Генрих герц открытия. Генрих герц - открытие, ставшее судьбоносным. Вибратор и резонатор Герца

В 1896 году учёный Попов, изобретатель радио, осуществил передачу и прием первой в мире радиограммы. Текст её состоял из двух слов "Генрих Герц". Это было чествование немецкого физика, который внес огромный вклад в науку, экспериментально доказав существование электромагнитных волн. В истории науки не так много открытий, с которыми мы соприкасаемся ежедневно. Но без Генриха Герца современный мир выглядел бы совсем по-другому, потому что всё, предназначенное для коммуникации, основано на его изобретениях.

Генрих Рудольф Герц родился 22 февраля 1857 года в семье почтенного адвоката. Мальчик рос слабым и болезненным, но благополучно пережил трудные для него первые годы жизни, и вырос веселым и здоровым, к радости родителей. Все вокруг пророчили ему потрясающую карьеру, если бы он выбрал идти по стопам отца. Генрих так и собирался сделать - поступил в Гамбургское реальное училище и собирался изучать юриспруденцию. Но его интересы изменилось, когда в училище начался курс физики. Родители не мешали сыну самостоятельно принять выбор и разрешили перейти из училища в гимназию, после которой он мог поступить в университет.

В 1875 Герц уехал в Дрезден поступил в высшее техническое училище. Сначала профессия инженера ему понравилась, однако позже он написал матери, что быть посредственным ученым для него предпочтительнее, чем быть посредственным инженером. Поэтому он ушел из училища и отправился в Мюнхен, где его сразу приняли на второй курс университета. Годы, проведенные в Мюнхене показали Генриху, что университетских знаний недостаточно, необходим был учёный, согласный стать его научным руководителем. Поэтому после окончания университета Герц отправился в Берлин и устроился ассистентом в лабораторию крупнейшего немецкого физика того времени Германа Гельмгольца.

Маститый учёный обратил внимание на талантливого юношу, у них установились хорошие отношения, которые вылились в крепкую дружбу и тесное научное сотрудничество. Под руководством Гельмгольца Герц на отлично защитил докторскую диссертацию по теме "Об индукции во вращающемся шаре". В какой-то момент Генрих начал сомневаться, что его опубликованные теоретические работы имеют ценность для него, как для учёного. Его все больше и больше привлекали эксперименты.

По протекции своего учителя, Герц получил место доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Там у Герца была оборудована научная лаборатория для экспериментов, которая давала ему полную творческую свободу и возможность заниматься теми вещами, к которым он чувствовал интерес.

Генрих Герц осознавал, что больше всего на свете его интересовали быстрые электрические колебания, над изучением которых он трудился еще в студенческие годы. Именно в Карлсруэ начался самый плодотворный научный период Герца, который, к сожалению, продлился недолго.

После своего доклада 13 декабря 1888 года в Берлинском университете Герц стал популярным и авторитетным учёным, а электромагнитные волны стали повсеместно называться "лучами Герца". В 1932 году в СССР, а затем в 1933 году на заседании Международной электротехнической комиссии была принята единица частоты "герц", вошедшая затем в международную систему СИ.

В 1892 году у Герца диагностировали инфекцию, его несколько раз прооперировали, но спасти так и не смогли, он умер в возрасте 36 лет в Бонне. Его похоронили на кладбище Ольсдорф. Его жена Элизабет Герц так и осталась вдовой. У супругов Герц было две дочери - Джоанна и Матильда. После прихода Гитлера к власти все трое эмигрировали в Англию. Несмотря на то, что Герц был протестантом и не считал евреем, его портрет нацисты сняли с почетного места на в городской ратуше Гамбурга, поскольку он "частично еврейского происхождения".

"Вечерняя Москва" вспомнила открытия Герца, без которых современный мир был бы совершенно другим.

Эксперименты с электромагнитными волнами

Электромагнитная теория английского физика Джеймса Максвелла 25 не находила признания в научном мире. Герцу потребовалось всего 2 года, чтобы подтвердить ее экспериментально. В своих опытах учёный смог воспроизвести с электромагнитными волнами все явления, типичные для любых волн: образование "тени" позади хорошо отражающих предметов (в данном случае - металлических), преломление в большой призме (сделанной из асфальта), образование стоячей волны в результате наложения падающей на металлический лист волны и волны, отраженной этим листом. Он не только доказал подобие электромагнитных и световых волн, но и сумел измерить их длину.

Вибратор и резонатор Герца

Английский физик Максвелл теоретически доказал, что испускать электромагнитные волны могут колеблющиеся заряженные частицы, а энергия образующейся при этом волны тем больше, чем больше частота колебаний. Заставить заряженные частицы колебаться было несложно - надо соединить конденсатор и катушку индуктивности, чтобы получить колебательный контур. Но как увеличить частоту колебания зарядов, чтобы энергия излучаемых волн стала выше?

