в воду и узнавании будущего по кругам. Более того, польские и русские варианты выражения писать на воде ясно показывают, что в творительном падеже в них стоит существительное, обозначающее отнюдь не форму начертания каких-либо знаков, а орудие письма: палец, веточку, палочку, шест, огарок и даже сорочий хвост. Это, следовательно,—то, чем «творят» написанное, а не то, что начертано на воде.


Известна и вторая гипотеза, объясняющая наше выражение на мифологической основе. Отталкиваясь от суеверного языческого оберега, заговора от хозяина водной стихии водяного, ее пытается отстоять Ю. А. Гвоздарев. Крестьяне предохранялись от «баловства» водяного тем, что чертили во время заговора крест ножом с косой, которые являются символами Перуна—верховного языческого божества. Писание вилами по воде, по предположению сторонника этой гипотезы, соотносится именно с этим суеверием и порожденным им обычаем. Значение же фразеологизма—"сомнительно, неясно", "неизвестно еще, когда и как что-либо произойдет"—развилось как результат скептической народной оценки таких заклинаний, не помогавших делу (Гвоздарев 1982,27).


Здесь, в отличие от первой версии, налицо известность суеверного ритуала именно в России. Достаточно рельефно проступают и детали писания ножом и косой по воде. Эти детали, однако, и помогают опровергнуть версию о связи заговора с историей нашего оборота. Ведь обращение к нему не имело целью узнать свое будущее. Наоборот, с помощью такой магической операции заговаривающие стремились запугать водяного, отпугнуть его святым крестом (ср. бояться как черт ладана и диалектное, известное также во многих языках, — бояться как черт креста или как черт святой (крещенной) воды). Так же как и очерчивание, осенение головы крестом (ср. очертя голову), эта магическай операция предохраняла от нечистой силы достаточно долго и устойчиво. Вот почему уже при такой гипотезе наше выражение никак не могло получить ассоциации с чем-либо весьма недолговечным, быстро исчезающим. Кроме того—еще один, чисто мифологический контраргумент: вилы, по мифотворческой символике, в какой-то степени противопоставлены ножу и косе, они—орудие дьявола, поскольку напоминают один из его атрибутов—рога. Использовать их как оберег от нечистой силы поэтому, с точки зрения народного суеверного сознания, было бы «противоязычно».


Наконец, существует и третье объяснение оборота о писании вилами по воде. Авторы его исходят из материалистической реальности первичного образа—не оставлять следов на воде, если пишешь по ней вилами (Фелицына, Прохоров 1979,107; 1988,115; Ивченко 1987). А. А. Ивченко весьма основательно доказывает истинность такого прочтения оборота, приводит много языковых аргументов и критически оценивает версии предшественников.


Пожалуй, третья гипотеза и является самой убедительной. Необходимо лишь отметить, что все-таки какой-то элемент мифологичности, интуитивно ощущаемый сторонниками первой и второй версий, в значении оборота присутствует. Это, правда, судя по употреблениям фразеологизма, не столько суеверие, сколько издевка над ним:



"Какой повелительный тон! Сейчас видно, что говорит будущая знаменитость", — подшучивал Антопин. "Это еще на воде вилами писано, буду ли я знаменитостью"» (П. Невежин. Тихий приют); «"Какой вы части? Где стоите?",— "Партизанской части, известно. Стоим сейчас на разъезде, а где завтра будем, про то вилами на воде писано"» (К. Седых. Отчий край); «Это еще вилами на воде писано, спасем ли мы собор» (Н. Рыленков. На старой смоленской дороге); «Но даже это обещание, как говорится, вилами на воде писано» (Правда, 1982, 19 сент.).



Этот иронический оттенок весьма устойчив. Он характеризовал и исконный вариант нашего оборота уже в XVIII в.:



Смотри ж и ты, Светильник ясной! Не проведи нас на бобах; И ложной радостью напрасной Не тешь нас на пустых словах. Чтоб были все твои ответы И все Сивиллины советы Написаны не на воде.


(Н. П. Осипов.Вергилева Енейда, вывороченная на изнанку)



Приведенный отрывок весьма примечателен. От него тянутся нити и к античным греко-латинским параллелям о писании по воде как о бесцельном времяпрепровождении, и к собственно русскому, народному переосмыслению его как очень ненадежного прогноза на будущее. Мифологический элемент предреченности в тексте «Енейды...» Н. Осипова подчеркнут и русским фразеологизмом провести на бобах (первоначально связанным с гаданием), и упоминанием легендарной прорицательницы античности Сивиллы (Сибиллы).


Значит, все-таки наше выражение связано с гидромантией?


Пожалуй, все-таки — нет. Оно ассоциативно привязано к иному способу прогноза будущего—его предначертанием, написанием на чем-либо долговечном и надежном. Вот целая серия итальянских выражений, ведущих свое начало из глубокой античности: е scritto in cielo "написано в небе", е scritto nei fati "написано на судьбе", е scrito nel libro del destino "написано в книге судьбы". А вот и несколько французских: être écrit au ciel "быть написанным на небе", c"est écrit "это написано". Смысл их — тот же, что и у русского выражения на роду написано у кого-либо. На роду — это как бы на «родовой книге судьбы», на родовом «фатуме» или, говоря по-современному,—на нашем генетическом коде.


Написанное же на воде—в отличие от неумолимо надежной и долговечной «родовой» записи—зыбко, непостоянно и потому недостоверно, сомнительно. Уже сам материал для записи будущего дает повод для скепсиса. А если к тому же эта запись сделана столь громоздким и неприспособленным для писания орудием, как вилы, то веры такому прорицанию и предначертанию вообще нет.