Герц нашел решение - он раздвинул пластины конденсатора и уменьшил площадь пластин. В результате этих манипуляций он получил открытый колебательный контур или провод. Чтобы дополнительно увеличить частоту колебаний электронов внутри провода, Герц уменьшим число витков катушки.

Но теперь требовалось заставить электроны колебаться внутри получившегося отрезка проволоки. Генрих разрезал провод пополам, а концы присоединил к источнику высокого напряжения, чтобы между кусками провода возникали электрические искры.

Таким образом Герц изготовил вибратор (излучатель) и резонатор (приёмник) электромагнитных волн. Вибратор Герца выглядит как два медных прутика с насаженными на ближайших концах латунными шариками. Между ними зазор - искровой промежуток. К стержням подводился ток высокого напряжения, и в определенный момент между шариками возникала электрическая искра, делающая сопротивление его воздушного промежутка настолько маленьким, что в вибраторе возникали высокочастотные электромагнитные колебания. Поскольку вибратор представляет собой открытый колебательный контур, происходит излучение электромагнитных волн.

Чтобы улавливать излучаемые волны, Герц придумал резонатор - проволочное незамкнутое кольцо, с такими же как у "передатчика" латунными шариками на концах и регулируемым расстоянием между ними. Приборы учёного удивляют простотой и кажущейся эффективностью. Изменяя размеры и положение резонатора, Герц настраивал его на частоту колебаний вибратора. Маленькие искры в резонаторе проскакивали в тот самый момент, когда появлялись разряды между шариками вибратора. Искры были очень слабые, поэтому наблюдать за ними приходилось в темноте.

В 1888 году, после серии трудоемких опытов Герц экспериментально доказал существование предсказанных Максвеллом электромагнитных волн, распространяющихся в пространстве.
Герц был первым человеком, который сознательно управлял электромагнитными волнами, но он не ставил перед собой задачи наладить беспроводную радиосвязь. Однако эксперименты Генриха, которые он подробно описал в своих научных статьях, заинтересовали физиков всего мира. многие ученые начали искать пути усовершенствования приемника и резонатора электромагнитных волн. Резонатор Герца был прибором не очень чувствительным, и мог улавливать испускаемые вибратором электромагнитные волны только в пределах комнаты. Но в итоге открытие учёного привело к изобретению радиотелеграфа, а потом и радио.

Фотоэффект

Чтобы лучше видеть искру во время эксперимента, Герц поместил приёмник в затемнённую коробку. При этом он заметил, что длина искры становится меньше. Тогда Герц провел серию экспериментов в этом направлении, в частности, он исследовал зависимость длины искры в случае, когда между передатчиком и приёмником помещается экран из различных материалов.

Герц нашёл, что электромагнитные волны проходили через одни виды материалов и отражались другими, что привело в будущем к появлению радаров. Кроме того, учёный заметил, что заряженный конденсатор теряет свой заряд гораздо быстрее при освещении его пластин ультрафиолетовым излучением. Новое открытие в физике было названо фотоэффектом, а теоретическое обоснование этому явлению дал Альберт Эйнштейн, получивший за это Нобелевскую премию в 1921 году.

ГЕНРИХ РУДОЛЬФ ГЕРЦ

В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.

Генрих Рудольф Герц родился 22 февраля 1857 года в семье адвоката, позже ставшего сенатором. Мальчик был слабым и болезненным, но благополучно преодолел необычайно трудные для него первые годы жизни, и, к радости родителей, выровнялся, стал здоровым и жизнерадостным.

Все считали, что он пойдёт по стопам отца. И действительно, Генрих поступил в Гамбургское реальное училище и собирался изучать юриспруденцию. Однако после того, как у них в училище начались занятия по физике, его интересы круто изменились. К счастью, родители не мешали мальчику искать своё призвание и разрешили ему перейти в гимназию, окончив которую, он получал право поступления в университет.

Получив аттестат зрелости, Герц уехал в 1875 году в Дрезден и поступил в высшее техническое училище. Вначале ему там понравилось, но постепенно юноша понял, что карьера инженера не для него. 1 ноября 1877 года он отправил родителям письмо, где были такие слова: «Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительнее, чем посредственным учёным. А теперь думаю, что Шиллер прав, сказав: „Кто трусит рисковать жизнью, тот не добьётся в ней успеха“. И эта излишняя моя осторожность была бы с моей стороны безумием».

Поэтому он ушёл из училища и отправился в Мюнхен, где был принят сразу на второй курс университета. Проведённые в Мюнхене годы показали, что университетских знаний недостаточно; для самостоятельных научных занятий необходимо было найти учёного, который согласился бы стать его научным руководителем. Вот почему после окончания университета Герц отправился в Берлин, где устроился ассистентом в лаборатории крупнейшего немецкого физика того времени Германа Гельмгольца.

Гельмгольц вскоре заметил талантливого юношу, и между ними установились хорошие отношения, которые впоследствии перешли в тесную дружбу и одновременно в научное сотрудничество. Под руководством Гельмгольца Герц защитил диссертацию и стал признанным специалистом в своей области.

Гельмгольц в своём некрологе вспоминает начало научного пути Герца, когда он предложил ему тему для студенческой работы из области электродинамики, «будучи уверен, что Герц заинтересуется этим вопросом и успешно его разрешит». Таким образом, Гельмгольц ввёл Герца в ту область, в которой ему впоследствии пришлось сделать фундаментальные открытия и обессмертить себя. Характеризуя состояние электродинамики в то время (лето 1879 года), Гельмгольц писал: «…область электродинамики превратилась в то время в бездорожную пустыню. Факты, основанные на наблюдениях и следствиях из весьма сомнительных теорий, - всё это было вперемежку соединено между собой». Именно в этот год Герц родился как учёный.

Начинающего учёного всецело захватила работа над обязательной для выпускника университета докторской диссертацией, которую он хотел закончить как можно скорее. 5 февраля 1880 года Генрих Герц был увенчан степенью доктора наук с редким в истории Берлинского университета, да ещё у таких строгих профессоров, как Кирхгоф и Гельмгольц, предикатом - с отличием. Его дипломная работа «Об индукции во вращающемся шаре» была теоретической, и он продолжал заниматься теоретическими изысканиями в физическом институте при университете.

Но Генрих Герц стал сомневаться, так как он считал, что теоретические работы, опубликованные им, случайны для него как для учёного. Его всё больше и больше стали привлекать эксперименты.

По рекомендации своего учителя в 1883 году Герц получил должность доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Здесь у Герца была своя собственная экспериментальная лаборатория, которая обеспечила ему свободу творчества, возможность заниматься тем, к чему он чувствовал интерес и признание. Герц осознал, что больше всего на свете его интересует электричество, быстрые электрические колебания, над изучением которых он трудился ещё в студенческие годы. Именно в Карлсруэ начался наиболее плодотворный период его научной деятельности, который, к сожалению, продолжался недолго.

В работе 1884 года Герц показывает, что максвелловская электродинамика обладает преимуществами по отношению к обычной, но считает недоказанным, что она является единственно возможной. В дальнейшем Герц, однако, остановился на компромиссной теории Гельмгольца. Гельмгольц взял у Максвелла и Фарадея признание роли среды в электромагнитных процессах, но в отличие от Максвелла считал, что действие незамкнутых токов должно быть отлично от действия замкнутых токов.

Этот вопрос изучал в лаборатории Гельмгольца Н. Н. Шиллер в 1876 году. Шиллер не обнаружил различия между замкнутыми и незамкнутыми токами, как то и должно было быть по теории Максвелла! Но, видимо, Гельмгольц не удовлетворился этим и предложил Герцу вновь заняться проверкой теории Максвелла.

Подсчёты Герца показали, что ожидаемый эффект даже при наиболее благоприятных условиях будет слишком мал, и он «отказался от разработки задачи». Однако с этих пор он не переставал думать о возможных путях её решения и его внимание «было обострено в отношении всего, что связано с электрическими колебаниями».

К началу исследований Герца электрические колебания были изучены и теоретически и экспериментально. Герц с его обострённым вниманием к этому вопросу, работая в высшей технической школе в Карлсруэ, нашёл в физическом кабинете пару индукционных катушек, предназначавшихся для лекционных демонстраций. «Меня поразило, - писал он, - что для получения искр в одной обмотке не было необходимости разряжать большие батареи через другую и, более того, что для этого достаточны небольшие лейденские банки и даже разряды небольшого индукционного аппарата, если только разряд пробивал искровой промежуток». Экспериментируя с этими катушками, Герц пришёл к идее своего первого опыта.

Экспериментальную установку и сами опыты Герц описал в опубликованной в 1887 году статье «О весьма быстрых электрических колебаниях». Герц описывает здесь способ генерации колебаний, «приблизительно в сто раз быстрее наблюдённых Феддерсеном». «Период этих колебаний, - пишет Герц, - определяемый, конечно, лишь при помощи теории, измеряется стомиллионными долями секунды. Следовательно, в отношении продолжительности они занимают среднее место между звуковыми колебаниями весомых тел и световыми колебаниями эфира». Но ни о каких электромагнитных волнах длиной порядка трёх метров Герц в этой работе не говорит. Всё, что он сделал, это сконструировал генератор и приёмник электрических колебаний, изучая индукционное действие колебательного контура генератора на колебательный контур приёмника при максимальном расстоянии между ними три метра.

В работе «О действиях тока» Герц перешёл к изучению явлений на более далёком расстоянии, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приёмника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих три метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии четырёх метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших двенадцати метров.

Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, - писал Герц в своей восьмой статье 1888 года, - показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».

Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчёты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.

Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешёл на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.

В 1889 году на 62-м съезде немецких естествоиспытателей и врачей Герц прочитал доклад «О соотношении между светом и электричеством». Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее её воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебную литературу.

Опыты Герца вызвали огромный резонанс. Особое внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, - писал Герц во „Введении“ к своей книге „Исследования по распространению электрической силы“, - быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания».

Среди многочисленных повторений опытов Герца особое место занимают опыты русского физика П. Н. Лебедева, опубликованные в 1895 году, первом году после смерти Герца.

В последние годы жизни Герц переехал в Бонн, где также возглавил кафедру физики в местном университете. Там он совершил ещё одно крупнейшее открытие. В своей работе «О влиянии ультрафиолетового света на электрический разряд», поступившей в «Протоколы Берлинской академии наук» 9 июня 1887 года, Герц описывает важное явление, открытое им и получившее впоследствии название фотоэлектрического эффекта.

Это замечательное открытие было сделано благодаря несовершенству герцевского метода детектирования колебаний: искры, возбуждаемые в приёмнике, были настолько слабы, что Герц решил для облегчения наблюдения поместить приёмник в тёмный футляр. Однако оказалось, что максимальная длина искры при этом значительно меньше, чем в открытом контуре. Удаляя последовательно стенки футляра, Герц заметил, что мешающее действие оказывает стенка, обращённая к искре генератора. Исследуя тщательно это явление, Герц установил причину, облегчающую искровой разряд приёмника, - ультрафиолетовое свечение искры генератора. Таким образом, чисто случайно, как пишет сам Герц, был открыт важный факт, не имевший прямого отношения к цели исследования. Этот факт сразу же привлёк внимание ряда исследователей, в том числе профессора Московского университета А. Г. Столетова, особенно тщательно исследовавшего новый эффект, названный им актиноэлектрическим.

Исследовать это явление детально Герц не успел, поскольку скоропостижно умер от злокачественной опухоли 1 января 1894 года. До последних дней жизни учёный работал над книгой «Принципы механики, изложенные в новой связи». В ней он стремился осмыслить собственные открытия и наметить дальнейшие пути исследования электрических явлений.

После безвременной смерти учёного этот труд закончил и подготовил к изданию Герман Гельмгольц. В предисловии к книге он назвал Герца самым талантливым из своих учеников и предсказал, что его открытия будут определять развитие науки на многие десятилетия вперёд.

Слова Гельмгольца оказались пророческими и начали сбываться уже через несколько лет после смерти учёного. А в XX веке из работ Герца возникли практически все направления современной физики.

Из книги Все монархи мира. Западная Европа автора

Рудольф I Немецкий король и император «Священной Римской империи» из рода Габсбургов, правивший в 1273-1291 гг.Ж.: 1) с 1241 г. Гертруда, дочь Буркгардта III, графа Гоэнбергского и Гейгердлохского (род. 1220 г. ум. 1281 г.); 2) с 1284 г. Агнеса, дочь герцога Бургундии Гуго IV (род. 1270 г. ум. 1323

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Рудольф II Из династии Габсбургов. Король Венгрии в 1572-1608 гг. Король Чехии в 1575-1611 гг. Немецкий король в 1575-1612 гг. Император «Священной Римской империи» в 1576-1612 гг. Сын Максимилиана II и Марии Габсбург.Род. 17 июля 1552 г. ум. 20 янв. 1612 г.В 1563 г. отец отправил Рудольфа вместе с младшим

Из книги Большая Советская Энциклопедия (РУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ТУ) автора БСЭ

Герц Густав Герц, Херц (Hertz) Густав (р. 22.7.1887, Гамбург), немецкий физик, член Германской АН в Берлине. Племянник Генриха Герца. Учился в Гёттингенском, Мюнхенском и Берлинском университетах. С 1917 приват-доцент Берлинского университета. В 1920-25 работал в лаборатории ламп

Из книги 100 великих пророков и вероучителей автора Рыжов Константин Владиславович

Герц (единица частоты) Герц, единица частоты. Названа в честь Генриха Герца. Сокращённое обозначение: русское гц, международное Hz. 1 Г. - частота периодического процесса, при которой за время в 1 сек происходит один цикл процесса. Широко применяются кратные единицы от Г. -

Из книги 100 великих учёных автора Самин Дмитрий

Герц Фридрих Отто Герц, Херц (Hertz) Фридрих Отто (р. 26.3.1878), австрийский социал-демократ, социолог, историк, экономист. Окончил Венский университет. В 1920-30-х гг. советник министра при Австрийской федеральной канцелярии, в 1930-33 профессор экономики и социологии университета в

Из книги 100 великих авантюристов автора Муромов Игорь

ГЕНРИХ РУДОЛЬФ ГЕРЦ (1857–1894)В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а

Из книги автора

Корнелиус Герц (1845–1898) Политический интриган и финансовый спекулянт. Каждое его действие подвергалось самым немыслимым истолкованиям, от связи с ним зависела политическая карьера наиболее влиятельных руководителей буржуазных партий, парламентариев и министров. Один

Из книги автора

Из книги автора

Рудольф Рудольф (1858–1889) - кронпринц, сын императора Франца Иосифа I, наследник престола Австро - Венгерской империи.Кронпринц Рудольф был женат на бельгийской принцессе Стефании, однако при этом имел любовную связь с дочерью баронессы Вечеры, семнадцатилетней

Из книги автора

1896 г. Попов передает телеграмму «Генрих Герц», первая заявка Маркони, Попов показывает грозоотметчик на Нижегородской ярмарке В 1896 году, 12 марта русского стиля, Попов собирает полный комплект своего радиотелеграфа и вторым после англичанина Лоджа, который сделал это

Генрих Рудольф Герц (1857-1894) - немецкий физик, один из основоположников электродинамики. Экспериментально доказал (1886-89) существование электромагнитных волн (используя вибратор Герца) и установил тождественность основных свойств электромагнитных и световых волн. Придал уравнениям Джеймса Максвелла симметричную форму. Открыл внешний фотоэффект (1887). Построил механику, свободную от понятия силы.

Колебания Герца при выборе пути

Генрих Герц родился 22 февраля 1857 года в Гамбурге, в семье юриста, позже ставшего сенатором города Гамбурга. Мальчик родился слабеньким, так что были даже, к счастью, не оправдавшиеся, опасения за его жизнь. Он рос послушным, прилежным и любознательным, у него была прекрасная память, что, в частности, позволяло ему с легкостью изучать иностранные языки (включая даже арабский). Любимыми авторами Генриха были Гомер и А.Данте. И еще одно: по многочисленным его письмам к родителям видно, какая духовная близость соединяла его с ними.

Кроме общеобразовательной школы, юный Генрих по воскресеньям посещал и школу искусств и ремесел. Там изучалось черчение, а также столярное и слесарное дело. Когда Генрих Герц уже стал знаменитым ученым, его бывший преподаватель токарного дела, говорил: «Жаль, из него вышел бы прекрасный токарь». Все это впоследствии весьма пригодилось Герцу, когда он создавал свои экспериментальные установки. Первые попытки конструировать физические приборы относятся еще к его школьным годам.

По всему можно было понять, что мальчик тянется к науке. Но ему казалось, что она требует от человека каких-то исключительных данных, и он сомневался, что обладает достаточными для научной работы способностями. Поэтому, получив аттестат зрелости, Герц, которого привлекала и техника, решил выбрать путь инженера. Поехав вначале в Дрезден, а затем в Мюнхен, он поступил там в политехникум, окончив который даже принял участие в постройке моста.

Но этот выбор оказался не окончательным. Тяга к науке становилась все сильнее и победила все колебания. В ноябре 1877 Генрих Герц писал родителям: «Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительней, чем посредственным ученым. Но теперь я думаю, что прав Шиллер, сказавший: «кто трусит жизнью рисковать, тому успеха в ней не знать», и что излишняя осторожность была бы с моей стороны безумием». Родители поняли и поддержали его решение, и весной 1878 Генрих приехал в Берлин и поступил там в университет.

В Берлине

В Берлине произошла встреча Генриха Герца с замечательным ученым и человеком, выдающимся естествоиспытателем того времени, ученым Германом Гельмгольцем.

Гельмгольц, под руководством которого Герц начал работать в практикуме, впоследствии вспоминал: «Уже из знакомства с его элементарными работами я убедился, что имею дело с человеком, одаренным действительно выдающимися способностями. В конце лета мне пришлось предложить студентам тему для научной работы. Я остановился на области электродинамики, так как я был уверен, что Герц заинтересуется этой темой, и работа его будет плодотворной. Действительность оправдала мое предположение». Позже Гельмгольц даже называл Герца «любимцем богов».

В то время еще не сформировалось ясное представление о физической природе электрического и магнитного полей. Имело распространение мнение, что существуют некие связанные с ними «флюиды», обладающие, подобно всем известным средам, массой, а, значит, и инерцией. Если в проводнике либо возникает, либо прекращается электрический ток, эта инерция должна была бы обнаружиться, и Герц имел целью исследовать это экспериментально.

Теперь, когда мы знаем, что электрический ток в проводниках обусловлен дрейфом электронов, становится понятным, что опыты Генриха Герца не могли обнаружить искомого эффекта инерции. Несмотря на то, что результаты опытов были, фактически, отрицательными, работа была оценена очень высоко и в 1879 отмечена призом университета. Вскоре началась новая серия экспериментов, которые можно считать продолжением предыдущих - но только теперь делалась попытка обнаружить «электрическую инерцию» во вращающихся проводящих шарах.

Эта работа (удивительно, но она велась с такой интенсивностью, что на нее потребовалось всего около двух месяцев!) также получила высокую оценку, и 5 февраля 1889 года 23-летний Герц защитил на ее основе докторскую диссертацию («с отличием», как было особо отмечено). Диссертация была в значительной ее части теоретической - автор продемонстрировал блестящее владение математическим аппаратом. Генрих Герц был не только гениальным экспериментатором, но и теоретиком и математиком высочайшего класса. Поэтому не вызывает большого удивления его переключение на новую тематику - на теорию упругости. Если уж удивляться, то, пожалуй, только тому, что великолепное техническое оснащение лабораторий в Берлинском университете, которое вначале так восхитило Герца, почти не было использовано им. Возможно, сказалось переутомление и некоторая неудовлетворенность работой, которая была посвящена исследованию остаточной электрической поляризации в жидких диэлектриках, а также разрядов в газах. Для последнего Герц почти два месяца трудился над созданием электрической батареи из 1000 элементов, которая, проработав весьма недолго, вышла из строя.

Вскоре, в том же 1882 он неожиданно, как может показаться, переключился на решение задач из области теории упругости. В их числе - о прогибе нагружаемой различным образом упругой плиты (эта задача, возможно, заинтересовала Герца, когда он наблюдал ледоход). Технические условия работы в Киле были значительно хуже, чем в Берлине, но здесь ему была предложена должность приват-доцента.

Через три года, в начале 1885, Генрих Герц стал профессором Высшей технической школы в Карлсруэ. Через полгода после переезда туда он женился на Елизавете Долль, и, возможно, это было одной из важных причин окончания периода депрессии.

Теория Максвелла и эксперименты Герца.

1873 год занимает в истории физики особое, исключительное место. В этом году появился гениальный «Трактат об электричестве и магнетизме» Максвелла. Тогда лишь немногие осознали, что наступила новая эра в науке об электричестве и магнетизме, а, наверное, и во всей физике.

Завершилось формирование современной классической электродинамики, начало которому положили труды Майкла Фарадея, о котором Максвелл говорил: «Фарадей своим мысленным оком видел силовые линии, пронизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде».

В этих словах - стержень того, что отличает концепцию близкодействия, т. е. взаимодействия через посредство поля, от господствовавших ранее (в духе традиции, заложенной законом всемирного тяготения Ньютона) представлений о дальнодействии - мгновенном непосредственными действии на расстоянии.

Максвелл писал, что он лишь придал идеям Фарадея математическую форму. В действительности, конечно, вклад Максвелла был значительно весомее, но оценено это было не сразу. И одним из важных пунктов был вопрос об электромагнитных волнах.

Из теории Максвелла вытекало, что электромагнитное поле распространяется с конечной скоростью. Уже это само по себе приводило к выводу, что оно может «отрываться» от порождающих его источников - зарядов и токов, т. е. излучаться, разлетаться в виде волн. Замечательно, что еще в 1832 Фарадей передал в Лондонское Королевское общество запечатанное письмо, прочитанное лишь через 100 лет, в котором были следующие слова: «Я пришел к заключению, что на распространение магнитного взаимодействия требуется время, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания на взволнованной водной поверхности...».

Максвеллу принадлежит гениальная догадка, что свет также имеет электромагнитную природу, что это - частный случай электромагнитных волн. И в 1886-88 Генрих Герц осуществил свои эксперименты, доказавшие реальность электромагнитных волн.

Аппаратура, которой пользовался Герц, может показаться теперь более чем простой, но тем замечательнее полученные им результаты. Источниками электромагнитного излучения у него были искры в разрядниках. Электромагнитные волны от разрядников вызывали искровые разряды между шариками в «приемниках», расположенных в нескольких метрах контурах, настроенных в резонанс. Герцу удалось не только обнаружить волны, в том числе, и стоячие, но и исследовать скорость их распространения, отражение, преломление и даже поляризацию. Все это очень напоминало оптику, с тем только (весьма существенным!) отличием, что длины волн были почти в миллиард раз больше.

Опыты Герца сыграли существенную роль в становлении современной электродинамики. Но не зря говорят: «Нет ничего более практичного, чем хорошая теория!». Повторять сегодня, когда электромагнитные волны буквально пронизывают все, что работы Герца оказали на всю жизнь человечества колоссальное влияние, было бы излишне, но эти работы получали высокие оценки и его современников. В 1889 году Итальянское общество наук в Неаполе наградило его медалью имени Маттеучи, Парижская академия наук - премией Лаказа, а Венская императорская академия - премией Баумгартнера. Через год Лондонское королевское общество награждает Генриха Герца медалью Румфорда, а в 1861 Королевская академия в Турине - премией Бресса.

Прусское правительство награждает его орденом Короны, Берлинская, Мюнхенская, Венская, Римская, Геттингенская и другие академии избирают его своим членом-корреспондентом. В его честь названа единица частоты - Герц.

Генрих Герц подтвердил выводы максвелловской теории о том, что скорость распространения электромагнитных волн в воздухе равна скорости света, установил тождественность основных свойств электромагнитных и световых волн. Герц изучал также распространение магнитных волн в проводнике и указал способ измерения скорости их распространения.

Память о Генрихе Герце осталась не только как о великом экспериментаторе, но и как о глубоком теоретике. В развитие теории Максвелла Герц придал уравнениям электродинамики симметричную форму, которая показывает взаимосвязь между электрическими и магнитными явлениями. Работы Герца по электродинамике сыграли огромную роль в развитии науки и техники. Его труды обусловили возникновение беспроволочного телеграфа, радио и телевидения.

Последние годы жизни Герца

В 1886-87 Генрих Герц впервые наблюдал и дал описание внешнего фотоэффекта. Ученый разрабатывал теорию резонаторного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. Последние четыре года его жизни были посвящены эксперименту с газовым разрядом и работой над книгой «Принципы механики, изложенные в новой связи», в которой изложен оригинальный подход к этой науке. Здесь Герц дал вывод общих теорем механики и ее математического аппарата, исходя из единого принципа (принцип Герца или принцип наименьшей кривизны, один из вариационных принципов механики).

Генрих Герц скончался 1 января 1894 года в Бонне, прожив всего 37 лет. Его кончина от общего заражения крови была тяжелым ударом не только для его родителей, жены и двух дочерей, но и для всех его коллег и учеников и для всей физики.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

— знаменитый немецкий физик, смелый экспериментатор, один из основоположников электродинамики, глубокий и талантливый теоретик. Родился Герц 22 февраля 1857 года в Гамбурге. Его отец был преуспевающим юристом, позже станет сенатором Гамбурга. На протяжении всей жизни между Герцем и родителями существовала огромная духовная близость. Прекрасная память, любознательность, мгновенная сообразительность позволяли Генриху с легкостью изучать все предметы, писать стихи, изучать слесарное и столярное дело. Кстати, изучение токарного дела поможет ему в дальнейшем самому создавать экспериментальные установки. После реального училища он переходит в гимназию, которую успешно заканчивает в 1875 году. Дальнейшее его обучение проходит в Дрезденском, а затем в Мюнхенском политехникуме.

После окончания политехникума Герц меняет свое решение быть инженером, он ощущает тягу к научной работе и весной 1878 года поступает в Берлинский университет. Здесь его наставником оказался знаменитый ученый того времени Герман Гельмгольц. В качестве конкурсной задачи Гельмгольц предложил своему одаренному студенту тему из области электродинамики. Вместо положенных 9 месяцев Герц блестяще справился с заданием за 3 месяца, проявив упорство, трудолюбие и черты смелого талантливого экспериментатора. Работа была отмечена премией.

Осенью 1879 года Герц начинает работать над докторской диссертацией на тему: «Об индукции во вращающихся телах». Невероятно, но будущему ученому понадобилось чуть больше двух месяцев, чтобы завершить работу. 5 февраля 1880 года 23-летний Герц, еще будучи студентом, «с отличием» защитил диссертацию и получил степень доктора. Работа эта была теоретической. В 1883 году он получает должность приват-доцента в Киле. Технические условия здесь значительно хуже столичных, отсутствует физическая лаборатория. И Герц продолжает заниматься теоретическими вопросами, изучением электричества, электрических колебаний. В своей работе 1884 года он приходит к выводу, что электродинамика Максвелла имеет преимущества по сравнению с обычной, но не доказано, что она единственно возможная.

В 1885 году он стал профессором физики Высшей технической школы, расположенной в Карлсруэ. Вскоре он женится на Елизавете Долль. От этого брака у них будет две очаровательных дочки. Будучи еще студентом Герц с интересом изучал электричество, электрические колебания и теперь он понимает, что эти вопросы интересуют его больше всего. В 1887 году выходит его статья «О весьма быстрых электрических колебаниях», где он описывает экспериментальную установку, опыты и способ генерации колебаний. В процессе экспериментов Герц изобрел источник высокочастотных колебаний — генератор, а также приемник этих колебаний — резонатор. Он замечает, что в случае резонанса особенно велико влияние генератора на приемник. Благодаря многочисленным опытам Герц доказал существование электромагнитных волн. В своей работе «О лучах электрической силы», изданной в 1888 году, он доказал полную аналогию электромагнитных волн со световыми и описал это. Это был год открытия электромагнитных волн и блестящего подтверждения теории Максвелла экспериментальным путем.

Уравнениям электродинамики Герц придал симметричную форму, его работы по электродинамике способствовали возникновению радио, беспроволочного телеграфа, телевидения. В 1887 году ученый описал открытое им явление фотоэлектрического эффекта. В последние годы Герц возглавлял кафедру физики в Боннском университете. Он проводит опыты с газовым разрядом и пишет книгу «Принципы механики, изложенные в новой связи», где вывел общие теоремы механики исходя из единого принципа. Напряженная работа отрицательно сказалась на здоровье ученого, 1 января 1894 года великого ученого не стало. Это стало огромной невосполнимой утратой не только для родных и близких, но и для всего научного мира.

Детство

Немецкий физик, ставший основоположником электродинамики, родился 22 февраля 1857 года в Гамбурге. Его семья была весьма процветающих евреев. Отец занимался коммерцией и являлся членом городского совета, а бабушка была из семьи состоятельных банкиров. Банк, который основал ее отец и по сегодняшний день действует. Мать Генриха Анна Элизабет Пфефферкорн родом из Франкфурта-на-Майне. В их семье, кроме Генриха было еще трое младших братьев и сестра.

С самого детства Генрих был болезненным и слабым ребенком. Поэтому подвижные и шустрые игры были не для него. Зато в его распоряжении было множество книг, он мог читать сколько угодно душе и также с удовольствием изучать иностранные языки. Так, еще в юном возрасте он выучил самостоятельно арабский язык и санскрит. Все это прекрасно тренировало память ребенка.

Путь к науке

Его родители считали, что сын должен пойти по стопам отца и стать юристом, для чего мальчика отдали в гимназию при Гамбургском университете. Техника и наука изучались молодым студентом в Берлине, Мюнхене и Дрездене. В возрасте 23 лет он получил степень доктора философии, изучая ее в Берлине. А еще спустя 5 лет Генрих получает звание профессора в Университете Карлсруэ. Именно там он сделал свое научное открытие об электромагнитных волнах. Еще будучи студентом он попал на работу в лабораторию к известному физику Герману Гельмгольцу, это был достаточно известный ученый того времени. Под его руководством и происходили многие занятия, благодаря нему была защищена диссертация и написаны многие труды. Их плодотворное сотрудничество вскоре переросло в тесную дружбу.

В те годы такая наука как физика была мало изучена. Ученые того времени считали в природе существуют только флюиды, а магнитное и электрические поля не были до конца изучены.
Но не только теоретическая часть науки была интересна молодому ученому. Эксперименты привлекали его все больше и больше, он проводил их в физическом институте, который находился при Берлинском университете.

Научные работы

Генрих Герц проводил многочисленные опыты, но положительные результаты были получены не сразу. Однако за проводимые исследования он был награжден особым призом от Берлинского университета. Награда стала мощным стимулом для дальнейшего изучения науки. Многие из полученных результатов составили основу будущей диссертации. Защитил он ее в 1880 году, она и стала основанием научной карьеры молодого ученого.

В распоряжении молодого человека была достаточно примитивная аппаратура, но и с ее помощью Генрих сделал множество открытий. Ему удалось подтвердить наличие электромагнитных волн. Определить их скорость распространения, отражения и преломления.

В его честь названа единица измерения герц. А его знаменитые открытия легли в основу таких изобретений как радио, телеграф, телевидение.

Благодаря его исследованиям ученые пересматривали существующую на то время теорию о природе света. Ученый сделал открытие фотоэффекта. Им были сделаны также открытия в метеорологии и механике контакта.

Личная жизнь и смерть

Супругой молодого ученого стала Елизавета Долль. В браке у них родились две девочки, Матильда и Джоанна. Матильда стала впоследствии психологом. Замуж обе дочери не вышли, поэтому прямых потомков у великого ученого не осталось. В 36 лет Генриха Герца не стало, произошло это 1 января 1894 года от инфекционной болезни в Бонне. Предшествовала этому сильная мигрень, после был диагностирован гранулематоз Вегенера в 1892 году. На протяжении двух лет Генриха пытались вылечить, несколько раз прооперировали, но спасти его не удалось.

В 30-е годы его жене и дочерям пришлось эмигрировать в Англию, послужил этому серьезному шагу – приход к власти Гитлера.

Из непрямых потомков у Генриха вошли в историю благодаря своему вкладу в науку – племянник Густав Людвиг Герц, он занимался также физикой и стал лауреатом Нобелевской премии и его сын создавший медицинскую сонографию.